首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the solar eclipse of March 29, 2006, in the signals of ULF radio stations, in the intensity of regular radio noise at frequencies of 0.3–10 kHz, and in the number of atmospherics received in Yakutsk mostly from the west have been considered. The observations were performed using a multichannel parallel analyzer-recorder (11 channels in the frequency band 0.47–8.7 kHz), one-point lightning direction and range finder (0.3–100 kHz), narrow-sector radio noise direction-finder (0.3–10 kHz), recorder of signals from VLF radio stations, and broadband radio noise recorder (0.3–100 kHz). A GPS clock was used to synchronize a recorder of signals from VLF radio stations. The effect was observed in radio signals, radio noise, and number of atmospherics from the direction 270° ± 20° counted off clockwise from the north during the last stage of the eclipse (~ 1100–1200 UT), when the lunar shadow approached the line of the nighttime terminator and obscured part of the signal propagation path. The effect was observed as an enhancement of the received signals by a factor of ~1.2, a factor of ~1.4 increase in the number of atmospherics, and a change in the radio station phase values.  相似文献   

2.
The relation between the long-term variations in the thunderstorm VLF radio noise intensity and solar activity in 1979–2006 has been studied. The sunspot number (the Wolf number) was used as a parameter characterizing solar activity. The intensity of VLF noise registered in Yakutsk characterizes thunderstorm activity in Eastern Siberia (0100–0500 UT) and in the African thunderstorm center (1300–1700 UT). Using the results of a correlation analysis, it has been found that thunderstorm activity in Eastern Siberia and in the African world centre is in antiphase with a change in the sunspot number. The highest anticorrelation coefficients between solar activity and thunderstorm discharge intensity were obtained for thunderstorms in Eastern Siberia. In this case the maximal correlation coefficients (R = −0.59 and −0.75) were obtained for the average monthly values of the VLF radio noise intensity in August, measured at 0400 UT and 1600 UT, respectively.  相似文献   

3.
The preliminary results of observations of VLF electromagnetic signals (atmospherics) in the mountains of North Vietnam (Dien Bien Phu, 21°23′50″ N, 103°0′28″ E) are presented. Primarily, signals of typical atmospherics with a maximum in the frequency range of 4–9 kHz were observed; sometimes they were accompanied by so-called “tails” at frequencies less than 1 kHz, and also tweeks of usually short duration (about 10 ms) were observed. Several parameters of the ionosphere, as well as the distance to sources of atmospherics (in accordance to the data of the World Wide Lightning Location Network (TOGA)), were estimated by spectral-temporal characteristics of tweeks.  相似文献   

4.
The complex geophysical pattern of the development of geomagnetic storm in VLF emissions has been studied based on the satellite data. It has been established that the variations in the LF noise emission intensity (0.1–20.0 kHz) and the energetic electron (E ≥ 40 keV) flux density reflect the processes of magnetospheric plasma reconstruction during geomagnetic disturbances. It has been indicated that a distinct structure of the inner and outer radiation belts is observed under quiet conditions, and the VLF emission maximum was registered at L = 4–5. The inner boundary of the outer radiation belt shifted to lower latitudes, the intensity of the noise VLF emissions increased, and the intensity maximum was displaced to L = 2.5–3.5 during the geomagnetic storm, when the energetic electron flux density increased. The VLF noise spectrum widened toward higher frequencies. The VLF noise level continued increasing, the noise maximum shifted to L = 4–5, and the fluxes of precipitating electrons abruptly increased during the storm recovery phase, when the density of the flux of quasitrapped electrons remained increased for a long time.  相似文献   

5.
Simultaneous records of the diurnal variations in the quasistatic electric field in the near-Earth atmosphere, fluxes of discrete electromagnetic pulses in the VLF band, source azimuths, narrowband filter output emission intensity at frequencies of 4.65 and 5.3 kHz, and time forms and spectra of VLF pulses have been analyzed. The anomalous behavior of these parameters in October 2002 and August 2004 with different time delay was accompanied by earthquakes near the southeastern coast of Kamchatka at distances of 250–400 km from the registration points. Based on the results of a fine frequency-time analysis of the broadband records of VLF signals, it has been indicated for the first time that discrete electromagnetic pulses observed in anomalous fluxes before earthquakes were signals of local thunderstorm processes.  相似文献   

