首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study evaluates patterns in the distribution and abundance of newly recruited (young-of-the-year) and older American lobster (Homarus americanus Milne Edwards) along a 22 km length of the Narragansett Bay estuary, Rhode Island, with particular attention to substratum associations. This not only represents the first assessment of benthic recruitment of this species along an estuary, but it is also the first study of lobster recruitment in southern New England. Censuses were conducted by divers in a substratum-specific manner. in cobble-boulder habitat, with the aid of a diver-operated suction sampler, I found newly recruited (5–10 mm carapace length) lobsters to be most abundant on the open coast, with numbers diminishing to zero in the upper bay. Visual censuses of older lobsters in the same habitat revealed a similar pattern. On featureless sedimentary habitats new recruits were absent and lobster densities were at least two orders of magnitude lower than in rocky habitats. In Narragansett Bay, rocky habitats comprise a small proportion of the bottom. The availability of such habitats, the relative importance of larval supply and potential physiological stress in limiting recruitment up-bay remain unclear.  相似文献   

2.
The relationship between lobsters and eelgrass beds was investigated in the Piscataqua River, which constitutes the lower portion of the Great Bay Estuary, New Hampshire and Maine. The goals of the study were to assess the numbers, size distribution, and sex distribution of lobsters in eelgrass beds, to determine whether lobsters in the eelgrass beds were transients or residents, and to investigate eelgrass density preferences among adolescent lobsters. Eighty percent of the lobsters collected from eelgrass beds were adolescents, measuring >40 to 70 mm carapace length (CL). Of the 295 lobsters collected at four different eelgrass beds, we found an average male-to-female ratio of 1.2. Tag/recapture efforts in eelgrass beds (1.5 to 4 mo interim period) yielded an average recapture of 5.5%. Twenty transects, each 10 m in length, sampled at two eelgrass sites revealed a lobster density of 0.1 m−2. In mesocosm experiments, lobsters (53–73 mm CL) showed a clear preference for eelgrass over bare mud. Our investigations showed that adolescent lobsters burrow in eelgrass beds, utilize eelgrass as an overwintering habitat, and prefer eelgrass to bare mud.  相似文献   

3.
Our study was designed to examine early life stage tarpon (Megalops atlanticus) recruitment, habitat use, and residency in coastal environments near the northern limit of their distribution in the western Atlantic Ocean. We employed a multi-faceted approach to (1) collect ingressing larval tarpon on nighttime flood tides at multiple sites, (2) document larval and juvenile tarpon use of natural high marsh pools, and (3) examine juvenile tarpon movement and behavior in managed marsh impoundments, all in the North Inlet-Winyah Bay estuarine system of South Carolina, USA. The timing of recruitment (June through November) and size of larvae (mean ± standard deviation = 23 ± 3 mm standard length [SL]) during estuarine ingress was similar to that reported from other subtropical locations in the region. Soon after recruiting into the system, larval and small juvenile tarpon (47 ± 25 mm SL) co-occurred in high marsh pools from July to November, and large juveniles (201 ± 34 mm SL) were also present in marsh impoundments during this same time period. An increase in tarpon length over time during their residency in high marsh pools and the relatively large size they attain in marsh impoundments indicate these environments may function as favorable nursery habitats. As water temperatures decreased during October and November, juvenile tarpon emigrated from these estuarine habitats. Tarpon appear to use a variety of estuarine habitats in coastal South Carolina from summer through late fall during their early life stage development. The fate of these individuals after they leave estuarine habitats at the onset of winter in this region is currently unknown.  相似文献   

