首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jamal Asfahani 《水文研究》2007,21(8):1085-1097
A resistivity survey is conducted in Khanasser Valley, a semi‐arid region in northern Syria, to delineate the characteristics of ground water affected by the salt‐water intrusion related to Al‐Jaboul Sabkha. Existing wells were used to measure salinity and conductivity of water samplings. Vertical electrical sounding was carried out near the existing wells. The combination of resistivity and hydrogeological data enables the establishment of empirical relationships between earth resistivity, water resistivity, and the amount of total dissolved solids. These relationships are then used in order to derive salinity maps for electrode spacings of 70, 100, and 150 m. The distribution of fresh, brackish and salt‐water zones and their variations in space along two longitudinal profiles (LP1 and LP2) are established through converting subsurface depth–resistivity models into different ground‐water areas. The constructed ground‐water area maps allow interfaces between different water zones to be determined. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
An integrated approach of geoelectrical and hydrochemical investigation surveys was proposed for indicating contact regions between saline and fresh groundwater in the Khanasser valley region, northern Syria. The qualitative and quantitative interpretations of 34 vertical electrical soundings (VES) enable to characterize the salt water intrusion laterally and vertically. The established iso-apparent resistivity maps for different AB/2 spacings obviously indicate the presence of a lowresistivity (less than 4 Ohm·m) zone related to the salt water intrusion in the Quaternary and Paleogene deposits. The different hydrochemical and geophysical parameters, such as electrical resistivity, total dissolved solids (TDS) and major ions concentrations used to characterize the salt water intrusion gave almost similar results in locating and mapping the different boundaries of the groundwater salinity. The proposed approach is useful for mapping the interface between different groundwater qualities, and can be therefore used to successfully characterize the salt water intrusion phenomenon in other semi-arid regions. The application of such an approach is a powerful tool and can be used for water resource management in the water scarce areas.  相似文献   

3.
This paper presents an empirical relationship of quantitatively linked electromagnetic (EM) borehole recordings of the total dissolved solids (TDS) in pore water in the Quaternary deposits of the Belgian coastal plain. First, the long normal (LN) logs are linked to EM logs, then the already developed relationships between LN resistivity measurements and the TDS values are rewritten for EM recordings. The main parameter in these equations is the formation factor, which is derived from ground water analyses and LN logs through Archie's law. The EM recording has several advantages compared to the LN logs. The EM analysis allows measuring in PVC-cased wells and is not hindered by the invasion zone around the well. Furthermore, it has a high vertical resolution. LN logs can be measured only once, after drilling a well; EM recordings can be repeated several times in monitoring wells, which allows the gathering of time-dependent data over a complete vertical cross section. Such data could be obtained with LN logs only in wells with screens over the full-depth interval, which causes a hydraulic short circuit. This short circuit can result in a large artificial flow through the well between different levels, resulting in a salinity profile, which is no longer representative for the studied site. Remediation against short circuiting is a reduction of the screened interval, which strongly reduces the gathered information. The application of the derived equations is one of setting up a monitoring network along the Belgian coast to monitor the trend in salinity levels and comparing present salinity levels with older LN recordings to investigate the salinity changes in the last 30 years. Deep wells already present in the Belgiancoastal plain can then be used to monitor both the fresh water head changes and the salt water evolution. The technique has also been used for parameter identification for which real concentration measurements were needed.  相似文献   

4.
开展复杂低渗储层特征、测井响应及其控制因素分析,有助于储层评价与油水层识别.鄂尔多斯盆地中东部长6期沉积具多物源供给、沉积相带频繁变化的特点,来自不同物源的沉积砂体岩石碎屑成分存在明显差异.长7、长6沉积期盆地周边的火山作用,致使一些地区的长6砂体具有相对高放射性特征.长6储层孔隙类型多样,孔隙结构特征复杂多变,再加上地层水系统的变化,致使一些油区长6低电阻率油层与常规油层、高电阻率水层与常规水层共存.研究结果表明,成藏动力与阻力的对比关系决定了在同一砂体中除存在常规油水分布外,还可能存在油水倒置分布.因此,加强钴前预测、钻井过程监督与调整、钻后综合研究、生产实践检验、解释模型与参数调整、老井复查等,有利于识别油水层,整体把握油水分布规律.  相似文献   