6.
7.
We discuss the results of an analysis of digital high-sensitivity ground-based observations of very low frequency (VLF) emissions, carried out in Northern Finland (L = 5.3) in May–June 2012. During this period of time, we found that three high-speed solar wind streams approached the Earth’s magnetosphere and at the front of these fluxes long-lasting intense daytime bursts of VLF emissions were generated in two frequency bands: above and below ~2.5 kHz. At frequencies above ~2.5–3.0 kHz, there were VLF hiss waves, the temporal structure of which consisted of a quasi-periodic sequence of separate stronger spots of noise signals. The low-frequency band was represented by chorus waves, superimposed on intense hiss emissions at frequencies below ~1.5 kHz. The high-frequency (f > 2.5 kHz) waves were elliptic and, predominately, left-hand polarized and the low-frequency waves were right-hand polarized. It was supposed that high-frequency VLF hiss waves were generated at L < 5 and VLF chorus waves were generated at L > 5. We discuss a possible scenario of the generation and propagation of the VLF emissions observed.  相似文献   

8.
A daily periodicity in small (K ≤ 8. 0) Kamchatka earthquakes has been detected, with the maximum occurring during the nighttime. The effect was not observed throughout the area of study, but only in several zones. We show that the results are not affected by human and weather factors. A hypothesis is put forward to explain the physical causes of the effect, viz., that the daily periodicity of small earthquakes could be due to natural VLF electromagnetic radiation acting on the geologic medium. It is pointed out that the effect is related to the previously identified effect of natural electromagnetic radiation modulating the intensity of geoacoustic emission from rocks.  相似文献   

9.
Summary The ELF-VLF experiment onboard the Interkosmos 10 satellite consisted mainly of a broadband receiver covering the frequency range from 20 Hz to 22 kHz. The signal level in this broad band has also been measured, as well as the level in two narrow bands with centre frequencies of 720 Hz and 4 kHz. The electric component of the ELF-VLF fields has been measured by using an electric dipole antenna, 2.35 m in length. The purpose of this paper is to characterise the data obtained by the broadband RTT transmissions at the Panská Ves station during the seven-months active period of the satellite. The spectral analysis of all broad-band ELF-VLF recordings has been used. Examples of some typical phenomena, most frequently observed at different invariant latitudes are given.  相似文献   

10.
This paper is concerned with a new, previously unknown type of high-frequency (above 4 kHz) VLF emissions that were detected during winter VLF campaigns in Kannuslehto (L ~ 5.5), Finland. These previously unknown emissions have been discovered as a result of the application of special digital filtering: it clears the VLF records from pulse signals of intensive atmospherics, which prevent other kinds of VLF emissions in the same frequency range from being seen on spectrograms. As it appears, aside from wellknown bursts of auroral hisses and discrete quasiperiodic emissions, a previously unknown type of daytime right-hand polarized VLF waves is also present at frequencies above 4 kHz. These emissions can persist for several hours as series of separate short discrete wideband (from 4 to 10 kHz and higher) signals, each with a duration between one and several minutes. It has been found that such signals can be observed almost daily in winter. These emissions sound like bird’s chirping to a human ear; for that reason, they were called “bird emissions.” The dynamic spectra of individual signals often resemble flying birds. The signals are observed during daytime, more often in magnetically quiet conditions preceded by geomagnetic disturbances. As a rule, the occurrence of these bird emissions is accompanied by a slight increase in electron density in the lower ionosphere, which is evidence of the precipitation of energetic (>30 keV) electrons. This raises a number of questions as to where and how the VLF bird emissions are generated and how such emissions, at frequencies greatly exceeding half the electron equatorial gyrofrequency at L ~ 5.5, can reach the Earth’s surface.  相似文献   

