首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
高压环境模拟系统作为深海设备结构强度与密封性能检测系统,其受到90MPa的交变载荷作用,破坏形式为疲劳破坏。本文首先利用ANSYS Workbench软件对压力筒进行了静力学分析,分析了压力筒在载荷作用下的危险区域。通过理论计算与ANSYS workbench模拟结果的比较,验证了模拟结果的准确性。运用名义预应力寿命法对筒体的疲劳寿命进行了理论计算,证明了ANSYS Workbench在疲劳分析中的可行性。筒体在90 MPa不同压力下循环次数的模拟,对压力筒在工作过程中的保养和维护具有一定的借鉴意义。  相似文献   

2.
结合最新研究成果,编制了筒型基础竖向极限承载力计算程序,可根据土壤参数和承载能力要求确定筒型基础的主要尺寸;同时使用ABAQUS和ANSYS软件建立筒型基础有限元模型,采用非线性接触方法模拟筒-土的边界,计算筒型基础的竖向极限承载力,两种软件的计算结果和编制程序的计算结果基本相同;最后对影响筒型基础竖向极限承载力的土壤...  相似文献   

3.
为补充DNVGL-RP-C212规范关于混合土层内吸力筒沉贯阻力计算参数的不确定描述,基于长乐外海风电场多个吸力筒基础的沉贯负压监测成果,对黏土—砂混合土层内吸力筒沉贯阻力算法进行研究。提出了基于黏粒含量确定侧阻力修正系数kf的算法,引入桩基工程中基于静力触探试验(CPT)的fs计算桩侧剪切强度的经验算法,并对其进行修正,用于计算吸力筒的沉贯侧阻力。对两种算法的准确性进行了验证,对其可靠性进行比较,提出了以前者计算结果为准,后者计算结果作为校核依据的建议。  相似文献   

4.
使用了ANSYS软件对筒型基础进行地震分析,计算了砂土液化情况以及由此导致的承载力的损失,对比了在筒-土界面采用节点耦合和设置接触单元两种形式对该结果的影响,结果显示节点耦合形式既可以保证计算精度,也能提高计算效率。同时,分析了不同长细比筒型基础的砂土液化深度和承载力损失,结果显示较大的长细比有利于减少承载力损失。  相似文献   

5.
在地震、海冰和波浪等海洋环境荷载作用下的人工岛与土相互作用非常复杂,很难用一个合适的数学模型进行描述和计算。据初步估计,静冰荷载是该人工岛结构的设计控制荷载。因此,本试验对人工岛结构在静冰力下结构与土的相互作用进行了研究,得出了人工岛结构筒壁内、外土压力分布,筒壁和桩的位移及应力变化以及桩和筒体各部位的土体抗力分担外荷的规律  相似文献   

6.
深海环境模拟装置是开展深海技术与装备研发中必不可少的试验系统。本文基于预应力钢丝缠绕技术,将传统的单层筒体拆分成双层结构,并在内套筒和外套筒间设有冷却通道。以筒体内径1000 mm、筒深2500 mm、最高设计压力200 MPa 的深海环境模拟装置为例,进行筒体结构和低温控制过程的初步计算分析。通过计算结果可知:在筒体结构设计上, 缠绕预紧系数浊η=1.13 时,筒体外半径r0 = 795 mm,芯筒总厚度为177 mm,所需缠绕钢丝层厚度为118 mm;在低温控制过程,增压器等熵效率为0.6 时,需要通过制冷系统将初始状态的工质水冷却至0 ℃,并保持筒内不少于4.6%的含冰量,且制冷系统总制冷量不低于24.62 kW,则可以实现筒内200 MPa下4 ℃及以下低温控制。研究结果可以为大型全海深环境模拟装置的低温控制策略研究提供参考。  相似文献   

