首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detectable debris discs are thought to require dynamical excitation ('stirring'), so that planetesimal collisions release large quantities of dust. We investigate the effects of the secular perturbations of a planet, which may lie at a significant distance from the planetesimal disc, to see if these perturbations can stir the disc, and if so over what time-scale. The secular perturbations cause orbits at different semimajor axes to precess at different rates, and after some time   t cross  initially non-intersecting orbits begin to cross. We show that   t cross∝ a 9/2disc/( m pl e pl a 3pl)  , where   m pl, e pl  and   a pl  are the mass, eccentricity and semimajor axis of the planet, and   a disc  is the semimajor axis of the disc. This time-scale can be faster than that for the growth of planetesimals to Pluto's size within the outer disc. We also calculate the magnitude of the relative velocities induced among planetesimals and infer that a planet's perturbations can typically cause destructive collisions out to 100 s of au. Recently formed planets can thus have a significant impact on planet formation in the outer disc which may be curtailed by the formation of giant planets much closer to the star. The presence of an observed debris disc does not require the presence of Pluto-sized objects within it, since it can also have been stirred by a planet not in the disc. For the star ε Eridani, we find that the known radial velocity planet can excite the planetesimal belt at 60 au sufficiently to cause destructive collisions of bodies up to 100 km in size, on a time-scale of 40 Myr.  相似文献   

2.
Angular momentum transport within young massive protoplanetary discs may be dominated by self-gravity at radii where the disc is too weakly ionized to allow the development of the magneto-rotational instability. We use time-dependent one-dimensional disc models, based on a local cooling time calculation of the efficiency of transport, to study the radial structure and stability (against fragmentation) of protoplanetary discs in which self-gravity is the sole transport mechanism. We find that self-gravitating discs rapidly attain a quasi-steady state in which the surface density in the inner disc is high and the strength of turbulence very low (  α∼ 10−3  or less inside 5 au). Temperatures high enough to form crystalline silicates may extend out to several astronomical units at early times within these discs. None of our discs spontaneously develop regions that would be unambiguously unstable to fragmentation into substellar objects, though the outer regions (beyond 20 au) of the most massive discs are close enough to the threshold that fragmentation cannot be ruled out. We discuss how the mass accretion rates through such discs may vary with disc mass and with mass of the central star, and note that a determination of the     relation for very young systems may allow a test of the model.  相似文献   

3.
We present 7 mm and 3.5 cm wavelength continuum observations towards the Herbig AeBe star HD169142 performed with the Very Large Array (VLA) with an angular resolution of ≃1 arcsec. We find that this object exhibits strong (≃4.4 mJy), unresolved (≲1 arcsec) 7 mm continuum emission, being one of the brightest isolated Herbig AeBe stars ever detected with the VLA at this wavelength. No emission is detected at 3.5 cm continuum, with a 3σ upper limit of ≃0.08 mJy. From these values, we obtain a spectral index α≳ 2.5 in the 3.5 cm to 7 mm wavelength range, indicating that the observed flux density at 7 mm is most likely dominated by thermal dust emission coming from a circumstellar disc. We use available photometric data from the literature to model the spectral energy distribution (SED) of this object from radio to near-ultraviolet frequencies. The observed SED can be understood in terms of an irradiated accretion disc with low mass accretion rate,     , surrounding a star with an age of ≃10 Myr. We infer that the mass of the disc is ≃0.04 M, and is populated by dust grains that have grown to a maximum size of 1 mm everywhere, consistent with the lack of silicate 10 μm emission. These features, as well as indications of settling in the wall at the dust destruction radius, led us to speculate that the disc of HD169142 is in an advanced stage of dust evolution, particularly in its inner regions.  相似文献   