4.
Oysters can create reefs that provide habitat for associated species resulting in elevated resident abundances, lower mortality rates, and increased growth and survivorship compared to other estuarine habitats. However, there is a need to quantify trophic relationships and transfer at created oyster reefs to provide a better understanding of their potential in creating suitable nekton habitat. Stable isotope analyses (δ13C and δ15N) were conducted to examine the organic matter sources and potential energy flow pathways at a created intertidal oyster (Crassostrea ariakensis; hereinafter, oyster) reef and adjacent salt marsh in the Yangtze River estuary, China. The δ13C values of most reef-associated species (22 of 37) were intermediate between those of suspended particle organic matter (POM) and benthic microalgae (BMI), indicating that both POM and BMI are the major organic matter sources at the created oyster reef. The sessile and motile macrofauna colonizing the reef make up the main prey of transient nekton (e.g., spotted sea bass, Asian paddle crab, and green mud crab), thus suggesting that the associated community was most important in supporting higher trophic levels as opposed to the direct dietary subsidy of oysters. The created oyster reef consistently supported higher trophic levels than the adjacent salt marsh habitat due to the dominance of secondary consumers. These results indicate that through the provision of habitat for associated species, created oyster reefs provide suitable habitat and support a higher average trophic level than adjacent salt marsh in the Yangtze River estuary.  相似文献   

5.
We investigated whether the otolith chemistry ofHaemulon flavolineatum (French grunt), a nocturnally active fish, could be used as a means to differentiate individuals occupying mangrove and coral reef habitats. In 2003, adults were collected from 9 mangrove and 10 coral reef sites throughout Turneffe Atoll, Belize. Concentrations of trace elements were measured at the edge of sagittal otoliths by laser ablated inductively coupled plasma mass spectrometry. Results of a two-factor nested MANCOVA (sites nested within habitat and covariate of fish size), used to investigate whether significant differences in otolith elemental concentrations existed between habitats (i.e., mangrove versus reef) and among sites, indicated significant differences between habitats, in terms of lithium, magnesium, zinc, and rubidium (fish from mangroves had greater concentrations than those from coral reefs), as well as among sites (for several elements). Because elemental variability existed between habitats and among sites, we asked whether this variability was sufficient to differentiate habitats and sites using separate linear discriminant function analyses (LDFA). LDFA indicated that fish were classified to the habitat (mangrove or reef) from which they were collected with a moderate degree of accuracy (correct classification of 74% and 79% for mangrove and coral reef fish, respectively), but were poorly classified to the site from which they were collected (average correct classification of 46% with a range of 0–89%). Otolith microchemical investigations ofH. flavolineatum at Turneffe Atoll can be used to identify movement between habitats, yet due to the lack of unique site-specific chemical signatures likely caused by the nocturnal movement of individuals, it will not be possible to identify specific sites from which reef fish originated.  相似文献   

6.
The importance of intertidal estuarine habitats, like salt marsh and oyster reef, has been well established, as has their ubiquitous loss along our coasts with resultant forfeiture of the ecosystem services they provide. Furthering our understanding of how these habitats are evolving in the face of anthropogenic and climate driven changes will help improve management strategies. Previous work has shown that the growth and productivity of both oyster reefs and salt marshes are strongly linked to elevation in the intertidal zone (duration of aerial exposure). We build on that research by examining the growth of marsh-fringing oyster reefs at yearly to decadal time scales and examine movement of the boundary between oyster reef and salt marsh at decadal to centennial time scales. We show that the growth of marsh-fringing reefs is strongly associated to the duration of aerial exposure, with little growth occurring below mean low water and above mean sea level. Marsh-shoreline movement, in the presence or absence of fringing oyster reefs, was reconstructed using transects of sediment cores. Carbonaceous marsh sediments sampled below the modern fringing oyster reefs indicate that marsh shorelines within Back Sound, North Carolina are predominantly in a state of transgression (landward retreat), and modern oyster-reef locations were previously occupied by salt marsh within the past two centuries. Cores fronting transgressive marsh shorelines absent fringing reefs sampled thinner and less extensive carbonaceous marsh sediment than at sites with fringing reefs. This indicates that fringing reefs are preserving carbonaceous marsh sediment from total erosion as they transgress and colonize the exposed marsh shoreline making marsh sediments more resistant to erosion. The amount of marsh sediment preservation underneath the reef scales with the reef’s relief, as reefs with the greatest relief were level with the marsh platform, preserving a maximum amount of carbonaceous sediments during transgression by buffering the marsh from erosional processes. Thus, fringing oyster reefs not only have the capacity to shelter shorelines but, if located at the ideal tidal elevation, they also keep up with accelerating sea-level rise and cap carbonaceous sediments, protecting them from erosion, as reefs develop along the marsh.  相似文献   