7.
陈锋华  赵敏 《海洋工程》2022,40(2):143-153,176
耐压结构是深海潜器的重要组成部分,但在深海的高压环境中却存在内爆的风险。为研究陶瓷耐压结构水下内爆的流场特性,使用针对可压缩多相流问题开发的开源代码,采用直接数值模拟,应用自适应直角网格,对两种压力条件下的耐压结构水下内爆进行了数值模拟。通过低压模拟结果与理论解和试验值比较,验证了模拟方法的有效性,进而开展万米级深海陶瓷耐压结构水下内爆模拟。分析发现:陶瓷耐压结构发生内爆后,其内部气腔存在多次压缩—反弹现象,深海环境压力越大则反弹越不明显;气腔反弹阶段,在结构外部将产生数倍于深海环境压力的冲击波,且传播速度接近声速;冲击波压力峰值与到球心距离呈负指数幂函数关系;在相同深海环境压力下,耐压结构外部监测点的冲击波压力与球体半径呈正比例关系。  相似文献   

8.
及春宁  张海  郭磊 《海洋通报》2008,27(1):81-87
通过动力荷载分析,确定海冰荷载可以引起平台筒边土体液化,并阐述了判别土体液化的方法.利用冰激振动软件以及有限元软件对结构进行动力学分析,得到各筒边土体的最大剪应力.通过室内三轴实验和现场观测结果确定土体物理力学参数,利用判定公式计算得到土体抗液化极限应力.将两者进行对比,可判断筒边土体是否可能发生液化.以渤海某油田筒型基础平台为例,对平台基础土液化安全性进行了判别,证明该方法具有较强的创新性和可行性,对于这一类浅基础平台的地基土液化分析有一定的实践指导作用.  相似文献   

9.
针对圆筒型海上储油装置FPSO,研究其不同类型阻尼结构的阻尼性能,以便有效减小此类结构的垂荡运动。提出U型和倒U型两种不同的圆筒型FPSO阻尼结构型式,采用CFD方法模拟浮体的强迫运动,计算分析阻尼结构的阻尼特性,对比了传统垂荡板结构、U型阻尼结构、倒U型阻尼结构的阻尼性能,详细分析阻尼结构的不同参数包括高度、筒体间距、开孔情况等三个因素对于阻尼特性的影响,基于CFD方法,分析了不同阻尼结构阻尼形成的机理。计算分析表明,倒U型阻尼性能最好,U型和倒U型阻尼结构与筒体间距增大后阻尼增大,阻尼结构高度增加或开孔增加后阻尼降低。  相似文献   

10.
筒型基础作为一种新型的基础形式已经广泛的应用于海洋资源的开发。在筒型基础作为边际油田开发的基础形式的背景下,基于"大尺度筒型基础的浮运拖航"关键技术,本文对筒型基础在海洋环境荷载作用下的运动响应进行了相应的研究和分析。通过引入考虑气垫影响的无因次参数α处理筒内气水界面的非线性边界条件,基于三维势流理论、采用半解析法的特征函数展开并匹配渐进法,得到气浮筒型基础结构的垂荡下辐射运动的基本规律。还以CBF-3-150海上风电复合筒型基础为例,应用上述理论,运用MATLAB编程平台编制计算程序,求解得出该结构的垂荡水动力系数。  相似文献   

11.
关于气浮筒群结构的静稳性   总被引:3,自引:1,他引:3  
讨论了气浮筒群结构的静稳性问题 ,以三筒组合为算例 ,变化干舷、升沉和绕x轴、y轴的倾角α、β ,给出了静稳性的算法和初步结果。指出存在四个相关的姿态角 ,最后讨论了初始参数干舷的选取  相似文献   

12.
This paper deals with the hydrodynamic analysis of an array of Oscillating Water Column (OWC) devices, made up of coaxial cylinders, which are floating either independently or as a unit forming a floating platform. The platform is considered either free – floating or as TLP configuration connected to the sea bottom. Numerical results concerning the three boundary value problems, namely, the diffraction, the motion – and the pressure – dependent radiation ones are given. They have been obtained through an analytical solution method using matched axisymmetric eigenfunction expansion formulations. In all cases the interaction phenomena with neighbouring bodies have been taken properly into account using the physical idea of multiple scattering. Numerical results for the first – and the mean second – order wave forces, the hydrodynamic interaction coefficients along with pressure hydrodynamic parameters, inner air pressure and free–surface oscillation amplitude inside and outside of each device are parametrically evaluated and supplemented by experimental data.  相似文献   