4.
Simultaneous X-ray and extreme ultraviolet (EUV) ( ROSAT XRT and WFC All-Sky Survey) observations of the highly active dMe flare stars YY Gem and AU Mic show that the two stars displayed an unusual type of flaring behaviour. We detect several X-ray and EUV flares superimposed on an enhanced and smoothly varying quiescent background. The two large impulsive-type X-ray flares on YY Gem reach peak X-ray luminosities of     and we estimate that they had similar integrated luminosities (∼6–8×1033 erg). AU Mic also produced several X-ray and EUV flares, with one very impulsive flare producing a 10-fold increase in XRT count rate. This flare was even larger than the YY Gem flares (peak L X of     and integrated L X of    
The     ratio for both stars is at the 'saturation' limit found in rapidly rotating dwarfs and the most active RS CVn stars. We suggest that the gradually varying components are the result of a period of continuous, unresolved flaring activity. Alternatively, they may be the result of the emergence and subsequent decay of a new magnetic active region on the stellar surface of these stars.  相似文献   

5.
Recent observations point to the presence of structured dust grains in the discs surrounding young brown dwarfs, thus implying that the first stages of planet formation take place also in the substellar regime. Here, we investigate the potential for planet formation around brown dwarfs and very low-mass stars according to the sequential core accretion model of planet formation. We find that, for a brown dwarf mass 0.05 M, our models predict a maximum planetary mass of  ∼5   M  , orbiting with semimajor axis ∼ 1 au. However, we note that the predictions for the mass–semimajor axis distribution are strongly dependent upon the models chosen for the disc surface density profiles and the assumed distribution of disc masses. In particular, if brown dwarf disc masses are of the order of a few Jupiter masses, Earth-mass planets might be relatively frequent, while if typical disc masses are only a fraction of Jupiter mass, we predict that planet formation would be extremely rare in the substellar regime. As the observational constraints on disc profiles, mass dependencies and their distributions are poor in the brown dwarf regime, we advise caution in validating theoretical models only on stars similar to the Sun and emphasize the need for observational data on planetary systems around a wide range of stellar masses. We also find that, unlike the situation around solar-like stars, Type II migration is totally absent from the planet formation process around brown dwarfs, suggesting that any future observations of planets around brown dwarfs would provide a direct measure of the role of other types of migration.  相似文献   

6.
We present high-cadence, high-precision multiband photometry of the young, M1Ve, debris disc star, AU Microscopii. The data were obtained in three continuum filters spanning a wavelength range from 4500 to 6600 Å, plus Hα, over 28 nights in 2005. The light curves show intrinsic stellar variability due to star-spots with an amplitude in the blue band of 0.051 mag and a period of 4.847 d. In addition, three large flares were detected in the data which all occur near the minimum brightness of the star. We remove the intrinsic stellar variability and combine the light curves of all the filters in order to search for transits by possible planetary companions orbiting in the plane of the nearly edge-on debris disc. The combined final light curve has a sampling of 0.35 min and a standard deviation of 6.8 mmag. We performed Monte Carlo simulations by adding fake transits to the observed light curve and find with 95 per cent significance that there are no Jupiter mass planets orbiting in the plane of the debris disc on circular orbits with periods,   P ≤ 5  d. In addition, there are no young Neptune like planets (with radii 2.5 times smaller than the young Jupiter) on circular orbits with periods,   P ≤ 3  d.  相似文献   

7.
Axisymmetric steady-state weakly ionized Hall–magnetohydrodynamic (MHD) Keplerian thin discs are investigated by using asymptotic expansions in the small disc aspect ratio ε. The model incorporates the azimuthal and poloidal components of the magnetic fields in the leading order in ε. The disc structure is described by an appropriate Grad–Shafranov equation for the poloidal flux function ψ that involves two arbitrary functions of ψ for the toroidal and poloidal currents. The flux function is symmetric about the mid-plane and satisfies certain boundary conditions at the near-horizontal disc edges. The boundary conditions model the combined effect of the primordial as well as the dipole-like magnetic fields. An analytical solution for the Hall equilibrium is achieved by further expanding the relevant equations in an additional small parameter δ that is inversely proportional to the Hall parameter. It is thus found that the Hall equilibrium discs fall into two types: Keplerian discs with (i) small  ( R d∼δ0)  and (ii) large  ( R d≳δ− k , k > 0)  radius of the disc. The numerical examples that are presented demonstrate the richness and great variety of magnetic and density configurations that may be achieved under the Hall–MHD equilibrium.  相似文献   