7.
Salt marsh habitats influenced by southern California's mixed, semi-diurnal tides are, on average, accessible to fishes less than 16% of the time. However, five species (four natives, one oxotic) and a variety of juvenile and adult size classes were collected on the marsh surface during a year-long sampling from June 1997 through June 1998 at Sweetwater Marsh National Wildlife Refuge on San Diego Bay.Fundulus parvipinis andGillichthys mirabilis were the most abundant fish species using the marsh. Analyses of their guts revealed that the marsh surface provides a rich foraging area for fishes on high spring tides.F. parvipinnis with marsh access consumed six times as much food as fishes restricted to creek habitats (on a g-food g-fish?1 basis) and also fed on additional prey types. Because the salt marsh is an important foraging area for fishes, we recommend that restoration projects (especially those intended to mitigate lost fish habitat) include vegetated areas with interconnecting tidal creeks.  相似文献   

8.
Oyster cultch was added to the lower intertidal marsh-sandflat fringe of three previously createdSpartina alterniflora salt marshes. Colonization of these created reefs by oysters and other select taxa was examined. Created reefs supported numerous oyster reef-associated faunas at equivalent or greater densities than adjacent natural reefs. Eastern oyster (Crassostrea virginica) settlement at one site of created reef exceeded that of the adjacent natural reefs within 9 mo of reef creation. After only 2 yr, harvestable-sizeC. virginica (>75 mm) were present in the created reefs along with substantial numbers ofC. virginica clusters. The created reefs also had a higher number of molluscan, fish, and decapod species than the adjacent natural reefs. After 2 yr the densities ofC. virginica, striped barnacle (Balanus amphitrite), scorched mussel (Brachidontes exustus), Atlantic ribbed mussel (Geukensia demissa), common mud crab (Panopeus herbstii), and flat mud crab (Eurypanopeus depressus) within the created reefs were equivalent to that of adjacent natural reefs. From these data it is evident that created oyster reefs can quickly acquire functional ecological attributes of their natural counterparts. Because the demand for oysters continues to increase in the face of dwindling natural resources, habitat creation techniques need to evolve and these approaches need to consider the ancillary ecological benefits reef creation may provide. Reef function as well as physical and ecological linkages of oyster reefs to other habitats (marsh, submerged aquatic vegetation, and bare bottom) should be considered when reefs are created in order to provide the best use of resources to maintain the integrity of estuarine systems.  相似文献   

9.
In a long-term, spatially comprehensive beam trawl survey of the Navesink River-Sandy Hook Bay estuary, the blue crabCallinectes sapidus was one of the most abundant species. Seasonal changes in abundance were evident, with low abundances in summer followed by peak abundances in the fall, after juveniles recruited to the estuary. We saw no long-term trends in abundance during the 5 yr study. Location in the navesink River or Sandy Hook Bay explained most of the variance in abundance within any one survey. In diet analyses, we found evidence of cannibalism in all seasons, but in the size range of crabs caught in this study (10–180 mm), we did not find a relationship between cannibalism and juvenile crab abundance. Within surveys, crabs divided into 20 mm size categories showed no sizerelated differences in location within the estuary or among 7 habitat types examined (algae bed, amphipod bed, beach, channel, marsh edge, mid-depth, and sandbar). Channels and sandbars tended to exhibit lower crab abundance than other habitats. Shallow habitats with and without cover were equally preferred by juvenile blue crabs, implying that the presence of structure was not critical. Spatial models of crab abundance (<- 80 mm carapace width) to environmental data were fit from several seasons of intensive sampling in the Navesink River-Sandy Hook Bay estuary between summer 1996 and spring 1998. These models indicated that fine-grained sediments, tmmperature, depth, and salinity were good indicators of crab abundance in spring, summer, and fall. Using these spatial models and environmental data collected in subsequent seasons (summer 1998−fall 1999), we were able to predict blue crab abundance in the river as evidenced by significant correlations between predicted and observed abundances. For the size range of crabs examined here, physical conditions may be as important as structural habitat types or cannibalism in determining habitat use in northerly estuaries.  相似文献   

