首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We propose a numerical method for quick evaluation of the probability that an asteroid will collide with a planet. The method is based on linear mappings of an expected moment of a close approach of the asteroid to the planet and the detection of collisions of the virtual objects with the massive body. The standard way for solving the problem of estimating the collision probability consists in simulating the evolution of the uncertainty cloud numerically based on the stepwise integration of virtual orbits. This is naturally associated with huge processor time costs. The proposed method is tested using the examples of the 2011 AG5 and 2007 VK184 asteroids that are presently in the top of the list of the most dangerous celestial objects. The test results show that linear mappings allow one to obtain the estimates of probabilities quicker by several orders than numerical integration of all virtual orbits.  相似文献   

2.
The efficiency of absorption of X-rays generated by a nuclear explosion at the surface of an asteroid, estimated earlier, is used to calculate the explosion yield needed to deflect the orbit of an asteroid. Following the work of Ahrens &38; Harris, it is shown that a recoil velocity of 1 cm s−1 is required to deflect an asteroid from a collision course with the Earth, and the necessary yield of explosion energy is estimated. If it is assumed that the scaling law between the energy and the diameter of the resulting crater, obtained from experiments carried out on the Earth, remains valid on the asteroid surface, where gravity is much weaker, an explosion energy of 8 and 800 megaton (Mton) equivalent of TNT would be required for asteroids of diameter 1 and 10 km respectively. If, on the other hand, the crater diameter is proportional to a certain power of the gravity g , the power being determined from a dimension analysis, 130 kton and 12 Mton would be required to endow asteroids of diameters 1 and 10 km with the required velocity, respectively. The result indicates that in order to estimate the required explosion energy, a better understanding of cratering under gravity much weaker than on the Earth would be required.  相似文献   

3.
W.-H. Ip 《Icarus》1977,32(3):378-381
Collision of asteroids with the main-belt asteroid population is considered with the effect of the impact kinetic energy taken into account. It is found that objects in eccentric orbits have a larger probability of destructive collision as compared to objects in orbits with mean values of eccentricity (e = 0.15) and inclination (i = 10°); also orbits with small semimajor axes (a ≈ 2.3 AU) are found to have peak values of the probability of destructive collision.  相似文献   

4.
The probability of an asteroid colliding with a planet can be estimated by the Monte Carlo method, in particular, through the statistical simulation of the possible initial conditions for the motion of an asteroid based on the probability density distribution set by the respective covariance matrix to be further projected with the orbital model onto the supposed time point of the collision. Hence, the collision probability is calculated as the ratio between the number of projected (virtual) asteroids striking the planet and their total number. The main problem is that different elements of the initial conditions (orbit or state vector) are correlated and, therefore, cannot be simulated independently. These correlations are reflected in the nondiagonal covariance matrix of the solution. The matrix is diagonalized by an orthogonal transformation. In the uncertainty domain constructed from the diagonal matrix elements, the initial values for each of the six orbital elements are simulated independently from the other elements, but with the accounting for their normal distribution. The program for calculating the normal distribution is based on the central limit theorem. Each sample of the initial values for the six orbital elements is transferred to the initial reference frame using an inverse transformation. Then, numerical integration is used to track the asteroid’s motion along the respective orbit to predict a possible impact event. Asteroids 99942 Apophis and 2007 WD5 are used as examples to show that disregarding the correlations when diagonalizing the covariance matrix to set the initial conditions may seriously distort the collision probability estimates. The paper gives the probabilities of the collisions of Apophis with the Earth and asteroid 2007 WD5 with Mars calculated by the author from observation sets showing nonzero collision probabilities. The author’s estimates are compared to those calculated by NASA.  相似文献   

