首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The pipe-soil interactions at shoulders can significantly affect the vortex-induced vibrations (VIV) of free-spanning pipes in the subsea. In this paper, the seabed soil reacting force on the pipe is directly calculated with a nonlinear hysteretic soil model. For the VIV in the middle span, a classic van der Pol wake oscillator is adopted. Based on the Euler-Bernoulli beam theory, the vibration equations of the pipe are obtained which are different in the middle span and at the two end shoulders. The static configuration of the pipe is firstly calculated and then the VIV is simulated.The present model is validated with the comparisons of VIV experiment, pipe-soil interaction experiment and the simulation results of VIV of free-spanning pipes in which the seabed soil is modelled with spring-dashpots. With the present model, the influence of seabed soil on the VIV of a free-spanning pipe is analyzed. The parametric studies show that when the seabed soil has a larger suction area, the pipe vibrates with smaller bending stresses and is safer.While with the increase of the shear strength of the seabed soil, the bending stresses increase and the pipe faces more danger.  相似文献   

2.
海底管道悬跨管段在波流联合作用下非常容易发生疲劳破坏.文中通过多项Galerkin方法对海底管跨的涡激振动方程进行求解,获得管跨系统的时域非线性动力响应,分析疲劳裂纹扩展模型MeEvily模型中各个参数对管道疲劳寿命的影响,在此基础上提出管道疲劳寿命预报方法.  相似文献   

3.
Gao  Yun  Yang  Bin  Zou  Li  Zong  Zhi  Zhang  Zhuang-zhuang 《中国海洋工程》2019,33(1):44-56
A numerical study based on a wake oscillator model was conducted to determine the response performance of vortex-induced vibration(VIV) on a long flexible cylinder with pinned-pinned boundary conditions subjected to linear and exponential shear flows. The coupling equations of a structural vibration model and wake oscillator model were solved using a standard central finite difference method of the second order. The VIV response characteristics including the structural displacement, structural frequency, structural wavenumber, standing wave behavior,travelling wave behavior, structural velocity, lift force coefficient and transferred energy from the fluid to the structure with different flow profiles were compared. The numerical results show that the VIV displacement is a combination of standing waves and travelling waves. For linear shear flow, standing waves and travelling waves dominate the VIV response within the low-velocity and high-velocity zones, respectively. The negative values of the transferred energy only occur within the low-velocity zone. However, for exponential shear flow, travelling waves dominate the VIV response and the negative energy occurs along the entire length of the cylinder.  相似文献   

4.
Hydrodynamic forces exerting on a pipeline partially buried in a permeable seabed subjected to combined oscillatory flow and steady current are investigated numerically. Two-dimensional Reynolds-Averaged Navier-Stokes equations with a kω turbulent model closure are solved to simulate the flow around the pipeline. The Laplace equation is solved to calculate the pore pressure below the seabed with the simulated seabed hydrodynamic pressure as boundary conditions. The numerical model is validated against the experimental data of a fully exposed pipeline resting on a plane boundary under various flow conditions. Then the flow with different embedment depths, steady current ratios and KC numbers is simulated. The amplitude of seepage velocity is much smaller than the amplitude of free stream velocity as expected. The normalized Morison inertia, drag and lift coefficients based on the corresponding force coefficients of a fully exposed pipeline are investigated. The normalized Morison force coefficients reduce almost linearly with the increase of embedment depth and that the KC only has minor effect on the normalized Morison coefficients. It is also found that the permeable seabed condition causes a slight increase on the inline force and has a little effect on the lift force, compared with corresponding conditions in an impermeable bed.  相似文献   

5.
Steel catenary riser(SCR) is the transmission device between the seabed and the floating production facilities. As developments move into deeper water, the fatigue life of the riser can become critical to the whole production system, especially due to the vortex-induced vibration(VIV), which is the key factor to operational longevity. As a result, experimental investigation about VIV of the riser was performed in a large plane pool which is 60 m long, 36 m wide and 6.5 m deep. Experiments were developed to study the influence of current speed and seabed on VIV of SCR. The results show that amplitudes of strain and response frequencies increase with the current speed both in cross-flow(CF) and in-line(IL). When the current speed is high, multi-mode response is observed in the VIV motion. The amplitudes of strain in IL direction are not much smaller than those in CF direction. The seabed has influence on the response frequencies of riser and the positions of damage for riser.  相似文献   