10.
Mummichog,Fundulus heteroclitus, were collected weekly from a southern New Jersey high-salinity salt marsh from October 1988 to June 1989 and from September 1989 to June 1990 to determine the overwintering habitat. Major habitat types sampled within the salt marsh were subtidal creek, intertidal creeks, and salt-marsh pools. Few individuals were collected in the intertidal creek or the subtidal creek from the end of October through the beginning of May for both years, when creek water temperatures were low. Both young-of-the-year and adults of both sexes were abundant in the salt-marsh pools (total lengths ranged from 29 mm to 125 mm) throughout the winter. In the spring, catch per unit effort (CPUE) within the tidal creek increased with increasing water temperature, while CPUE in marsh pools decreased with increases in estuarine water temperature. These collection patterns indicate that the majority ofF. heteroclitus may move from subtidal and intertidal creeks into salt-marsh pools in the late fall and leave in the spring. This seasonal movement could explain how fish survive winter environmental conditions because daily average water temperatures of salt-marsh pools were warmer than subtidal creek temperatures for much of the winter.  相似文献   

11.
Trawl collections indicate that the fish community of the Belize barrier reef lagoon is dominated numerically and in biomass by grunts (Haemulidae), especiallyHaemulon sciurus andHaemulon flavolineatum. Although the gear selected for small sizes, length frequency analysis indicated seasonality in recruitment of the dominant species of grunts. Apogonids and tetraodontiform fishes were also dominant components of the community. Most fishes collected were juveniles of species that occur as adults on the main reef, or were small species that are resident in the lagoon. Of three habitats sampled, the mangrove creek had the greatest relative abundance and biomass of fishes, followed by the seagrass bed and the sand-rubble zone. There were no significant seasonal differences in fish relative abundance or biomass. Community structure analysis indicated a uniqueness in the mangrove fish community. Diversity (H′) was high, and was due to high species richness and evenness of distribution of individuals among species. The Belize barrier reef lagoon serves as an important nursery habitat for juvenile fishes.  相似文献   

12.
Average summer densities of the xanthid crab,Eurytium limosum, in an intertidal salt marsh on Sapelo Island, Georgia were in the range of 7.5 to 80.0 individuals m?2. Crab densities were lowest in wet, lowlying marsh and highest in well-drained creekbank and mussel mound habitats. An analysis of crab stomach contents indicated that feeding occurred mostly around high tide, especially at night. Although the diet included some plant material,Eurytium limosum is primarily predatory and consumed crabs, polychaetes, ostracods, bivalves, and snails. In the laboratory, under simulated low-tide field conditions, both small (11–15 mm carapace width) and large (20–37 mm CW)Eurytium could capture and consume young killifish (Fundulus heteroclitus). Large crabs consumed the entire size range (7–19 mm total length) of larval/juvenile fish offered, but small crabs did not prey upon fish >11.5 mm TL. The potential importance ofE. limosum as a predator on young killifish may not be realized in the field because alternative prey are available and the crabs feed primarily at high tide, when young killifish are dispersed in the water column and are less vulnerable to benthic predators.  相似文献   

13.
Brown shrimp (Farfantepenaeus aztecus) are an important commercial aquatic species experiencing loss of inshore marsh nursery habitat in coastal Louisiana. To study inshore brown shrimp movements and identify aspects of essential habitat important for sustaining brown shrimp populations, we collected juvenile brown shrimp in April and May 2000, the time of annual maximum brown shrimp abundance, in a small 1-km2 marsh area on the central Louisiana coast. Drop sampling showed average shrimp densities of 1.6–2.4 m−2 in shallow marsh ponds and seining indicated lower densities of 0.5–0.9 m−2 in nearby shallow channel and open bay sites. Smaller shrimp (< 50 mm) fed disproportionately on benthic diatoms and small harpacticoid copepods, while large shrimp fed more frequently on larger-bodied amphipods and tanaids. We developed novel chemical approaches to estimate patterns of shrimp residency and movement using carbon and nitrogen stable isotopic determinations. Resident shrimp had isotopic values similar to average foods and showed consistent isotopic spacings between fast and slow turnover tissues. Residency was highest (47–55%) in ponds and shallow channel habitats and much less in open bays and deep channels (4–27%). There was sparse evidence for dietary specialization among individull shrimp. The results support the view that small 10–20 mm postlarval and juvenile brown shrimp arriving in estuaries from offshore waters continue movement through sub-optimal habitats (deep channels and open bays), but exhibit much less movement once an optimal habitat (marsh ponds or shallow channel margins) is reached. This study also indicated that combining estimates of shrimp densities, residency, growth rate, and mortality allows evaluation of the importance of different habitat types for shrimp production. Shallow ponds that in many ways resemble fertile aquaculture ponds appear to be hot spots for brown shrimp production, and coastal preservation and restoration efforts should focus on these areas as important for sustaining shrimp fisheries.  相似文献   