5.
Near-Earth asteroids (10302) 1989 ML and (4660) Nereus have attracted much attention as candidates for the next generation of deep space explorations. In the study, the maximum Lyapunov exponent (MLE) and MEGNO (Mean Exponential Growth factor of Nearby Orbits) index are calculated after considering the effects of major objects in the Solar system, and the stabilities of these two asteroids are discussed. For each asteroid, 1000 clonal particles consistent with the observational uncertainties are generated from a multivariate normal distribution. Statistical results display probably emerging regions of each asteroid within 0.1 million years, and provide distributions of occurrence times in the phase space of semi-major axis versus eccentricity. We estimate the probability of close encounters and collisions between the asteroid and Earth or other planets. Furthermore, secular resonances, Kozai resonance, and mean motion resonances are analyzed for nominal orbits of the two asteroids. We conclude that 1989 ML is in the region dominated by mean motion resonances with terrestrial planets. The probability of close encounters with them is relatively small, therefore its orbit is relatively stable. Nereus is located in a region that can have close-encounters with the Earth, and it has an extremely unstable orbit.  相似文献   

6.
The maximum size of impact craters on finite bodies marks the largest impact that can occur short of impact induced disruption of the body. Recently attention has started to focus on large craters on small bodies such as asteroids and rocky and icy satellites. Here the large crater on the recently imaged Asteroid (2867) Steins (with crater diameter to mean asteroid radius ratio of 0.79) is shown to follow a limit set by other similar sized bodies with moderate macroporosity (i.e. fractured asteroids). Thus whilst large, the crater size is not novel, nor does it require Steins to possess an extremely large porosity. In one of the components of the binary Asteroid (90) Antiope there is the recently reported presence of an extremely large depression, possibly a crater, with depression diameter to mean asteroid radius ratio of ∼(1.4–1.62). This is consistent with the maximum size of a crater expected from previous observations of very porous rocky bodies (i.e. rubble-pile asteroids). Finally, a relationship between crater diameter (normalised to body radius) is proposed as a function of body porosity which suggests that the doubling of porosity between fractured asteroids and rubble-pile asteroids, nearly doubles the size (D/R value) of the largest crater sustainable on a rocky body.  相似文献   

7.
近地小行星(10302) 1989 ML和(4660) Nereus作为下一代深空探测的候选目标一直备受关注. 在考虑太阳系主要天体的动力学背景下, 通过计算最大Lyapunov指数(MLE)及MEGNO (Mean Exponential Growth factor of Nearby Orbits)指数讨论它们的稳定性. 同时, 对每个小行星, 在其观测误差范围内按多元正态分布各选取1000个克隆粒子, 通过统计分析显示这两个小行星在10万年内可能的运动范围, 给出半长径-偏心率空间中的出现次数分布图, 并统计小行星与地球或其他大行星之间的密近交汇及碰撞的概率. 此外还对这两个小行星的标称轨道进行长期共振、Kozai共振及平运动共振的动力学分析. 综上得出结论, 1989 ML处在平运动共振主导的区域, 发生密近交汇的概率较小, 从而其轨道相对较稳定; 而Nereus处在地球的密近交汇区域, 轨道极不稳定.  相似文献   

8.
Abstract— If impact stress reverberation is the primary gradational process on an asteroid at global scales, then the largest undegraded crater records an asteroid's seismological response. The critical crater diameter Dcrit is defined as the smallest crater whose formation disrupts all previous craters globally up to its size; it is solved for by combining relationships for crater growth and for stress attenuation. The computation for Dcrit gives a simple explanation for the curious observation that small asteroids have only modest undegraded craters, in comparison to their size, whereas large asteroids have giant undegraded craters. Dcrit can even exceed the asteroid diameter, in which case all craters are “local” and the asteroid becomes crowded with giant craters. Dcrit is the most recent crater to have formed on a blank slate; when it is equated to the measured diameter of the largest undegraded crater on known asteroids, peak particle velocities are found to attenuate with the 1.2–1.3 power of distance—less attenuative than strong shocks, and more characteristic of powerful seismic disturbances. This is to be expected, since global degradation can result from seismic (cm s?1) particle velocities on small asteroids. Attenuation, as modeled, appears to be higher on asteroids known to be porous, although these are also bodies for which different crater scaling rules might apply.  相似文献   