13.
This paper describes a numerical approach to model the dynamic response of a pneumatic floating platform, and the laboratory experiments and parametric study to verify the numerical results. The pneumatic platform is composed of an array of open-bottom vertical cylinders trapping pressurized air that displaces the water. The cylinder diameter is assumed to be small compared to the wavelength and the water inside each cylinder oscillates as a piston. These assumptions simplify the mathematical formulation in that the bottom of the platform can be treated as a continuous surface on which the source distribution method can be applied. In the laboratory experiments, the compressibility and displacement of the trapped air are modeled by a spring and float assembly. The comparison between the numerical and experimental results indicates favorable agreement. The oscillation of the water columns and the overall dynamic characteristics of the platform are illustrated and discussed in the parametric study.  相似文献   

14.
A point-absorber-type Wave-Energy Converter (WEC) consisting of a floating vertical inner cylinder and an annular outer cylinder that slides along the inner one is considered. The two cylinders heave differently under wave excitation, and wave energy can be harnessed from the relative heave motion between the two cylinders using a Permanent Magnet Linear Generator (PMLG) as the Power Take-Off unit. A mooring cable is attached to the bottom of the inner cylinder. This paper aims to examine the effect of the stiffness of the mooring cable on the performance of the coaxial-cylinder WEC system. The two limiting cases of no mooring cable (freely floating inner and outer cylinders) and an infinitely stiff mooring cable (fixed inner cylinder) were also considered. To perform the analysis, hydrodynamic and interference coefficients of the two heaving cylinders were computed semi-analytically using the method of matched eigenfunction expansions. Experimentally determined viscous corrections on damping were also included in the model in order to have more realistic predictions. The performance of the system in terms of motion responses and capture width were predicted and discussed for both regular and irregular waves. The results of the analysis indicate that both the freely floating design and the design with rigidly moored inner cylinder are viable. The two limiting cases show similar optimal performances, albeit with very different optimal generator damping. However, an ill-chosen mooring-cable stiffness may cause the inner and the outer cylinders to have the same resonance frequency, eliminating the relative heave motion and leading to almost no energy extraction. This situation needs to be avoided when designing the mooring system for a coaxial-cylinder WEC.  相似文献   

15.
深海潜器常携带中空浮球来为其提供浮力。陶瓷因其高强度、低密度等优点成为浮球的理想材料。然而,中空结构在外部高压环境下易发生内爆,产生的内爆波会对周围结构产生毁灭性损害。为了探索浮球内部初始气压对内爆波的影响,首先,利用气泡动力学对其不考虑球壳影响时进行理论分析,得到内爆波压力脉冲沿径向以指数?1 衰减,并指出其物理意义和隐含假设,进而从能量分析得到增加内压使压缩空气消耗的能量增加,从而减弱释放到水中的压力波能量;其次,采用三相流固耦合有限元模型进行计算,考虑水的可压缩性和球壳因挤压引起的脆性破裂的影响,得到更为接近实际的内爆压力的分布。由于两侧挤压球壳,外部的水在不断扩大的缺口处产生向内的射流,造成内部气体非球形塌缩,后续压力波呈现出与球壳碎裂方式有关的方向性差异。通过有限元模型对内部初始气压的研究表明,增加初始内部气体压力到 1 MPa 时,压力脉冲在球壳表面处下降了 15. 6%~24. 8%。这一结果表明,在几乎不增加浮球质量的条件下,增加内部初始气压具有很好地抑制近端内爆波强度的效果。  相似文献   

16.
The coupled system of two side-by-side fixed and/or floating bodies interacting with a large amplitude nonlinear wave is studied using a direct time domain solution method. The numerical model is based on a three-dimensional mixed Eulerian–Lagrangian (MEL) method under certain simplifying approximations permitting Rankine panel scheme to be implemented over a time-invariant boundary surface to solve the boundary value problem for the unknown velocity potentials. A 4th order Adams–Bashforth–Moulton scheme is used for time marching of rigid-body motion histories of the individual bodies and evolution of the free-surface including the gap region in which large resonant fluid motions occur. A systematic study has been carried out to evaluate the performance of the developed time domain method in simulating the forces and motions as well as the fluid motion in the gap region for the two body system under various arrangements and in different wave-headings. At first, the computed numerical results have been validated and verified with computational and experimental results available in literature for standard geometries such as vertical truncated cylinders and rectangular boxes. Secondly, effectiveness of the damping lid model which is introduced to suppress wave resonance in the gap region is investigated including its influence on maximum sway forces on fixed and floating rectangular barges in side-by-side configurations. Thirdly, comparative studies on absolute and relative motion response for two cases (two rectangular barges, and a FLNG-FPSO + shuttle tanker) in side-by-side arrangement are detailed to bring out the importance of nonlinearities arising due to steep nonlinear incident waves. Finally, coupled motions of the two-body system of an FPSO and a shuttle tanker floating in side-by-side configuration in a steep nonlinear wave field are studied in which the two bodies are connected through hawsers, and also the FPSO is moored to the ground. Additionally there is a fender between the two bodies.  相似文献   