11.
About 100 breakups of different types and intensities are studied on the basis of Lovozero Observatory data. Magnetic pulsations in different frequency ranges, VLF emissions, and auroral activity are analyzed using the TV data. It is found that magnetic pulsations in all frequency ranges lag behind the moment of breakup by 0.5–2.0 min, and bursts of low-intensity broadband VLF emission hiss are observed 3–10 min before breakup. Hiss leading breakup corresponds to feeble auroras located northward of a pre-breakup arc.  相似文献   

12.
This paper presents the results of simultaneous observations of narrow-band noise VLF emissions in the frequency range 4–10 kHz at Kannuslehto ground station in Northern Finland and by Van Allen Probes (previously RBSP) in the equatorial part of the magnetosphere. The event of December 25, 2015, is considered. During the event, narrow-band noise VLF emissions were detected on the Earth in two frequency ranges, f = 3.5–6 kHz and f = 8–10 kHz, between 1100 and 1300 UT. Narrow-band VLF emissions in the equatorial zone were also observed during that time by the RBSP-B satellite; their frequency was close to the electron equatorial half-gyrofrequency and gradually increased from 3 to 11 kHz during the satellite motion from L = 5.0 to L = 3.0. Analysis of the fine structure of the emissions on the ground showed that their spectral and temporal characteristics corresponded to emissions by the satellites in localized zones at different L-shells. The ground-based observations at lower frequencies correlated with the satellite observations at larger L-shells. In order to localize the regions of the generation of the VLF emissions observed at Kannuslehto auroral station at different frequencies, we calculated the ray trajectories of waves from the equator for the plasma density distributions detected by Van Allen Probes. The calculations of the trajectories showed that the VLF waves detected at Kannuslehto station could travel to the ground only if they propagated in the large-scale density ducts (700–900 km) observed by Van Allen Probes.  相似文献   

13.
For the first time, simultaneous observations of very low frequency (VLF) emissions at auroral latitudes (L = 5.3) are carried out at two points located at close geomagnetic latitudes and spaced in longitude by 400 km: the Finnish Kannuslehto station (Φ = 64.2°) and the Russian Lovozero observatory (Φ = 64.1°). A recording equipment with similar frequency responses was used. The first results of a comparison of simultaneous observations showed that, in the overwhelming majority of cases, bursts of VLF emission appeared at both points synchronously with an identical (more often right-handed) polarization of the magnetic field of VLF waves, which can be evidence in favor of large dimensions of the ionosphere exit region of VLF waves. A simultaneous burst of quasi-periodic VLF emissions that occurred on February 02, 2013, during a substorm at 23–24 UT is discussed in detail. Additionally, VLF bursts were recorded which were observed only at one point, e.g., the appearance of left-hand polarized periodic emissions (PEs) in band 2.5–4.0 kHz with a repetition period of 3–4 s.  相似文献   

14.
An analysis of amplitude variations in the noise and storm-induced impulsive VLF electromagnetic signals recorded at Yakutsk along paths above earthquakes is reported. It is shown that amplitude characteristics of storm-induced VLF signals can usefully supplement signals of radio stations as used in the radio monitoring of regions above earthquakes. The effect on these signals due to earthquakes of magnitude greater than 5 is observed as an amplitude increase within the three days following an earthquake. The pre-seismic variations in the storm-induced signal amplitude which can be regarded as precursors are generally observed as increased amplitudes (within 10 days before the earthquake) with a subsequent minimum.  相似文献   

15.
Observations of field strengths of signals from a number of VLF transmitters, after propagation over long paths in the Earth–ionosphere waveguide, have been used to examine changes in the daytime attenuation rate in the course of a solar cycle. The measurements reported were recorded in the period 1986–1996. The paths studied range in length over about 8–14 Mm; they included NLK (Seattle) and NPM (Hawaii) to Dunedin, NZ, and NAA (Cutler, Maine) and NSS (Annapolis, Maryland) to Faraday, Antarctica. The frequencies monitored were mainly in the range 21–25 kHz but measurements near 10 kHz of Omega Hawaii at Faraday were also used. The daytime VLF attenuation rates at solar minimum were found to be greater by about 0.3 dB/Mm than at solar maximum.  相似文献   