9.
Non-destructive collisions among Main Belt asteroids have effects on their orbits due to the transmission of linear momentum. The efficiency of this mechanism depends on several parameters which are currently poorly known. The most critical aspects are (i) the inventory and size distribution of small Main Belt asteroids, with sizes well below a few kilometres; (ii) the energy threshold for collisional fragmentation and fragment dispersion and (iii) the efficiency of linear momentum transfer. In spite of these difficulties, a general statistical model of the dynamical effects of non-destructive collisions can be developed, and is presented here. Based on this model, the consequences of different assumptions concerning the asteroid size distribution and collision physics are computed and discussed. Quantitative evaluations of the collisionally induced orbital mobility in different possible scenarios are presented.  相似文献   

10.
We investigate the flux of main-belt asteroid fragments into resonant orbits converting them into near-Earth asteroids (NEAs), and the variability of this flux due to chance interasteroidal collisions. A numerical model is used, based on collisional physics consistent with the results of laboratory impact experiments. The assumed main-belt asteroid size distribution is derived from that of known asteroids extrapolated down to sizes of ≈ 40 cm, modified in such a way to yield a quasi-stationary fragment production rate over times ≈ 100 Myr. The results show that the asteroid belt can supply a few hundred km-sized NEAs per year, well enough to sustain the current population of such bodies. On the other hand, if our collisional physics is correct, the number of existing 10-km objects implies that these objects either have very long-lived orbits, or must come from a different source (i.e., comets). Our model predicts that the fragments supplied from the asteroid belt have initially a power-law size distribution somewhat steeper than the observed one, suggesting preferential removal of small objects. The component of the NEA population with dynamical lifetimes shorter than or of the order of 1 Myr can vary by a factor reaching up to a few tens, due to single large-scale collisions in the main belt; these fluctuations are enhanced for smaller bodies and faster evolutionary time scales. As a consequence, the Earth's cratering rate can also change by about an order of magnitude over the 0.1 to 1 Myr time scales. Despite these sporadic spikes, when averaged over times of 10 Myr or longer the fluctuations are unlikely to exceed a factor two.  相似文献   

11.
Andrew F Cheng 《Icarus》2004,169(2):357-372
A new synthesis of asteroid collisional evolution is motivated by the question of whether most asteroids larger than ∼1 km size are strengthless gravitational aggregates (rubble piles). NEAR found Eros not to be a rubble pile, but a shattered collisional fragment, with a through-going fracture system, and an average of about 20 m regolith cover. Of four asteroids visited by spacecraft, none appears likely to be a rubble pile, except perhaps Mathilde. Nevertheless, current understanding of asteroid collisions and size-dependent strength, and the observed distribution of rotation rates versus size, have led to a theoretical consensus that many or most asteroids larger than 1 km should be rubble piles. Is Eros, the best-observed asteroid, highly unusual because it is not a rubble pile? Is Mathilde, if it is a rubble pile, like most asteroids? What would be expected for the small asteroid Itokawa, the MUSES-C sample return target? An asteroid size distribution is synthesized from the Minor Planet Center listing and results of the Sloan Digital Sky Survey, an Infrared Space Observatory survey, the Small Main-belt Asteroid Spectroscopic Survey and the Infrared Astronomical Satellite survey. A new picture emerges of asteroid collisional evolution, in which the well-known Dohnanyi result, that the size distribution tends toward a self-similar form with a 2.5-index power law, is overturned because of scale-dependent collision physics. Survival of a basaltic crust on Vesta can be accommodated, together with formation of many exposed metal cores. The lifetimes against destruction are estimated as 3 Gyr at the size of Eros, 10 Gyr at ten times that size, and 40 Gyr at the size of Vesta. Eros as a shattered collisional fragment is not highly unusual. The new picture reveals the new possibility of a transition size in the collisional state, where asteroids below 5 km size would be primarily collisional breakup fragments whereas much larger asteroids are mostly eroded or shattered survivors of collisions. In this case, well-defined families would be found in asteroids larger than about 5 km size, but for smaller asteroids, families may no longer be readily separated from a background population. Moreover, the measured boulder size distribution on Eros is re-interpreted as a sample of impactor size distributions in the asteroid belt. The regolith on Eros may result largely from the last giant impact, and the same may be true of Itokawa, in which case about a meter of regolith would be expected there. Even a small asteroid like Itokawa may be a shattered object with regolith cover.  相似文献   