17.
The present study theoretically as well as experimentally investigates the interaction between waves and an array of porous circular cylinders with or without an inner porous plate based on the linear wave theory.To design more effective floating breakwaters,the transmission rate of waves propagating through the array is evaluated.Each cylinder in the array is partly made of porous materials.Specifically,it possesses a porous sidewall and an impermeable bottom.In addition,an inner porous plate is horizontally fixed inside the cylinders.It dissipates the wave more effectively and eliminates the sloshing phenomenon.The approach suggested by Kagemoto and Yue(1986) is adopted to solve the multiple-scatter problem,while a hierarchical interaction theory is adopted to deal with hydrodynamic interactions among a great number of bodies,which efficiently saves computation time.Meanwhile,a series of model tests with an array of porous cylinders is performed in a wave basin to validate the theoretical work and the calculated results.The draft of the cylinders,the location of the inner porous plate,and the spacing between adjacent cylinders are also adjusted to investigate their effects on wave dissipation.  相似文献   

18.
A theoretical assessment is made of mean wave drift forces on groups of vertical circular cylinders, such as the columns of a floating offshore platform. A complete analytical solution is obtained for two cylinders extending from seabed to free surface, and a long wave approximation is found to provide reliable predictions of the drift force in line with the waves at low frequencies. For moderate separation between the two cylinders, this force is found to tend at low frequencies to a value four times the force on an isolated cylinder.A numerical method is employed to study two surface piercing cylinders truncated below the free surface, and an arrangement of four vertical cylinders characteristic of a floating offshore platform. The mean vertical drift force is found to be reasonably well approximated, over the frequency range of practical interest, by the force on an individual cylinder considered in isolation multiplied by the number of cylinders in the group. Interaction effects, however, have a profound influence on the total horizontal drift force. At low frequencies this force is found to tend to the force on an isolated cylinder multiplied by the squate of the number of cylinders in the group.  相似文献   

19.
This paper deals with the evaluation of the natural frequencies in heave motion of a single floating Oscillating Water Column device along with the natural frequencies of the water column inside the oscillating chamber. Two types of OWCs are examined, a simple-type device, consisting of a partially immersed toroidal body and a novel-type device, consisting also of a partially immersed toroidal body supplemented however by a coaxial interior truncated cylinder moving in phase with the outer chamber, thus forming a floating unit. Numerical results are given concerning the three boundary value problems, namely, the diffraction, the motion- and the pressure- dependent radiation problems, obtained through an analytical solution method using matched axisymmetric eigenfunction expansion formulations. The effect of the air pressure distribution inside the oscillating chamber on the natural frequencies in heave motion of the two examined types of OWCs and on the natural frequency of the water column motion inside the chamber, is presented and discussed thoroughly. It is demonstrated that the heave natural frequencies are strongly dependent on the type of the examined OWC and the device’s inner air pressure and should be taken into consideration when designing a floating OWC device.  相似文献   

20.
Response Characteristics of Load on Vessels in Waves   总被引:2,自引:0,他引:2  
Considering the requirement of direct design and fatigue test for ships and floating structures byuse of FEM technique,a computational procedure of spectral analysis for wave load on the hull surface is de-veloped in this paper.The response of hydrodynamic pressure on the body surface to a designated sea state forships and floating structures is calculated by use of the revised strip method with the hull bound perturbationflow concept.The spectral function of wave load for the defined point on the body surface can be determinedfrom the Wiener-Khinhin theorem and the characteristic load value can be also obtained from spectral mo-ment analysis.A container ship is taken as a computational example and the sample of wave load with a cer-tain probability and corresponding encountered frequency is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号