6.
Steel catenary riser (SCR) is the transmission device between the seabed and the floating production facilities. As developments move into deeper water, the fatigue life of the riser can become critical to the whole production system, especially due to the vortex-induced vibration (VIV), which is the key factor to operational longevity. As a result, experimental investigation about VIV of the riser was performed in a large plane pool which is 60 m long, 36 m wide and 6.5 m deep. Experiments were developed to study the influence of current speed and seabed on VIV of SCR. The results show that amplitudes of strain and response frequencies increase with the current speed both in cross-flow (CF) and in-line (IL). When the current speed is high, multi-mode response is observed in the VIV motion. The amplitudes of strain in IL direction are not much smaller than those in CF direction. The seabed has influence on the response frequencies of riser and the positions of damage for riser.  相似文献   

7.
Because of the complex geological conditions of the seabed, submarine pipelines buried beneath the ocean floor become suspended over the seabed under the long-term scour of waves eroding the surrounding sediment. Further, most oil fields were built in offshore areas while the country was developing. This gives the waves seen in shallow water obvious nonlinear features, and the abnormal characteristics of these waves must be considered when calculating their hydrodynamic forces. Particularly under such conditions, these suspended spans of submarine pipelines are prone to damage caused by the action of the external environment load. Such damages and eventual failures may result not only in great property losses but also pollution of the marine environment. The span length of these areas is a key predictive factor in pipeline damages. Therefore, determining the allowable span length for these submarine pipelines will allow future projects to avoid or prevent damage from excessive suspended span lengths. Expressions of the hydrodynamic loads placed on suspended spans of pipeline were developed in this work based on the first-order approximate cnoidal wave theory and Morison equation. The formula for the allowable free span length was derived for the common forms of free spanning submarine pipeline based on the point where maximum bending stresses remain less than the material’s allowable stress. Finally, the allowable free span length of real-world pipelines was calculated for a subsea pipeline project in Bohai Bay. This research shows that, with consideration for the complicated marine environment, existing suspended spans are within allowable length limitations. However, continuing to limit the length of these submarine pipeline spans in the Nanpu oil field will require ongoing attention.  相似文献   

8.
In consideration of the effect of the internal flowing fluid and the external marine environmental condition on the vortex-induced vibration (VIV) of top tensioned riser (Till), the differential equation is derived based on work-energy principles and the riser near wake dynamics is modeled by Facchinetti' s wake oscillator model. Then Galerkin' s finite element approximation is implemented to derive the nonlinear matrix equation of the coupled equations and file corresponding numerical programs are compiled which solve the coupled equations directly in the time domain. The comparison of the predicted results with the recent experimental results and the prediction of SHEAR7 is performed. The results show the validity of the proposed method on the prediction of VIV of deep water risers. The effect of internal flow on the dynamic characteristics and dynmnic response of the riser is analyzed and several valuable conelusions are drawn.  相似文献   

9.
In consideration of the effect of the internal flowing fluid and the external marine environmental condition on the vortex-induced vibration (VIV) of top tensioned riser (TTR), the differential equation is derived based on work-energy principles and the riser near wake dynamics is modeled by Facchinetti''s wake oscillator model.Then Galerkin''s finite element approximation is implemented to derive the nonlinear matrix equation of the coupled equations and the corresponding numerical programs are compiled which solve the coupled equations directly in the timedomain. The comparison of the predicted results with the recent experimental results and the prediction of SHEAR7is performed. The results show the validity of the proposed method on the prediction of VIV of deep water risers.The effect of internal flow on the dynamic characteristics and dynamic response of the riser is analyzed and severalvaluable conclusions are drawn.  相似文献   

10.
A two-dimensional (2-D) vortex-induced vibration (VIV) prediction model for high aspect ratio (L/D) riser subjected to uniform and sheared flow is studied in this paper. The nonlinear structure equations are considered. The near wake dynamics describing the fluctuating nature of vortex shedding is modeled using classical van der Pol equation. A new approach was applied to calibrate the empirical parameters in the wake oscillator model. Compared the predicted results with the experimental data and computational fluid dynamic (CFD) results. Good agreements are observed. It can be concluded that the present model can be used as simple computational tool in predicting some aspects of VIV of long flexible structures.  相似文献   