12.
D.G. Korycansky  Erik Asphaug 《Icarus》2003,163(2):374-388
We explore whether the cumulative effect of small-scale meteoroid bombardment can drive asteroids into nonaxisymmetric shapes comparable to those of known objects (elongated prolate forms, twin-lobed binaries, etc). We simulate impact cratering as an excavation followed by the launch, orbit, and reimpact of ejecta. Orbits are determined by the gravity and rotation of the evolving asteroid, whose shape and spin change as cratering occurs repeatedly. For simplicity we consider an end-member evolution where impactors are all much smaller than the asteroid and where all ejecta remain bound. Given those assumptions, we find that cumulative small impacts on rotating asteroids lead to oblate shapes, irrespective of the chosen value for angle of repose or for initial angular momentum. The more rapidly a body is spinning, the more flattened the outcome, but oblateness prevails. Most actual asteroids, by contrast, appear spherical to prolate. We also evaluate the timescale for reshaping by small impacts and compare it to the timescale for catastrophic disruption. For all but the steepest size distributions of impactors, reshaping from small impacts takes more than an order of magnitude longer than catastrophic disruption. We conclude that small-scale cratering is probably not dominant in shaping asteroids, unless our assumptions are naive. We believe we have ruled out the end-member scenario; future modeling shall include angular momentum evolution from impacts, mass loss in the strength regime, and craters with diameters up to the disruption threshold. The ultimate goal is to find out how asteroids get their shapes and spins and whether tidal encounters in fact play a dominant role.  相似文献   

13.
Cratering rates on the Galilean satellites   总被引:1,自引:0,他引:1  
Zahnle K  Dones L  Levison HF 《Icarus》1998,136(2):202-222
We exploit recent theoretical advances toward the origin and orbital evolution of comets and asteroids to obtain revised estimates for cratering rates in the jovian system. We find that most, probably more than 90%, of the craters on the Galilean satellites are caused by the impact of Jupiter-family comets (JFCs). These are comets with short periods, in generally low-inclination orbits, whose dynamics are dominated by Jupiter. Nearly isotropic comets (long period and Halley-type) contribute at the 1-10% level. Trojan asteroids might also be important at the 1-10% level; if they are important, they would be especially important for smaller craters. Main belt asteroids are currently unimportant, as each 20-km crater made on Ganymede implies the disruption of a 200-km diameter parental asteroid, a destruction rate far beyond the resources of today's asteroid belt. Twenty-kilometer diameter craters are made by kilometer-size impactors; such events occur on a Galilean satellite about once in a million years. The paucity of 20-km craters on Europa indicates that its surface is of order 10 Ma. Lightly cratered surfaces on Ganymede are nominally of order 0.5-1.0 Ga. The uncertainty in these estimates is about a factor of five. Callisto is old, probably more than 4 Ga. It is too heavily cratered to be accounted for by the current flux of JFCs. The lack of pronounced apex-antapex asymmetries on Ganymede may be compatible with crater equilibrium, but it is more easily understood as evidence for nonsynchronous rotation of an icy carapace.  相似文献   

14.
We introduce new techniques for the computation of the collision probability for Earth-crossing asteroids in the case of short observational arcs and/or small numbers of observations. The techniques rely on the orbital element probability density computed using statistical orbital ranging. We apply the techniques to the Earth-crossing asteroid 1998 OX4with non-vanishing collision probability in numerous close approaches after the year 2012 (inclusive). We study the invariance of the collision probability in transformations between different orbital element sets, and develop a Spearman rank correlation measure for the validity of the linear approximation. We introduce an optimized, fast version of the statistical ranging method.  相似文献   

