首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For many practical reasons, the empirical black‐box models have become an increasingly popular modelling tool for river flow forecasting, especially in mountainous areas where very few meteorological observatories exist. In this article, precipitation data are used as the only input to estimate river flow. Using five empirical black‐box models—the simple linear model, the linear perturbation model, the linearly varying gain factor model, the constrained nonlinear system model and the nonlinear perturbation model–antecedent precipitation index—modelling results are compared with actual results in three catchments within the Heihe River Basin. The linearly varying gain factor model and the nonlinear perturbation model yielded excellent predictions. For better simulation accuracy, a commonly used multilayer feed‐forward neural network model (NNM) was applied to incorporate the outputs of the individual models. Comparing the performance of these models, it was found that the best results were obtained from the NNM model. The results also suggest that more reliable and precise predictions of river flow can be obtained by using the NNM model while also incorporating the combined outputs of different empirical black‐box models. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
River discharges vary strongly through time and space, and quantifying this variability is fundamental to understanding and modelling river processes. The river basin is increasingly being used as the unit for natural resource planning and management; to facilitate this, basin‐scale models of material supply and transport are being developed. For many basin‐scale planning activities, detailed rainfall‐runoff modelling is neither necessary nor tractable, and models that capture spatial patterns of material supply and transport averaged over decades are sufficient. Nevertheless, the data to describe the spatial variability of river discharge across large basins for use in such models are often limited, and hence models to predict river discharge at the basin scale are required. We describe models for predicting mean annual flow and a non‐dimensional measure of daily flow variability for every river reach within a drainage network. The models use sparse river gauging data, modelled grid surfaces of mean annual rainfall and mean annual potential evapotranspiration, and a network accumulation algorithm. We demonstrate the parameterization and application of the models using data for the Murrumbidgee basin, in southeast Australia, and describe the use of these predictions in modelling sediment transport through the river network. The regionalizations described contain less uncertainty, and are more sensitive to observed spatial variations in runoff, than regionalizations based on catchment area and rainfall alone. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Fully physics‐based, process‐level, distributed fluid flow and reactive transport hydrological models are rarely used in practice until recent years. These models are useful tools to help understand the fundamental physical, chemical, and biological processes that take place in nature. In this study, sensitivity analyses based on a mountain area river basin modelling study are performed to investigate the effect of river channel geometric characteristics on downstream water flow. Numerical experiments show that reduction in the river channel geometric measurement interval may not significantly affect the downstream water stage simulation as long as measurement accuracy at special nodes is guaranteed. The special upstream nodes include but are not limited to 1) nodes located close to the observation station, 2) nodes near the borders of different land covers with considerable riverbed roughness changes, 3) nodes at entering points of tributaries causing discharge jump and 4) nodes with a narrow cross‐section width that may control the flow conditions. This information provides guidelines for field investigation to efficiently obtain necessary geometric data for physics‐based hydrological modelling. It is especially useful in alpine areas such as the Tibetan Plateau where field investigation capability is limited under severe topography and climate condition. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
LINTRODUCTIONTerrainmodellingisatermtodescribetheprocessofrepresentingthesurfaceoftheEarth.Mathemahcally,theproblemcanbedescribedas;Givenasetofn(3sn相似文献   

5.
Research to date affirmed the key role of stream–aquifer interactions in integrated water resources management. The importance of river hydrodynamics on the spatial and temporal behaviour of groundwater was, however, not yet fully investigated. In contrast to the common approach where topography-based estimates of riverbed elevation may lead to inappropriate discretization and constant river stages, this study couples a fully hydrodynamic and one-dimensional river model to a two-dimensional catchment hydrological model. The surface and subsurface runoff, groundwater, and river components are integrated into a single modelling framework. The coupled model was applied to a medium sized catchment in Belgium with three model setups, in which the level of detail of representation of river hydrodynamics varies. Further model iterations were carried out for the most exhaustive setup to assess the importance of the bi-directional interactions between model components. Results show that higher details of river hydrodynamics help to improve the simulation of time-averaged groundwater levels. However, the impacts were not that clear for the time-varying groundwater levels. Moreover, visual and statistical model performance evaluation indicates a strong enhancement of the coupled models compared to the output from the hydrological model with respect to river discharge observations at catchment outlet and at internal stations. It also reveals the impact of river hydrodynamics on groundwater discharges when the most detailed setting delivered the highest performance among the three coupled models.  相似文献   

