首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Ravindra  B.  Venkatakrishnan  P. 《Solar physics》2003,215(2):239-259
The length scale and life time of the transition region network cells were studied using Heii 304 filtergrams. The temporal structure function was calculated from spatially aligned Heii 304 images. The estimated life time of the network cell was about 27 hr. We compared this life time with the life time of photospheric magnetic network and of the extrapolated magnetic network. The spatial structure function was calculated from the Heii 304 filtergrams. The calculated spatial structure function saturates at 25000 km. The transition region network elements are bigger in size than the photospheric magnetic network element. The magnetic network element equals the size of the Heii 304 network element when the photospheric magnetic field is extrapolated to a height of 3000 km above the photosphere where the magnetic fluxes are deployed. The derived value of the diffusion speed of the network elements was 0.098 km s–1.  相似文献   

2.
We have analysed the wide band images taken by Hinode/SOT, in a blue continuum window and in the G-band, more or less on a daily basis in the frame of the synoptic program, to investigate the variation of the solar granulation and of the photospheric network with the activity cycle. A particular attention has been given to disentangle solar effects from instrumental ones. It appears that a substantial fraction of the images are more or less blurred and/or defocussed. During the analysed period November 2006??C?July 2010, the granulation contrast of the sharpest selected images decreased steadily, the granulation scale increased and the number of MBPs decreased (they are the Bright Points of Magnetic origin which form the photospheric network in G-band images). These trends are likely of instrumental origin. Consequently, the granulation and the photospheric network have most probably not changed during the extended solar minimum 2007??C?2009.  相似文献   

3.
Ravindra  B.  Venkatakrishnan  P. 《Solar physics》2003,214(2):267-285
Near simultaneous coronal EUV images were used to show that the He ii 304 network brightening is independent of coronal EUV radiation. We studied the quantitative relation between the intensity of He ii 304 network brightening with the associated magnetic elements. An almost linear relationship was found between the He ii 304 network brightening and the magnetic field for a field strength higher than 10 G with exceptions at neutral lines and in the intra-network. We also calculated the most probable formation height of He ii 304 network elements using the potential extrapolation of the photospheric magnetic field. The results show that He ii 304 network elements form at or around 3000 km above the height of the layer at which the sources of magnetic flux are deployed.  相似文献   

4.
Solar activity during 2007?–?2009 was very low, causing anomalously low thermospheric density. A comparison of solar extreme ultraviolet (EUV) irradiance in the He?ii spectral band (26 to 34 nm) from the Solar Extreme ultraviolet Monitor (SEM), one of instruments on the Charge Element and Isotope Analysis System (CELIAS) on board the Solar and Heliospheric Observatory (SOHO) for the two latest solar minima showed a decrease of the absolute irradiance of about 15±6 % during the solar minimum between Cycles 23 and 24 compared with the Cycle 22/23 minimum when a yearly running-mean filter was used. We found that some local, shorter-term minima including those with the same absolute EUV flux in the SEM spectral band show a higher concentration of spatial power in the global network structure from the 30.4 nm SOHO/Extreme ultraviolet Imaging Telescope (EIT) images for the local minimum of 1996 compared with the minima of 2008?–?2011. We interpret this higher concentration of spatial power in the transition region’s global network structure as a larger number of larger-area features on the solar disk. These changes in the global network structure during solar minima may characterize, in part, the geo-effectiveness of the solar He?ii EUV irradiance in addition to the estimations based on its absolute levels.  相似文献   

5.
The present study examines the ionospheric Total Electron Content (TEC) variations in the lower mid-latitude Turkish region from the Turkish permanent GNSS network (TPGN) and International GNSS Services (IGS) observations during the years 2009 to 2017. The corresponding vertical TEC (VTEC) predicted by Kriging and NeQuick-2 models are evaluated to realize their efficacy over the country. We studied the diurnal, seasonal and spatial pattern of VTEC variation and tried to estimate by a new mathematical model using the long term of 9 years VTEC data. The diurnal variation of VTEC demonstrates a normal trend with its gradual enhancement from dawn to attain a peak around 09:00–14.00 UT and reaching the minimum level after 22.00 UT. The seasonal behavior of VTEC indicates a strong semi-annual variation of VTEC with maxima in September equinox followed by March equinox and minima in June solstice followed by December solstice. Also, the spatial variation in VTEC depicts a meaningful longitudinal/latitudinal pattern altering with seasons. It decreases longitudinally from the west to the east during March equinox and June solstice increases with latitude. The comparative analysis among the GNSS-VTEC, Kriging, NeQuick and the proposed mathematical model are evaluated with the help one way ANOVA test. The analysis shows that the null hypothesis of the models during storm and quiet days are accepted and suggesting that all models are statistically significantly equivalent from each other. We believe the outcomes from this study would complement towards a relatively better understanding of the lower mid-latitude VTEC variation over the Turkish region and analogous latitudes over the globe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号