8.
We consider the minimum mass planet, as a function of radius, that is capable of opening a gap in an α-accretion disc. We estimate that a half-Jupiter mass planet can open a gap in a disc with accretion rate     for viscosity parameter  α= 0.01  , and solar mass and luminosity. The minimum mass is approximately proportional to     . This estimate can be used to rule out the presence of massive planets in gapless accretion discs. We identify two radii at which an inwardly migrating planet may become able to open a gap and so slow its migration; the radius at which the heating from viscous dissipation is similar to that from stellar radiation in a flared disc, and the radius at which the disc becomes optically thin in a self-shadowed disc. In the inner portions of the disc, we find that the minimum planet mass required to open a gap is only weakly dependent on radius. If a migrating planet is unable to open a gap by the time it reaches either of the transition radii, then it is likely to be lost on to the star. If a gap-opening planet cuts off disc accretion allowing the formation of a central hole or clearing in the disc then we would estimate that the clearing radius would approximately be proportional to the stellar mass.  相似文献   

9.
An unbiased search for debris discs around nearby Sun-like stars is reported. 13 G-dwarfs at 12–15 parsec distance were searched at 850 μm wavelength, and a disc is confirmed around HD 30495. The estimated dust mass is  0.008 M  with a net limit  ≲0.0025 M  for the average disc of the other stars. The results suggest there is not a large missed population of substantial cold discs around Sun-like stars – HD 30495 is a bright rather than unusually cool disc, and may belong to a few hundred Myr old population of greater dust luminosity. The far-infrared and millimetre survey data for Sun-like stars are well fitted by either steady state or stirred models, provided that typical comet belts are comparable in size to that in the Solar system.  相似文献   

10.
We have carried out JHK polarimetric observations of 11 dusty young stars, by using the polarimeter module IRPOL2 with the near-infrared camera UIST on the 3.8-m United Kingdom Infrared Telescope (UKIRT). Our sample targeted systems for which UKIRT-resolvable discs had been predicted by model fits to their spectral energy distributions. Our observations have confirmed the presence of extended polarized emission around TW Hya and around HD 169142. HD 150193 and HD 142666 show the largest polarization values among our sample, but no extended structure was resolved. By combining our observations with Hubble Space Telescope (HST) coronographic data from the literature, we derive the J - and H -band intrinsic polarization radial dependences of the disc of TW Hya. We find the polarizing efficiency of the disc is higher at H than at J , and we confirm that the J - and H -band percentage polarizations are reasonably constant with radius in the region between 0.9 and 1.3 arcsec from the star. We find that the objects for which we have detected extended polarizations are those for which previous modelling has suggested the presence of flared discs, which are predicted to be brighter than flat discs and thus would be easier to detect polarimetrically.  相似文献   

11.
We argue that the quiescent value of the viscosity parameter of the accretion disc in WZ Sge may be  αcold∼ 0.01  , in agreement with estimates of αcold for other dwarf novae. Assuming the white dwarf in WZ Sge to be magnetic, we show that, in quiescence, material close to the white dwarf can be propelled to larger radii, depleting the inner accretion disc. The propeller therefore has the effect of stabilizing the inner disc and allowing the outer disc to accumulate mass. The outbursts of WZ Sge are then regulated by the (magnetically determined) evolution of the surface density of the outer disc at a radius close to the tidal limit. Numerical models confirm that the recurrence time can be significantly extended in this way. The outbursts are expected to be superoutbursts since the outer disc radius is forced to exceed the tidal (3:1 resonance) radius. The large, quiescent disc is expected to be massive, and to be able to supply the observed mass accretion rate during outburst. We predict that the long-term spin evolution of the white dwarf spin will involve a long cycle of spin-up and spin-down phases.  相似文献   