5.
In order to locate relatively optimum sites for drilling exploratory holes for fresh water, an electrical resistivity survey was conducted along the new Mahukona-Kawaihae Road on the west flank of the Kohala Mountain. Two resistivity soundings made at the same stations, using the Schlumberger electrode configuration, determined an a spacing of 275 feet for horizontal profiling with the Wenner array. The correlation coefficient of the elevation to profile data was 0.41. A procedure for removing elevation effect from observed apparent resistivity was developed. Based on the reduced resistivity profile, four relatively optimum sites for additional exploration, such as by drilling, are specified. There is no specific interpretation of the data that can definitely indicate the occurrence of large underground reservoirs of fresh water anywhere along the profile. This is because the interpretation of horizontal profiling data is essentially relative and not absolute.  相似文献   

6.
Geophysical monitoring and evaluation of coastal plain aquifers   总被引:1,自引:0,他引:1  
We use time domain electromagnetic (TDEM) soundings to monitor ground water conditions beneath the coastal plain in eastern North Carolina. The TDEM method measures the earth's response to an induced electromagnetic field. The resulting signal is converted, through a complex inversion process, to apparent resistivity values, which can be directly correlated to borehole resistivity logs. TDEM soundings are used to map the interface between fresh and salt water within coastal aquifers, and estimate depth to basement when siting new monitoring wells. Focused TDEM surveys have identified areas of salt water encroachment caused by high volumes of discharge from local supply wells. Electromagnetic sounding, when used in tandem with the state's network of monitoring wells, is an accurate and inexpensive tool for evaluating fresh water/salt water relationships on both local and regional scales within coastal plain aquifers.  相似文献   

7.
Specific electrical conductivity (SEC), total dissolved solids (TDS), and silica (SiO2) are ground-water quality parameters routinely measured in a laboratory. Electrical conductivity measurements are made quickly and are less costly than TDS measurements. Once the relationship between the parameters is determined by regression analysis, TDS can be estimated quickly from the SEC and SiO2 measurements. Water quality data from 25 city wells in Fresno, California, and historical ground-water quality data from the adjacent San Joaquin River/Kings River alluvial interfan (central San Joaquin Valley, California), the Kaweah River alluvial fan, and the Kern River alluvial fan (southern San Joaquin Valley) were used in this investigation. For the specific hydrologic areas studied, the model's TDS predictive ability is improved when SiO2 is included with SEC as the independent variables.  相似文献   

8.
Vertical electrical sounding technique (VES) is used as an alternative approach to pumping test for computing the Quaternary aquifer transmissivity in the Khanasser Valley, Northern Syria. The method is inexpensive, easy and gives faster results with higher special resolution than the traditional pumping technique. The hydraulic conductivity values obtained using VES agree with the pumping test results, which in the Khanasser Valley vary between the order of 0.864 and 8.64 m/day (10−5 and 10−4 m/s). The probable location of the Quaternary aquifer in the Khanasser Valley is obtained through the transmissivity map derived from VES. The knowledge of transmissivity is fundamental for modeling and management processes in the Khanasser Valley. Other similar semiarid regions can benefit from the approach successfully applied in the study area.  相似文献   

9.
《Journal of Hydrology》2006,316(1-4):301-312
Direct current resistivity traversing has been used to characterise the nature of the saline interface at Te Horo on the Kapiti Coast in New Zealand. The results show that the interface in the vicinity of the settlement, which relies on bores for potable water, has intruded inland 10 m further than in undeveloped areas. Resistivity traversing has been particularly successful in defining subsurface areas of higher salinity by providing a two-dimensional image of the bulk resistivity structure. The results of the resistivity surveys are supported by bore water chemistry, which show evidence of saltwater mixing. Bores on beachfront properties have concentrations of up to 1% seawater. A resistivity formation factor has been derived to allow the pore fluid resistivity to be estimated for future coastal surveys. The results also illustrate the problems associated with using standard models to predict the location of the saline interface when small amounts of diffusive mixing occur.  相似文献   

10.
The change of the salinity distribution in coastal aquifers due to pumpage is often described as an upconing of the interface between saline and fresh water. Sea and fresh water are miscible fluids, however. Therefore, dispersion of salinity in the aquifer affects the upconing process. An estimate of the effect of salinity dispersion on the dynamics of the flow as well as on the salinity distribution in the aquifer is presented in this study. The phenomenon is described as a migration of a sharp interface perturbed by small disturbances due to salinity dispersion. The creation of the mixing zone between fresh and saline water is described as a formation of a boundary layer in the vicinity of the sharp interface. This method is primarily recommended for flow fields in which simple representation of the sharp interface migration is obtainable.  相似文献   