16.
Effect of variations in the solar-wind parameters on thunderstorm activity   总被引:1,自引:0,他引:1  
Possible correlation between variations of the intensity of lightnings, which are estimated from the flux of thunderstorm-generated VLF-signals, and variations of the solar wind parameters has been investigated. The signals representing the intensity of local thunderstorms in summer and winter are received in Yakutsk (the Eastern Siberia) and in the African World Thunderstorm Center, respectively. The highest correlation coefficient has been obtained between the thunderstorm activity and variations of the solar-wind particle density. This correlation has a season-dependent sign-alternating character. The maximum positive and negative correlation coefficients are observed in August–September and February, respectively; i.e., the manifestation of solar wind density variations in the thunderstorm activity is maximal in the near-equinoctial periods. This may be associated with the peculiarities of the transfer of the magnetospheric electric field “from morning to evening,” which is induced by the solar-wind particle flux, to ionospheric heights.  相似文献   

17.
The results of an analysis of ground-based observations of very low frequency (VLF) emissions in Scandinavia (L ∼ 5) in April 2011 are discussed. A detailed study is conducted of an non-typical event (April 3, 2011) of simultaneous generation of VLF chorus at frequencies below 3 kHz and quasi-periodic VLF emissions (QP) in the band of 4–6 kHz, which were not discrete emissions but consisted of separate short (about 20 s) bursts of hiss. It is shown that these emissions were mainly characterized by right-hand polarization, which indicates the location of the exit point of waves from the ionosphere near the point of ground observations. Based on an analysis of the spectral characteristics of emissions, it is concluded that the generation regions of chorus and QP emissions were located at different L shells. The appearance of QP emissions coincided with the excitation of resonance geomagnetic pulsations of the Pc4 range in the magnetosphere with a period that was close to the quasi-period of repetition of spectral forms in QP emissions. However, based on the available data, it is not possible to conclude that these geomagnetic pulsations caused the quasi-periodic generation of bursts of VLF hiss. The time shift between the peaks of QP and geomagnetic pulsations was inconsistent and varied from one burst of hiss to another. It is suggested that the discussed QP emissions were a result of the development of self-oscillations in the Earth’s radiation belts.  相似文献   

18.
The specialized station of high-frequency seismic noise registration “Nachiki” is described arranged on Kamchatka in 1987. The instrument-methodical aspects of registration are considered, as well as history of observations development. New principal experimental results of surveys are represented. The results of use of high-frequency seismic noises are summarized to reveal strong earthquake precursors in the online mode in 1996–2008.  相似文献   

19.
Lidar observations during 2007–2008 in Kamchatka revealed aerosol layers in the upper stratosphere at heights of 35–50 km and in the mesosphere at heights of 60–75 km. It is well known that forces of gas-kinetic nature, i.e., photophoretic forces, act on aerosol particles that absorb solar radiation and terrestrial IR radiation; these forces can counteract the gravitational force and even lead to the levitation of these particles at particular heights. The accumulation of particles at these heights may lead to the formation of aerosol layers. We calculated these forces for the conditions of lidar observations in Kamchatka. Aerosol layers were observed at heights where particle levitation can occur. Thus, the stratospheric and mesospheric aerosol layers, detected at heights of 30–50 and 60–75 km, respectively, may be due to the effect of the photophoretic force on aerosol particles.  相似文献   

20.
The analyzed amplitude and phase variations in electromagnetic VLF and LF signals at 20–45 kHz, received in Moscow, Graz (Austria), and Sheffield (UK) during the total solar eclipse of March 20, 2015, are considered. The 22 analyzed paths have lengths of 200—6100 km, are differently oriented, and cross 40–100% occultation regions. Fifteen paths crossed the region where the occultation varied from 40 to 90%. Solar eclipse effects were found only on one of these paths in the signal phase (–50°). Four long paths crossed the 90–100% occultation region, and signal amplitude and phase anomalies were detected for all four paths. Negative phase anomalies varied from–75° to–90°, and the amplitude anomalies were both positive and negative and were not larger than 5 dB. It was shown that the effective height of the ionosphere varied from 6.5 to 11 km during the eclipse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号