6.
A key aspect of large river basins partially neglected in large‐scale hydrological models is river hydrodynamics. Large‐scale hydrologic models normally simulate river hydrodynamics using simplified models that do not represent aspects such as backwater effects and flood inundation, key factors for some of the largest rivers of the world, such as the Amazon. In a previous paper, we have described a large‐scale hydrodynamic approach resultant from an improvement of the MGB‐IPH hydrological model. It uses full Saint Venant equations, a simple storage model for flood inundation and GIS‐based algorithms to extract model parameters from digital elevation models. In the present paper, we evaluate this model in the Solimões River basin. Discharge results were validated using 18 stream gauges showing that the model is accurate. It represents the large delay and attenuation of flood waves in the Solimões basin, while simplified models, represented here by Muskingum Cunge, provide hydrographs are wrongly noisy and in advance. Validation against 35 stream gauges shows that the model is able to simulate observed water levels with accuracy, representing their amplitude of variation and timing. The model performs better in large rivers, and errors concentrate in small rivers possibly due to uncertainty in river geometry. The validation of flood extent results using remote sensing estimates also shows that the model accuracy is comparable to other flood inundation modelling studies. Results show that (i) river‐floodplain water exchange and storage, and (ii) backwater effects play an important role for the Amazon River basin hydrodynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
This paper comparatively assesses the performance of five data assimilation techniques for three-parameter Muskingum routing with a spatially lumped or distributed model structure. The assimilation techniques used include direct insertion (DI), nudging scheme (NS), Kalman filter (KF), ensemble Kalman filter (EnKF) and asynchronous ensemble Kalman filter (AEnKF), which are applied to river reaches in Texas and Louisiana, USA. For both lumped and distributed routing, results from KF, EnKF and AEnKF are sensitive to the error specification. As expected, DI outperformed the other models in the case of lumped modelling, while in distributed routing, KF approaches, particularly AEnKF and EnKF, performed better than DI or nudging, reflecting the benefit of updating distributed states through error covariance modelling in KF approaches. The results of this work would be useful in setting up data assimilation systems that employ increasingly abundant real-time observations using distributed hydrological routing models.  相似文献   

8.
Abstract

A major goal in hydrological modelling is to identify and quantify different sources of uncertainty in the modelling process. This paper analyses the structural uncertainty in a streamflow modelling system by investigating a set of models with increasing model structure complexity. The models are applied to two basins: Kielstau in Germany and XitaoXi in China. The results show that the model structure is an important factor affecting model performance. For the Kielstau basin, influences from drainage and wetland are critical for the local runoff generation, while for the XitaoXi basin accurate distributions of precipitation and evapotranspiration are two of the determining factors for the success of the river flow simulations. The derived model uncertainty bounds exhibit appropriate coverage of observations. Both case studies indicate that simulation uncertainty for the low-flow period contributes more to the overall uncertainty than that for the peak-flow period, although the main hydrological features in these two basins differ greatly.

Citation Zhang, X. Y., Hörmann, G., Gao, J. F. & Fohrer, N. (2011) Structural uncertainty assessment in a discharge simulation model. Hydrol. Sci. J. 56(5), 854–869.  相似文献   