14.
The tropically associated black mangrove (Avicennia germinans) is expanding into salt marshes of the northern Gulf of Mexico (nGOM). This species has colonized temperate systems dominated by smooth cordgrass (Spartina alterniflora) in Texas, Louisiana, Florida and, most recently, Mississippi. To date, little is known about the habitat value of black mangroves for juvenile fish and invertebrates. Here we compare benthic epifauna, infauna, and nekton use of Spartina-dominated, Avicennia-dominated, and mixed Spartina and black mangrove habitats in two areas with varying densities and ages of black mangroves. Faunal samples and sediment cores were collected monthly from April to October in 2012 and 2013 from Horn Island, MS, and twice yearly in the Chandeleur Islands, LA. Multivariate analysis suggested benthic epifauna communities differed significantly between study location and among habitat types, with a significant interaction between the two fixed factors. Differences in mangrove and marsh community composition were greater at the Chandeleurs than at Horn Island, perhaps because of the distinct mangrove/marsh ecotone and the high density and age of mangroves there. Infaunal abundances were significantly higher at Horn Island, with tanaids acting as the main driver of differences between study locations. We predict that if black mangroves continue to increase in abundance in the northern GOM, estuarine faunal community composition could shift substantially because black mangroves typically colonize shorelines at higher elevations than smooth cordgrass, resulting in habitats of differing complexity and flooding duration.  相似文献   

15.
In Grand Bay National Estuarine Research Reserve (Grand Bay NERR), Mississippi, we used quantitative drop sampling in three common shallow estuarine habitats—low profile oyster reef (oyster), vegetated marsh edge (VME), and nonvegetated bottom (NVB)—to address the dearth in research comparing nekton utilization of oyster relative to adjacent habitats. The three habitats were sampled at two distinct marsh complexes within Grand Bay NERR. We collected a total of 633 individual fishes representing 41 taxa in 22 families. The most diverse fish family was Gobiidae (seven species) followed by Blennidae and Poeciliidae (three species each). We collected a total of 2,734 invertebrates representing 24 taxa in 11 families. The most diverse invertebrate family was Xanthidae (six species) followed by Palaemonidae (five species). We used ordination techniques to examine variation in species relative abundance among habitats, seasons, and sampling areas, and to identify environmental gradients correlated with species relative abundances. Our resulted indicated that oyster provided a similarly complex and important function as the adjacent VME. We documented three basic trends related to the importance of oyster and VME habitats: 1) Oyster and VME provide habitat for significantly more species relative to NVB, 2) Oyster and VME provide habitat for rare species, and 3) Several species collected across multiple habitats occurred at higher abundances in oyster or VME habitat. We also found that salinity, temperature, and depth were associated with seasonal and spatial shifts in nekton communities. Lastly, we found that the relative location of the two marsh complexes we studied within the context of the whole estuary may also explain some of the temporal and spatial differences in communities. We conclude that oyster habitat supported a temporally diverse and spatially distinct nekton community and deserves further attention in research and estuarine conservation efforts.  相似文献   