11.
《Journal of Hydrology》2006,316(1-4):163-183
Numerical groundwater modelling is used as the base for sound aquifer system analysis and water resources assessment. In many cases, particularly in semi-arid and arid regions, groundwater flow is intricately linked to salinity transport. A case in point is the Shashe River Valley in Botswana. A freshwater aquifer located around an ephemeral stream is depleted by the combined effect of transpiration and pumping. Quantitative system analysis reveals that the amount of water taken by transpiration is far more than the quantities pumped for water supply. Furthermore, the salinity distribution in and around Shashe River Valley as well as its temporal dynamics can be satisfactorily reproduced if the transpiration is modelled as a function of groundwater salinity. The location and dynamics of the saltwater–freshwater interface are highly sensitive to the parameterization of evaporative and transpirative salt enrichment. An existing numerical code for coupled flow/transport simulations (SEAWAT) was adapted to this situation. Model results were checked against a large set of field data including water levels, water chemistry, isotope data and ground and airborne geophysical data. The resulting groundwater model was able to reproduce the long-term development of the freshwater lens located in Shashe River Valley as well as the decline in piezometric heads observed over the last decade. Furthermore, the old age of the saline water surrounding the central freshwater lens could be explained.  相似文献   

12.
Electrical and electromagnetic methods are well suited for coastal aquifer studies because of the large contrast in resistivity between fresh water-bearing and salt water-bearing formations. Interpretation models for these aquifers typically contain four layers: a highly resistive unsaturated zone; a surficial fresh water aquifer of intermediate resistivity; an underlying conductive, salt water saturated aquifer; and resistive substratum. Additional layers may be added to allow for variations in lithology within the fresh water and salt water layers. Two methods are evaluated: direct current resistivity and time domain electromagnetic soundings. Use of each method alone produces nonunique solutions for resistivities and/or thicknesses of the different layers. We show that joint inversion of vertical electric and time domain electromagnetic soundings produces a more tightly constrained interpretation model at three test sites than is produced by inversion methods applied to each data set independently.  相似文献   

13.
1D resistivity sounding and 2D resistivity imaging surveys were integrated with geological and hydrochemical data to assess the aquifer vulnerability and saltwater intrusion in the north of Nile Delta, Egypt. In the present study, the El-Gharbyia main drain was considered as a case study to map the sand bodies within the upper silt and clay aquitard. Twenty Schlumberger soundings and six 2D dipole-dipole profiles were executed along one profile close to the western side of the main drain. In addition, 14 groundwater samples and 4 surface water samples from the main drain were chemically analyzed to obtain the major and trace elements concentrations.The results from the resistivity and hydrochemical data were used to assess the protection of the groundwater aquifer and the potential risk of groundwater pollution. The inverted resistivities and thicknesses of the layers above the aquifer layer were used to estimate the integrated electrical conductivity (IEC) that can be used for quantification of aquifer vulnerability. According to the aquifer vulnerability assessment of an underlying sand aquifer, the southern part of the area is characterized by high vulnerability zone with slightly fresh to brackish groundwater and resistivity values of 11-23 Ω.m below the clay cap. The resistivity sections exhibit some sand bodies within the clay cap that lead to increase the recharging of surface waste water (650 mg/l salinity) and flushing the upper part of underlying saltwater aquifer. The region in the north has saltwater with resistivity less than 6 Ω.m and local vulnerable zones within the clay cap. The inverted 2D dipole-dipole profiles in the vulnerable zones, in combination with drilling information have allowed the identification of subsoil structure around the main drain that is highly affected by waste water.  相似文献   

14.
We present a geostatistics-based stochastic salinity estimation framework for the Montebello Oil Field that capitalizes on available total dissolved solids (TDS) data from groundwater samples as well as electrical resistivity (ER) data from borehole logging. Data from TDS samples (n = 4924) was coded into an indicator framework based on falling below four selected thresholds (500, 1000, 3000, and 10,000 mg/L). Collocated TDS-ER data from the surrounding groundwater basin were then employed to produce a kernel density estimator to establish conditional probabilities for ER data (n = 8 boreholes) falling below the selected TDS thresholds within the Montebello Oil Field area. Directional variograms were estimated from these indicator coded data, and 500 TDS realizations from conditional indicator simulation were generated for the subsurface region above the Montebello Oil Field reservoir. Simulations were summarized as 3D maps of median TDS, most likely salinity class, and probability for exceeding each of the specified TDS thresholds. Results suggested TDS was below 500 mg/L in most of the study area, with a trend toward higher values (500 to 1000 mg/L) to the southwest; consistent with the average regional groundwater flow direction. Discrete localized zones of TDS greater than 1000 mg/L were observed, with one of these zones in the greater than 10,000 mg/L range; however, these areas were not prevalent. The probabilistic approach used here is adaptable and is readily modified to include additional data and types and can be employed in time-lapse salinity modeling through Bayesian updating.  相似文献   