12.
We present high-resolution spectra (1.0 km s−1 FWHM) of the circumstellar Ca K line towards β Pictoris obtained on 1997 June 19 and 20. On the former date a strong absorption component was found at a heliocentric velocity of v helio = +8 km s−1, that is blueshifted by 14 km s−1 with respect to the main, 'stable', circumstellar component at v helio = +22 km s−1. To our knowledge, this is the first detection of a blueshifted Ca  ii component with a strength comparable to the more frequently observed redshifted events. On the following night a blueshifted component was still present, but its strength had decreased significantly; in addition, a strong redshifted component had appeared at v helio = +54 km s−1 which was absent on the previous night. The implications of these observations for the evaporating 'comet' model of spectral variations in the β Pictoris disc are discussed.  相似文献   

13.
We study the infrared (IR) emission from flared discs with and without additional optically thin haloes. Flux calculations of a flared disc in vacuum can be considered a special case of the more general family of models in which the disc is imbedded in an optically thin halo. In the absence of such a halo, flux measurements can never rule out its existence because the disc flaring surface defines a mathematically equivalent halo that produces the exact same flux at all IR wavelengths. When a flared disc with height H at its outer radius R is imbedded in a halo whose optical depth at visual wavelengths is  τhalo  , the system IR flux is dominated by the halo whenever  τhalo > (1/4) H / R   . Even when its optical depth is much smaller, the halo can still have a significant effect on the disc temperature profile. Imaging is the only way to rule out the existence of a potential halo, and we identify a decisive test that extracts a signature unique to flared discs from imaging observations.  相似文献   

14.
We have used a Doppler tomographic analysis to conduct a deep search for the starlight reflected from the planetary companion to HD 75289. In four nights on VLT(UT2)/UVES in 2003 January, we obtained 684 high-resolution echelle spectra with a total integration time of 26 h. We establish an upper limit on the geometric albedo of the planet   p < 0.12  (to the 99.9 per cent significance level) at the most probable orbital inclination   i ≃ 60°  , assuming a grey albedo, a Venus-like phase function and a planetary radius   R p= 1.6 RJup  . We are able to rule out some combinations of the predicted planetary radius and atmospheric albedo models with high, reflective cloud decks.  相似文献   

15.
Planets orbiting a planetesimal circumstellar disc can migrate inward from their initial positions because of dynamical friction between planets and planetesimals. The migration rate depends on the disc mass and on its time evolution. Planets that are embedded in long-lived planetesimal discs, having total mass of 10−4– 0.01 M , can migrate inward a large distance and can survive only if the inner disc is truncated or as a result of tidal interaction with the star. In this case the semimajor axis, a , of the planetary orbit is less than 0.1 au. Orbits with larger a are obtained for smaller values of the disc mass or for a rapid evolution (depletion) of the disc. This model may explain not only several of the orbital features of the giant planets that have been discovered in recent years orbiting nearby stars, but also the metallicity enhancement found in several stars associated with short-period planets.  相似文献   

16.
We have undertaken visual spectroscopy of the highly evolved planetary nebulae (PNe) A8, A13, A62, A72, A78 and A83 over a wavelength range  4330 < λ < 6830 Å  . This permits us to specify relative line intensities in various sectors of the nebular shells, and to investigate the variation of emission as a function of radius. We determine that the spectrum of the central star of A78 has varied appreciably over a period of 25 yr. There is now evidence for strong P Cygni absorption in the λ4589 and λ5412 transitions of He  ii , implying terminal velocities of the order of   V ≅ 3.83 × 103 km s−1  . We also note that the emission-line profiles of the sources can be used to investigate their intrinsic emission structures. We find that most PNe show appreciable levels of emission throughout their volumes; only one source (A13) possesses a thin-shell structure. Such results are in conformity with evolutionary theory, and probably reflect the consequences of adiabatic cooling in highly evolved outflows.  相似文献   