9.
In this article, we use a transfer function‐noise (TFN) modelling strategy with single output and multiple/single inputs to study the relationships among a large unconfined aquifer in the upper Venetian plain (Northeast Italy), its recharge components (rainfalls and losing river) and a multi‐layered confined system located in the middle Venetian plain. Model identification from the data raises a range of difficulties when seeking models with consistent physical behaviour, but no information related to the transfer function order and the lags with no zero weights is available. Therefore we use an automatic identification procedure for TFN models. The obtained results suggest that the rainfall component is more important than the river discharge in the unconfined aquifer, and the behaviours of the deep‐confined aquifers are synchronous with that observed in the Badoere area. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
C. Fleurant  B. Kartiwa  B. Roland 《水文研究》2006,20(18):3879-3895
The rainfall‐runoff modelling of a river basin can be divided into two processes: the production function and the transfer function. The production function determines the proportion of gross rainfall actually involved in the runoff. The transfer function spreads the net rainfall over time and space in the river basin. Such a transfer function can be modelled using the approach of the geomorphological instantaneous unit hydrograph (GIUH). The effectiveness of geomorphological models is actually revealed in rainfall‐runoff modelling, where hydrologic data are desperately lacking, just as in ungauged basins. These models make it possible to forecast the hydrograph shape and runoff variation versus time at the basin outlet. This article is an introduction to a new GIUH model that proves to be simple and analytical. Its geomorphological parameters are easily available on a map or from a digital elevation model. This model is based on general hypotheses on symmetry that provide it with multiscale versatile characteristics. After having validated the model in river basins of very different nature and size, we present an application of this model for rainfall‐runoff modelling. Since parameters are determined relying on real geomorphological data, no calibration is necessary, and it is then possible to carry out rainfall‐runoff simulations in ungauged river basins. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
12.
Within the hydrodynamic modelling community, it is common practice to apply different modelling systems for coastal waters and river systems. Whereas for coastal waters 3D finite difference or finite element grids are commonly used, river systems are generally modelled using 1D networks. Each of these systems is tailored towards specific applications. Three-dimensional coastal water models are designed to model the horizontal and vertical variability in coastal waters and are less well suited for representing the complex geometry and cross-sectional areas of river networks. On the other hand, 1D river network models are designed to accurately represent complex river network geometries and complex structures like weirs, barrages and dams. A disadvantage, however, is that they are unable to resolve complex spatial flow variability. In real life, however, coastal oceans and rivers interact. In deltaic estuaries, both tidal intrusion of seawater into the upstream river network and river discharge into open waters play a role. This is frequently approached by modelling the systems independently, with off-line coupling of the lateral boundary forcing. This implies that the river and the coastal model run sequentially, providing lateral discharge (1D) and water level (3D) forcing to each other without the possibility of direct feedback or interaction between these processes. An additional disadvantage is that due to the time aggregation usually applied to exchanged quantities, mass conservation is difficult to ensure. In this paper, we propose an approach that couples a 3D hydrodynamic modelling system for coastal waters (Delft3D) with a 1D modelling system for river hydraulics (SOBEK) online. This implies that contrary to off-line coupling, the hydrodynamic quantities are exchanged between the 1D and 3D domains during runtime to resolve the real-time exchange and interaction between the coastal waters and river network. This allows for accurate and mass conserving modelling of complex coastal waters and river network systems, whilst the advantages of both systems are maintained and used in an optimal and computationally efficient way. The coupled 1D–3D system is used to model the flows in the Pearl River Delta (Guangdong, China), which are determined by the interaction of the upstream network of the Pearl River and the open waters of the South China Sea. The highly complex upstream river network is modelled in 1D, simulating river discharges for the dry and wet monsoon periods. The 3D coastal model simulates the flow due to the external (ocean) periodic tidal forcing, the salinity distribution for both dry and wet seasons, as well as residual water levels (sea level anomalies) originating from the South China Sea. The model is calibrated and its performance extensively assessed against field measurements, resulting in a mean root mean square (RMS) error of below 6% for water levels over the entire Pearl River Delta. The model also represents both the discharge distribution over the river network and salinity transport processes with good accuracy, resolving the discharge distribution over the main branches of the river network within 5% of reported annual mean values and RMS errors for salinity in the range of 2 ppt (dry season) to 5 ppt (wet season).  相似文献   