15.
We investigate the flux of main-belt asteroid fragments into resonant orbits converting them into near-Earth asteroids (NEAs), and the variability of this flux due to chance interasteroidal collisions. A numerical model is used, based on collisional physics consistent with the results of laboratory impact experiments. The assumed main-belt asteroid size distribution is derived from that of known asteroids extrapolated down to sizes of 40 cm, modified in such a way to yield a quasi-stationary fragment production rate over times 100 Myr. The results show that the asteroid belt can supply a few hundred km-sized NEAs per year, well enough to sustain the current population of such bodies. On the other hand, if our collisional physics is correct, the number of existing 10-km objects implies that these objects either have very long-lived orbits, or must come from a different source (i.e., comets). Our model predicts that the fragments supplied from the asteroid belt have initially a power-law size distribution somewhat steeper than the observed one, suggesting preferential removal of small objects. The component of the NEA population with dynamical lifetimes shorter than or of the order of 1 Myr can vary by a factor reaching up to a few tens, due to single large-scale collisions in the main belt; these fluctuations are enhanced for smaller bodies and faster evolutionary time scales. As a consequence, the Earth's cratering rate can also change by about an order of magnitude over the 0.1 to 1 Myr time scales. Despite these sporadic spikes, when averaged over times of 10 Myr or longer the fluctuations are unlikely to exceed a factor two.  相似文献   

16.
J.G. Hills 《Icarus》1973,18(3):505-522
The physically reasonable assumption that the seed bodies which initiated the accretion of the individual asteroids, planets, and comets (subsequently these objects are collectively called planetoids) formed by stochastic processes requires a radius distribution function which is unique except for two scaling parameters: the total number of planetoids and their most probable radius. The former depends on the ease of formation of the seed bodies while the second is uniquely determined by the average pre-encounter velocity, V, of the accretable material relative to an individual planetoid. This theoretical radius function can be fit to the initial asteroid radius distribution which Anders (1965) derived from the present-day distribution by allowing for fragmentation collisions among the asteroids since their formation. Normalizing the theoretical function to this empirical distribution reveals that there were about 102 precollision asteroids and that V = (2?4) × 10?2 km/sec which was presumably the turbulent velocity in the Solar Nebula. Knowing V we can determine the scale height of the dust in the Solar Nebula and consequently its space density. The density of accretable material determines the rate of accretion of the planetoids. From this we find, for example, that the Earth formed in about 8 × 106 yr and it attained a maximum temperature through accretion of about 3 × 103°K. From the total mass of the terrestrial planets and the theoretical radius function we find that about 2 × 103 planetoids formed in the vicinity of the terrestrial planets. Except for the asteroids the smaller planetoids have since been accreted by the terrestrial planets. About 15% of the present mass of the terrestrial planets was accumulated by the secondary accretion of these smaller primary planetoids. There are far fewer primary planetoids than craters on the Moon or Mars. The craters were likely produced by the collisional breakup of a few primary planetoids with masses between one-tenth and one lunar mass. This deduction comes from comparing the collision cross sections of the planetoids in this mass range to that of the terrestrial planets. This comparison shows that two to three collisions leading to the breakup of four to six objects likely occurred among these objects before their accretion by the terrestrial planets. The number of these fragments is quite adequate to explain the lunar and Martin craters. Furthermore the mass spectrum of such fragments is a power-law distribution which results in a power-law distribution of crater radii of just the type observed on the Moon and Mars. Applying the same analysis to the planetoids which formed in the vicinity of the giant planets reveals that it is unlikely that any fragmentation collisions took place among them before they were accreted by these planets due to the integrated collision cross section of the giant planets being about three orders of magnitude greater than that of the terrestrial planets. We can thus anticipate a marked scarcity of impact craters on the satellites of these outer planets. This prediction can be tested by future space probes. Our knowledge of the radius function of the comets is consistent with their being primary planetoids. The primary difference between the radius function of the planetoids which formed in the inner part of the solar system and that of the comets results from the fact that the seed bodies which grew into the comets formed far more easily than those which grew into the asteroids and the terrestrial planets. Thus in the outer part of the Solar Nebula the principal solid material (water and ammonia snow) accreted into a huge (~1012+) number of relatively small objects (comets) while in the inner part of the nebula the solid material (hard-to-stick refractory substances) accumulated into only a few (~103) large objects (asteroids and terrestrial planets). Uranus and Neptune presumably formed by the secondary accretion of the comets.  相似文献   