15.
Aquifers found in glacial buried valleys are a major source of good-quality ground water in northeastern Kansas. The extent and character of many of these deposits are not precisely known, so a detailed study of the buried valleys was undertaken. Test drilling, Landsat imagery, shallow-earth temperature measurements, seismic refraction, surface electrical resistivity, and gravity data were used to evaluate two sites in Nemaha and Jefferson Counties. Tonal patterns on springtime Landsat imagery and winter/summer anomalies in shallow-earth temperatures were quick and inexpensive methods for locating some glacial buried aquifers and suggested areas for more intensive field studies. Reversed seismic refraction and resistivity surveys were generally reliable indicators of the presence or absence of glacial buried valleys, with most depth determinations being within 25% of test-drilling results. The effectiveness of expensive test-hole drilling was greatly increased by integrating remote sensing, shallow-earth temperature, seismic, and resistivity techniques in the two buried valley test areas. A gravity profile allowed precise definition of the extent of one of the channels after the other techniques had been used for general information.  相似文献   

16.
Methods of estimation of the location of a sharp fresh water–salt water interface with hydraulic heads or pressures are relatively simple and are widely used. Progress has been made in the recent decade toward the mathematical relations describing the position of the sharp interface using hydraulic heads or pressures in coastal zones. This paper reviews several methods for estimation of the location of fresh water–salt water interface in coastal aquifers, including the classical Ghyben–Herzberg relation. The location of the fresh water–salt water interface in a coastal homogeneous, isotropic unconfined aquifer can be estimated based on piezometric heads at two points in the same vertical line tapping, respectively, the salt water zone (including the interface) and the fresh water zone (from the water table to the interface) when the groundwater flow system is in a steady state and satisfies the Dupuit assumption. If pressures are measured at two points in the fresh water and salt water zones in the same vertical line in the coastal aquifer under the same assumption, then the position of the interface can still be estimated with the pressure data. If the Dupuit assumption is not met in coastal aquifers and the vertical fresh water head gradients can be approximated with a straight line, the position of the interface can roughly be estimated by using the water level data in a partially penetrating well during drilling of the well.  相似文献   

17.
Electrical resistivity tomography (ERT) has been used to experimentally detect shallow buried faults in urban areas in the past a few years, with some progress and experience obtained. According to the results from Olympic Park, Beijing, Shandong Province, Gansu Province and Shanxi Province, we have generalized the method and procedure for inferring the discontinuity of electrical structures (DES) indicating a buried fault in urban areas from resistivity tomograms and its typical electrical features. In general, the layered feature of the electrical structure is first analyzed to preliminarily define whether or not a DES exists in the target area. Resistivity contours in resistivity tomograms are then analyzed from the deep to the shallow. If they extend upward from the deep to the shallow and shape into an integral dislocation, sharp flexure (convergence) or gradient zone, it is inferred that the DES exists, indicating a buried fault. Finally, horizontal tracing is be carried out to define the trend of the DES. The DES can be divided into three types-type AB, ABA and AC. In the present paper, the Zhangdian-Renhe fault system in Zibo city is used as an example to illustrate how to use the method to infer the location and spatial extension of a target fault. Geologic drilling holes are placed based on our research results, and the drilling logs testify that our results are correct. However, the method of this paper is not exclusive and inflexible. It is expected to provide reference and assistance for inferring the shallow buried faults in urban areas from resistivity tomograms in the future.  相似文献   