13.
A flood emergency storage area (polder) is used to reduce the flood peak in the main river and hence, protect downstream areas from being inundated. In this study, the effectiveness of a proposed flood emergency storage area at the middle Elbe River, Germany in reducing the flood peaks is investigated using hydrodynamic modelling. The flow to the polders is controlled by adjustable gates. The extreme flood event of August 2002 is used for the study. A fully hydrodynamic 1D model and a coupled 1D–2D model are applied to simulate the flooding and emptying processes in the polders and flow in the Elbe River. The results obtained from the 1D and 1D–2D models are compared with respect to the peak water level reductions in the Elbe River and flow processes in the polders during their filling and emptying. The computational time, storage space requirements and modelling effort for the two models are also compared. It is concluded that a 1D model may be used to study the water level and discharge reductions in the main river while a 1D-2D model may be used when the study of flow dynamics in the polder is of particular interest. Further, a detailed sensitivity analysis of the 1D and 1D–2D models is carried out with respect to Manning's n values, DEMs of different resolutions, number of cross-sections used and the gate opening time as well as gate opening/closing duration. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Dynamic interaction between river morphodynamics and vegetation affects river channel patterns and populations of riparian species. A range of numerical models exists to investigate the interaction between vegetation and morphodynamics. However, many of these models oversimplify either the morphodynamics or the vegetation dynamics, which hampers the development of predictive models for river management. We have developed a model coupling advanced morphodynamics and dynamic vegetation, which is innovative because it includes dynamic ecological processes and progressing vegetation characteristics as opposed to commonly used static vegetation without growth and mortality. Our objective is to understand and quantify the effects of vegetation‐type dependent settling, growth and mortality on the river pattern and morphodynamics of a meandering river. We compared several dynamic vegetation scenarios with different functional trait sets to reference scenarios without vegetation and with static vegetation without growth and mortality. We find distinct differences in morphodynamics and river morphology. The default dynamic vegetation scenario, based on two Salicaceae species, shows an active meandering behaviour, while the static vegetation scenario develops into a static, vegetation‐dominated state. The diverse vegetation patterns in the dynamic scenario reduce lateral migration, increase meander migration rate and create a smoother floodplain compared to the static scenario. Dynamic vegetation results in typical vegetation patterns, vegetation age distribution and river patterns as observed in the field. We show a quantitative interaction between vegetation and morphodynamics, where increasing vegetation cover decreases sediment transport rates. Furthermore, differences in vegetation colonization, density and survival create distinct patterns in river morphology, showing that vegetation properties and dynamics drive the formation of different river morphologies. Our model demonstrates the high sensitivity of channel morphodynamics to various species traits, an understanding which is required for floodplain and stream restoration and more realistic modelling of long‐term river development. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Particular attention is given to the reliability of hydrological modelling results. The accuracy of river runoff projection depends on the selected set of hydrological model parameters, emission scenario and global climate model. The aim of this article is to estimate the uncertainty of hydrological model parameters, to perform sensitivity analysis of the runoff projections, as well as the contribution analysis of uncertainty sources (model parameters, emission scenarios and global climate models) in forecasting Lithuanian river runoff. The impact of model parameters on the runoff modelling results was estimated using a sensitivity analysis for the selected hydrological periods (spring flood, winter and autumn flash floods, and low water). During spring flood the results of runoff modelling depended on the calibration parameters that describe snowmelt and soil moisture storage, while during the low water period—the parameter that determines river underground feeding was the most important. The estimation of climate change impact on hydrological processes in the Merkys and Neris river basins was accomplished through the combination of results from A1B, A2 and B1 emission scenarios and global climate models (ECHAM5 and HadCM3). The runoff projections of the thirty-year periods (2011–2040, 2041–2070, 2071–2100) were conducted applying the HBV software. The uncertainties introduced by hydrological model parameters, emission scenarios and global climate models were presented according to the magnitude of the expected changes in Lithuanian rivers runoff. The emission scenarios had much greater influence on the runoff projection than the global climate models. The hydrological model parameters had less impact on the reliability of the modelling results.  相似文献   