11.
For subsea pipeline projects, the costs related to seabed correction and free span intervention are often considerable. Development of reliable methods for fatigue analyses of pipelines in free spans contributes to minimize costs without compromising pipeline integrity. Assessment of wave-induced fatigue damage on multi-span pipelines is investigated, and improved analysis methods are suggested in this paper. A time-domain (TD) algorithm is developed, which accounts for non-linear hydrodynamic loading and dynamic interaction between adjacent spans. The proposed TD approach is employed to evaluate linearized frequency-domain (FD) solutions from recognized design standards and to study the dynamic response of multi-span pipelines to direct wave loading. Differences between multi- and single-span analyses are described for the first time, and the common assumption that the main fatigue damage contribution comes from the fundamental mode is demonstrated not to hold for multi-spans. An improved FD solution capable of predicting multi-mode response is derived and demonstrated to give accurate fatigue life estimates for multi-span pipelines.  相似文献   

12.
章旭  勾莹  倪云林  滕斌  刘珍 《海洋学报》2016,38(1):133-142
基于线性势流理论,利用高阶边界元法研究了规则波在三维局部渗透海床上的传播。根据Darcy渗透定律推导出渗透海床的控制方程,利用渗透海床顶部和海底处法向速度和压强连续条件得到渗透海床顶部满足的边界条件。根据绕射理论,利用满足自由水面条件的格林函数建立了求解渗透海床绕射势的边界积分方程,采用高阶边界元方法求解边界积分方程进而得到自由水面的绕射势和波浪在局部渗透海床上传播过程中幅值的变化情况。通过与已发表的波浪对圆柱形暗礁的时域全绕射结果对比,证明了本文建立的频域方法计算波幅的正确性和有效性。利用这一模型研究了三维矩形渗透海床区域上波浪的传播特性,并分析了入射波波长、海床渗透特性系数等参数对波浪传播的影响。  相似文献   

13.
近壁圆柱绕流问题在海底悬跨管道的研究中具有重要的意义。在绕流阻力、升力以及海底土壤的耦合作用下,海底管道所发生的移位、悬跨等现象对于海底管道的安全运行构成了很大的威胁。正确预测各种绕流条件下管流之间的作用力是保证油气管道安全的首要任务。海底管道在极端海洋环境条件下的管、流相互作用为高雷诺数绕流问题,处于高雷诺数下的绕流模拟比处于低雷诺数下的绕流模拟要复杂很多,它需要更精细的网格以及合适的湍流模型。此文对处于悬跨状态下的海底管道进行数值研究,给出不同间隙比下海流绕流海底管道的流场结构形态,分析了间隙比对绕流阻力和绕流升力的影响,为进一步研究海底悬跨管道的受力和变形提供载荷边界数据。  相似文献   

14.
Considering the effect of the internal flowing fluid and the external marine environmental condition, the differential equation for the vortex-induced vibration (V1V) of the free spanning pipeline is derived and is discretized by the Hermit interpolation function. The free vibration equation with the damping term is solved by the complex damping method for the natural frequency, and then the effect of fluid damping on the natural frequency of the free spanning pipeline is analyzed.The results show that fluid damping has a significant influence on the damped natural frequency of the free spanning pipeline in the lock-in state, while it has little influence when the pipeline is out of the lock-in state. In the meantime,the change of the free span length has the same effect on the damped natural frequency and the undamped natural frequency.  相似文献   

15.
The present paper proposes a numerical model to determine horizontal and vertical components of the hydrodynamic forces on a slender submarine pipeline lying at the sea bed and exposed to non-linear waves plus a current. The new model is an extension of the Wake II type model, originally proposed for sinusoidal waves (Soedigdo et al., 1999) and for combined sinusoidal waves and currents (Sabag et al., 2000), to the case of periodic or random waves, even with a superimposed current. The Wake II type model takes into account the wake effects on the kinematic field and the time variation of drag and lift hydrodynamic coefficients. The proposed extension is based on an evolutional analysis carried out for each half period of the free stream horizontal velocity at the pipeline. An analytical expression of the wake velocity is developed starting from the Navier–Stokes and the boundary layer equations. The time variation of the drag and lift hydrodynamic coefficients is obtained using a Gaussian integration of the start-up function. A reduced scale laboratory investigation in a large wave flume has been conducted in order to calibrate the empirical parameters involved in the proposed model. Different wave and current conditions have been considered and measurements of free stream horizontal velocities and dynamic pressures on a bottom-mounted pipeline have been conducted. The comparison between experimental and numerical hydrodynamic forces shows the accuracy of the new model in evaluating the time variation of peaks and phase shifts of the horizontal and vertical wave and current induced forces.  相似文献   