17.
Photometry is one of the most efficient investigation techniques. It provided a large body of data on albedos, sizes, shapes, rotation, optical properties, and structural characteristics of asteroids and other minor bodies of the solar system. The contribution of photometry to the determination of asteroid parameters was most crucial. This review summarizes main results of asteroid studies in three most important areas: i) determination of the shape and rotation parameters of asteroids, ii) investigation of optical properties of asteroid surfaces, and iii) detection and investigation of binary asteroid systems.  相似文献   

18.
The role of catastrophic collisions in the evolution of the asteroids is discussed in detail, employing extrapolations of experimental results on the outcomrs of high-velocity impacts. We determine the range of the probable largest collision for target asteroids of different sizes during the solar system's lifetime, and we conclude that all the asteroids have undergone collisional events capable of overcoming the material's solid-state cohesion. Such events do not lead inescapably to complete disruption of the targets, because (i) for a previously unfractured target, experiments show that fragments of significant size can survive breakup, depending on the energy and geometry of the collision; (ii) self-gravitation can easily cause a reaccumulation of fragments for targets exceeding a critical size, which seems to be of the order of 100 km. In the intermediate diameter range 100?D ?300 km, where formation of gravitationally bound “rubble piles” is frequent, the transfer of angular momentum can be large enough to produce objects with triaxial equilibrium shapes (Jacobi ellipsoids) or to cause fission into binary systems. In the same size range, low-velocity escape of collisional fragments can also occur, leading to the formation of dynamical families. Asteroids smaller than ~100 km are mostly multigeneration fragments, while for D?300 km the collisional process produces nearly spheroidal objects covered by megaregoliths; whether their rotation is “primordial” or collisionally generated depends critically on the past flux of colliders. The complex and size-dependent phenomenology predicted by the theory compares satisfactorily with the observational evidence, as derived both by a classification of asteroids in terms of their size, spin rate, and lightcurve amplitude, and by a comparison between the rotational properties of family and nonfamily asteroids. The fundamental result of this investigation is that almost all asteroids are outcomes of catastrophic collisions, and that these events cause either complete fragmentation of the target bodies or, at least, drastic readjustments of their internal structure, shape, and spin rate.  相似文献   

19.
David A. Minton  Renu Malhotra 《Icarus》2010,207(2):744-7225
The cumulative effects of weak resonant and secular perturbations by the major planets produce chaotic behavior of asteroids on long timescales. Dynamical chaos is the dominant loss mechanism for asteroids with diameters in the current asteroid belt. In a numerical analysis of the long-term evolution of test particles in the main asteroid belt region, we find that the dynamical loss history of test particles from this region is well described with a logarithmic decay law. In our simulations the loss rate function that is established at persists with little deviation to at least . Our study indicates that the asteroid belt region has experienced a significant amount of depletion due to this dynamical erosion—having lost as much as ∼50% of the large asteroids—since 1 Myr after the establishment of the current dynamical structure of the asteroid belt. Because the dynamical depletion of asteroids from the main belt is approximately logarithmic, an equal amount of depletion occurred in the time interval 10-200 Myr as in 0.2-4 Gyr, roughly ∼30% of the current number of large asteroids in the main belt over each interval. We find that asteroids escaping from the main belt due to dynamical chaos have an Earth-impact probability of ∼0.3%. Our model suggests that the rate of impacts from large asteroids has declined by a factor of 3 over the last 3 Gyr, and that the present-day impact flux of objects on the terrestrial planets is roughly an order of magnitude less than estimates currently in use in crater chronologies and impact hazard risk assessments.  相似文献   

20.
The dependence of the cumulative number of numbered asteroids (up to 3720) on their absolute magnitude is investigated. The differential mass index k is derived from these relations for fainter asteroids. A steeper slope (2.2 < k < 2.4) is found in the four most populous asteroid familes (Flora, Koronis, Eos and Themis) and a flatter slope (1.3 < k < 1.6) for non-family asteroids. This indicates that there are two different asteroid populations in the asteorid belt. Total masses of the asteroid families may be greater than it is commonly accepted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号