16.
《国际泥沙研究》2016,(2):139-148
Applications of sediment transport and water flow characteristics based sediment transport simulation models for a river system are presented in this study. An existing water–sediment model and a new sediment–water model are used to formulate the simulation models representing water and sediment movement in a river system. The sediment–water model parameters account for water flow characteristics embodying sediment transport properties of a section. The models are revised formulations of the multiple water inflows model describing water movement through a river system as given by the Muskingum principle. The models are applied to a river system in Mississippi River basin to estimate downstream sediment concentration, sediment discharge, and water discharge. River system and the river section parameters are estimated using a revised and the original multiple water inflows models by applying the genetic algorithm. The models estimate downstream sediment transport rates on the basis of upstream sediment/water flow rates to a system. Model performance is evaluated by using standard statistical criteria;downstream water discharge resulting from the original multiple water inflows model using the estimated river system parameters indicate that the revised models satisfactorily describe water movement through a river system. Results obtained in the study demonstrate the applicability of the sediment transport and water flow characteristics-based simulation models in predicting downstream sediment transport and water flow rates in a river system.  相似文献   

17.
Watershed delineation is a required step when conducting any spatially distributed hydrological modelling. Automated approaches are often proposed to delineate a watershed based on a river network extracted from the digital elevation model (DEM) using the deterministic eight‐neighbour (D8) method. However, a realistic river network cannot be derived from conventional DEM processing methods for a large flat area with a complex network of rivers, lakes, reservoirs, and polders, referred to as a plain river network region (PRNR). In this study, a new approach, which uses both hydrographic features and DEM, has been developed to address the problems of watershed delineation in PRNR. It extracts the river nodes and determines the flow directions of the river network based on a vector‐based hydrographic feature data model. The river network, lakes, reservoirs, and polders are then used to modify the flow directions of grid cells determined by D8 approach. The watershed is eventually delineated into four types of catchments including lakes, reservoirs, polders, and overland catchments based on the flow direction matrix and the location of river nodes. Multiple flow directions of grid cells are represented using a multi‐direction encoding method, and multiple outflows of catchments are also reflected in the topology of catchments. The proposed approach is applied to the western Taihu watershed in China. Comparisons between the results obtained from the D8 approach, the ‘stream burning’ approach, and those from the proposed approach clearly demonstrate an improvement of the new approach over the conventional approaches. This approach will benefit the development of distributed hydrological models in PRNR for the consideration of different types and multiple inlets and outlets of catchments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A modelling framework for the quick estimate of flood inundation and the resultant damages is developed in this paper. The model, called the flood economic impact analysis system (FEIAS), can be applied to a river reach of any hydrogeological river basin. For the development of the integrated modelling framework, three models were employed: (1) a modelling scheme based on the Hydrological Simulation Program FORTRAN model that was developed for any geomorphological river basin, (2) a river flow/floodplain model, and (3) a flood loss estimation model. The first sub‐model of the flood economic impact analysis system simulates the hydrological processes for extended periods of time, and its output is used as input to a second component, the river/floodplain model. The hydraulic model MIKE 11 (quasi‐2D) is the river/floodplain model employed in this study. The simulated flood parameters from the hydraulic model MIKE 11 (quasi‐2D) are passed, at the end of each time step, to a third component, the flood loss model for the estimation of flood damage. In the present work, emphasis was given to the seasonal variation of Manning's coefficient (n), which is an important parameter for the determination of the flood inundation in hydraulic modelling. High values of Manning's coefficient for a channel indicate high flow resistance. The riparian vegetation can have a large impact on channel resistance. The modelling framework developed in this paper was used to investigate the role of riparian vegetation in reducing flood damage. Moreover, it was used to investigate the influence of cutting riparian vegetation scenarios on the flow characteristics. The proposed framework was applied to the downstream part of the Koiliaris River basin in Crete, Greece, and was tested and validated with historical data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Accurate simulation and prediction of the dynamic behaviour of a river discharge over any time interval is essential for good watershed management. It is difficult to capture the high‐frequency characteristics of a river discharge using traditional time series linear and nonlinear model approaches. Therefore, this study developed a wavelet‐neural network (WNN) hybrid modelling approach for the predication of river discharge using monthly time series data. A discrete wavelet multiresolution method was employed to decompose the time series data of river discharge into sub‐series with low (approximation) and high (details) frequency, and these sub‐series were then used as input data for the artificial neural network (ANN). WNN models with different wavelet decomposition levels were employed to predict river discharge 48 months ahead of time. Comparison of results from the WNN models with those of the ANN models alone indicated that WNN models performed a more accurate prediction. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号