17.
The results of X-ray and optical observations of the candidate intermediate polar TW Pic are presented in an attempt to understand its nature. We find no sign of the previously proposed ∼2 h white-dwarf spin period and ∼6 h orbital period of TW Pic in its X-ray light curve. There is therefore no convincing evidence in support of its previous classification. The lack of X-ray pulsation could be the result of a low inclination angle, but in that case there would be no reason why an optical pulsation should have been seen previously. Negative results from polarimetry also preclude TW Pic from being a polar. One possibility may be that the shorter of the two periods is in fact the orbital period, whilst the longer one is a harmonic of a disc precession period. Alternatively, both the high accretion rate and period structure of TW Pic indicate that it may be a system that displays persistent negative superhumps. In this case the true orbital period of the binary may be around 6.36 h and the shorter of the two previously identified periods, 1.996 h, represents the (shifted) second harmonic of a negative superhump period of 6.06 h. Under this interpretation, it would be the longest period system to display such a phenomenon. Finally there is also evidence that TW Pic may be a VY Scl star, in which case it would be the longest period member of that subclass too.  相似文献   

18.
We study protoplanetary disc evolution assuming that angular momentum transport is driven by gravitational instability at large radii, and magnetohydrodynamic (MHD) turbulence in the hot inner regions. At radii of the order of 1 au such discs develop a magnetically layered structure, with accretion occurring in an ionized surface layer overlying quiescent gas that is too cool to sustain MHD turbulence. We show that layered discs are subject to a limit cycle instability, in which accretion on to the protostar occurs in ∼104-yr bursts with ̇ ∼10−5 M yr−1, separated by quiescent intervals lasting ∼105 yr where ̇ ≈10−8 M yr−1. Such bursts could lead to repeated episodes of strong mass outflow in young stellar objects. The transition to this episodic mode of accretion occurs at an early epoch ( t ≪1 Myr), and the model therefore predicts that many young pre-main-sequence stars should have low rates of accretion through the inner disc. At ages of a few Myr, the discs are up to an order of magnitude more massive than the minimum-mass solar nebula, with most of the mass locked up in the quiescent layer of the disc at r ∼1 au. The predicted rate of low-mass planetary migration is reduced at the outer edge of the layered disc, which could lead to an enhanced probability of giant planet formation at radii of 1–3 au.  相似文献   

19.
We present a numerical simulation of the bulk Lorentz factor of a relativistic electron–positron jet driven by the Compton rocket effect from accretion disc radiation. The plasma is assumed to have a power-law distribution n e(γ) ∝ γ− s with 1 < γ < γmax and is continuously reheated to compensate for radiation losses. We include the full Klein–Nishina (hereafter KN) cross-section, and study the role of the energy upper cut-off γmax, spectral index s and source compactness. We determine the terminal bulk Lorentz factor in the cases of supermassive black holes, relevant to AGN, and stellar black holes, relevant to galactic microquasars. In the latter case, Klein–Nishina cross-section effects are more important and induce a terminal bulk Lorentz factor smaller than in the former case. Our result are in good agreement with bulk Lorentz factors observed in Galactic (GRS 1915+105, GRO J1655−40) and extragalactic sources. Differences in scattered radiation and acceleration mechanism efficiency in the AGN environment can be responsible for the variety of relativistic motion in those objects. We also take into account the influence of the size of the accretion disc; if the external radius is small enough, the bulk Lorentz factor can be as high as 60.  相似文献   

20.
Accreting black holes show a complex and diverse behaviour in their soft spectral states. Although these spectra are dominated by a soft, thermal component which almost certainly arises from an accretion disc, there is also a hard X-ray tail indicating that some fraction of the accretion power is instead dissipated in hot, optically thin coronal material. During such states, best observed in the early outburst of soft X-ray transients, the ratio of power dissipated in the hot corona to that in the disc can vary from ∼ 0 (pure disc accretion) to ∼ 1 (equal power in each). Here we present results of spectral analyses of a number of sources, demonstrating the presence of complex features in their energy spectra. Our main findings are: (1) the soft components are not properly described by a thermal emission from accretion discs: they are appreciably broader than can be described by disc blackbody models even including relativistic effects, and (2) the spectral features near     commonly seen in such spectra can be well described by reprocessing of hard X-rays by optically thick, highly ionized, relativistically moving plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号