18.
The spontaneous potential log was used to compute the thickness and distribution of groundwater with a total dissolved solids (TDS) of less than 1000 mg l?1 for Carter County, Oklahoma. To compute accurate salinities from the spontaneous potential in high-resistivity zones, empirical correction factors had to be developed and applied. For the formations present equivalent water resistivity vs. water resistivity curves were developed from chemical analyses and digitized. Water resistivity vs. TDS curves were also developed and digitized. The existing empirical thin-bed corrections were curve-fit with equations and applied to each zone. Except in beds less than 3.65 m thick they had little effect.It was found that after applying the thin-bed corrections used by logging companies, the computed TDS was a function of resistivity of the mud filtrate at 24°C. An empirical relationship was developed between spontaneous potential and resistivity of the mud filtrate at 24°C, using well logs of beds with known water chemistry. This relationship was entered as a correction equation into a computer program developed by the author. The correction is necessary since the voltage drop in a freshwater formation is greater than predicted by earlier electric analog modeling, and the spontaneous potential is less than the static spontaneous potential. Testing of the correction factors shows that in a formation with TDS of ~750 mg l?1 the average error decreases from ~37% to 10%.A data set of 704 well logs was built with data from each freshwater zone from the base of the regolith to a depth where the TDS was greater than 10,000 mg l?1. The TDS was computed for each zone. Two maps were prepared from the results; an isopach of the formations with TDS of less than 1000 mg l?1, and a depth to the base of the water with TDS of 1000 mg l?1.  相似文献   

19.
The importance of the study of fresh‐saline water incursion cannot be over‐emphasized. Borehole techniques have been widely used, but they are quite expensive, intrusive, and time consuming. The electrical resistivity method has proved very successful in groundwater assessment. This advanced technique uses the calculation of Dar‐Zarrouk (D‐Z) parameters, namely longitudinal unit conductance, transverse unit resistance, and longitudinal resistivity has been employed by using 50 vertical electrical sounding points to assess the groundwater and delineate the fresh‐saline water interface over 1045 km2 area of Khanewal in Southern Punjab of Pakistan. The x‐y plots and maps of D‐Z parameters were produced to establish a decipherable vision for the occurrence and distribution of different water‐bearing formations of fresh‐saline water aquifers through a complicated situation of intermixing of different resistivity ranges for fresh‐saline water bodies. This technique is useful to reduce the ambiguity produced by the process of equivalence and suppression which cause intermixing in differentiating fresh, brackish, and saline aquifers during interpretation. The fresh‐saline water interface is correlated very well with the previous studies of water quality analysis carried out in Khanewal area. The results suggest that the D‐Z parameters are useful for demarcating different aquifer zones. The behavior and pattern of D‐Z parameters with respect to occurrence and distribution of different water‐bearing formations were effectively identified and delineated in the study area.  相似文献   

20.
High groundwater salinity has become a major concern in the arid alluvial plain of the Dunhuang Basin in northwestern China because it poses a significant challenge to water resource management. Isotopic and geochemical analyses were conducted on 55 water samples from springs, boreholes and surface water to identify potential sources of groundwater salinity and analyse the processes that control increasing salinity. The total dissolved solid (TDS) content in the groundwater ranged from 400 to 41 000 mg/l, and high TDS values were commonly associated with shallow water tables and flow‐through and discharge zones in unconfined aquifers. Various groundwater contributions from rainwater, agricultural irrigation, river water infiltration and lateral inflows from mountains were identified by major ions and δD and δ18O. In general, HCO3? and SO42? were the dominant anions in groundwater with a salinity of <2500 mg/l, whereas Cl? and SO42? were the dominant anions in groundwater with a salinity of >2500 mg/l. The major ion concentrations indicated that mineral weathering, including carbonate and evaporite dissolution, primarily affected groundwater salinity in recharge areas. Evapotranspiration controlled the major ion concentration evolution and salinity distribution in the unconfined groundwaters in the flow‐through and discharge areas, although it had a limited effect on groundwater in the recharge areas and confined aquifers. Agricultural irrigation increased the water table and enhanced evapotranspiration in the oasis areas of the basin. TDS and Cl became more concentrated, but H and O isotopes were not enriched in the irrigation district, indicating that transpiration dominated the increasing salinity. For other places in the basin, as indicated by TDS, Cl, δD and δ18O characteristics, evaporation, transpiration and water–rock interactions dominated at different hydrogeological zones, depending on the plant coverage and hydrogeological conditions. Groundwater ages of 3H, and δD and δ18O compositions and distributions suggest that most of the groundwaters in Dunhuang Basin have a paleometeoric origin and experienced a long residence time. These results can contribute to groundwater management and future water allocation programmes in the Dunhuang Basin. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号