16.
At present, most researches on the vortex-induced vibration of submarine free spanning pipelines ignore the effect of internal flowing fluid; furthermore, there are no research reports considering the coupling effect of internal and external fluid with the free span. In this paper, combining Iwan‘s wake oscillator model with the differential equation derived for the dynamic response of submarine free spanning pipelines with inclusion of internal flow, the pipe-fluid coupling equations are developed to investigate the effect of internal flow on the vortex-induced vibration of the free spans. The finite dement approximation is implemented to derive the matrix equations of equilibrium. The Newmark method combined with simple iteration is used to solve the system of equations. The results indicate that the internal fluid flow may cause the shift of resonance band to the lower frequency and a slight decrease in the peak value; the effect will be mare pronounced with the increase of the span length and can be weakened in the presence of the axial tension.  相似文献   

17.
1 .IntroductionThe submarine pipeline is a commonfacility widely usedfor offshore oil and gastransport . Whena pipeline is installed on a seabed and not buried,unsupportedspans may exist insomelocations ,es-peciallyinthe uneven zones of the seabed.The spa…  相似文献   

18.
Based on similarity analyses, a series of experiments have been conducted with a newly established hydro-elastic facility to investigate the transverse vortex-induced vibrations (VIVs) of a submarine pipeline near an erodible sandy seabed under the influence of ocean currents. Typical characteristics of coupling processes between pipe vibration and soil scour in the currents have been summarized for Case I: pipe is laid above seabed and Case II: pipe is partially embedded in seabed on the basis of the experimental observations. Pipe vibration and the corresponding local scour are usually two coupled physical processes leading to an equilibrium state. The influence of initial gap-to-diameter ratio (e0/D) on the interaction between pipe vibration and local scour has been studied. Experimental results show that the critical values of Vr for the initiation of VIVs of the pipe near an erodible sand bed get bigger with decreasing initial gap-to-diameter ratio within the examined range of e0/D (−0.25<e0/D<0.75). The comparison of the pipe vibrations near an erodible soil with those near a rigid boundary and under wall-free conditions indicates that the vibration amplitudes of the pipe near an erodible sand bed are close to the curve fit under wall-free conditions; nevertheless, for the same stability parameter, the maximum amplitudes for the VIV coupled with local scour increase with the increase of initial gap-to-diameter ratio.  相似文献   

19.
水动力作用下管道稳定性的试验研究   总被引:2,自引:2,他引:2  
利用振荡流水槽在以下两种约束条件下,研究波浪作用下直接铺设于砂质海底的管道失稳临界条件:1)管道两端自由;2)管道可水平、垂直自由运动,但流动受到限制。试验结果表明,管重无量纳数G与管道失稳的临界Fr数之间大致呈线性关系,而当G超过一定数值时,管道是侧向稳定的。管道的约束条件、砂床特性和加载速度对管道稳定性均有影响。  相似文献   

20.
It is well known that the Reynolds number has a significant effect on the vortex-induced vibrations (VIV) of cylinders. In this paper, a novel in-line (IL) and cross-flow (CF) coupling VIV prediction model for circular cylinders has been proposed, in which the influence of the Reynolds number was comprehensively considered. The Strouhal number linked with the vortex shedding frequency was calculated through a function of the Reynolds number. The coefficient of the mean drag force was fitted as a new piecewise function of the Reynolds number, and its amplification resulted from the CF VIV was also taken into account. The oscillating drag and lift forces were modelled with classical van der Pol wake oscillators and their empirical parameters were determined based on the lock-in boundaries and the peak-amplitude formulas. A new peak-amplitude formula for the IL VIV was developed under the resonance condition with respect to the mass-damping ratio and the Reynolds number. When compared with the results from the experiments and some other prediction models, the present model could give good estimations on the vibration amplitudes and frequencies of the VIV both for elastically-mounted rigid and long flexible cylinders. The present model considering the influence of the Reynolds number could generally provide better results than that neglecting the effect of the Reynolds number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号