16.
Estuaries contain mosaic habitats which support fish across different life stages. Artificial reefs represent a form of habitat enhancement which can provide additional structure for fishes and improve fishing opportunities, but the role of artificial reefs within the broader estuarine seascape has not been extensively studied. We used a VEMCO Positioning System (VPS) to monitor the fine-scale movements of yellowfin bream (Acanthopagrus australis, referred to as Bream), an estuarine predator and important recreational species. Fish were implanted with acoustic tags with accelerometer sensors (to measure relative fish activity), and their movements monitored on an artificial reef and adjacent habitats. Elevated activity patterns during crepuscular periods indicated that foraging was likely occurring over a large seagrass bed adjacent to the artificial reef system. Alternatively, lower activity was observed when fish were on the artificial reef, which may reflect the role of this habitat as a refuge, or that alternative foraging strategies were being employed. All fish exhibited a high degree of fidelity to the artificial reef on which they were tagged, and there was minimal movement among other reef groups within the array. There was extensive overlap in space use contours for smaller fish on the seagrass edge, but no overlap for larger fish that also tended to forage further afield. These findings have implications for the way in which artificial reefs support fish production, especially the importance of connectivity with other key habitats within the estuarine seascape.  相似文献   

17.
The eastern oyster, Crassostrea virginica, plays an essential functional role in many estuarine ecosystems on the east and Gulf coasts of the USA. Oysters form biogenic reefs but also live on alternative intertidal substrates such as artificial surfaces and mangrove prop roots. The hypothesis tested in this study was that non-reef-dwelling oysters (i.e., those inhabiting mangrove, seawall, or restoration substrates) were similar to their reef-dwelling counterparts based upon a suite of biological parameters. The study was carried out at six sites in three zones in Tampa Bay on the west coast of Florida using monthly samples collected from October 2008–September 2009. The timing of gametogenesis and spawning, fecundity, and juvenile recruitment were the same for oysters in all four habitats. Oyster size (measured as shell height), density, and Perkinsus marinus infection intensity and prevalence varied among habitats. This study indicates that oysters on mangroves, seawalls, and oyster restoration substrates contribute larvae, habitats for other species, and likely other ecosystem benefits similar to those of intertidal oyster reefs in Tampa Bay. Oysters from alternative intertidal substrates should be included in any system wide studies of oyster abundance, clearance rates, and the provision of alternate habitats, especially in highly developed estuaries.  相似文献   

18.
Estuarine nursery areas are critical for successful recruitment of tautog (Tautoga onitis), yet they have not been studied over most of this species' range. Distribution, abundance and habitat characteristics of young-of-the-year (YOY, age 0) and age 1+juvenile tautog were evaluated during 1988–1992 in the Narragansett Bay estuary, Rhode Island, using a 16-station, beach-seine survey. Estuary-wide abundance was similar among years. Greatest numbers of juveniles were collected at northern Narragansett Bay stations between July and September. Juvenile abundances varied with density of macroalgal and eelgrass cover; abundances ranged from 0.03 fish per 100 m2 to 8.1 fish per 100 m2. Although juveniles use eelgrass, macroalgae is the dominant vegetative cover in Narragansett Bay. Macroalgal habitats play a previously unrealized, important role and contribute to successful recruitment of juvenile tautog in Narragansett Bay. Juvenile abundances did not vary with sediment type or salinity, but were correlated with surface water temperature. Fish collected in June were age 1+ juveniles from the previous year-class (50–167 mm TL) and these declined in number after July or August. The appearance of YOY (25–30 mm TL) in July and August was coincident with the period of their greatest abundances. A precipitous decline in abundance occurred by October because of the individual or combined effects of mortality and movement to alternative habitats. Based on juvenile abundance, a previously unidentified spawning area was noted in Mount Hope Bay, a smaller embayment attached to the northeastern portion of Narragansett Bay. In August 1991, Hurricane Bob disrupted juvenile sise distribution and abundance, resulting in reduced numbers of YOY collected after the storm and few 1+ juveniles in 1992.  相似文献   

19.
Predation is likely the primary source of mortality for juvenile penaeid shrimp and, therefore, a key factor driving their population dynamics. We sampled juvenile penaeids and their potential predators in a salt marsh from July to August 2012 to examine the impact of these predators and possible size-selective predation on the shrimp population. We quantified predator impact using the frequency of occurrence (FO) index and a relative predation index (RPI) that accounts for predator abundance and the number of shrimp consumed per individual predator. Size selectivity was assessed by comparing the size distribution of shrimp in the study area to the size distribution of shrimp removed from predator stomachs. Two penaeid species, white shrimp Litopenaeus setiferus and brown shrimp Farfantepenaeus aztecus, were collected, and most (86%) were juvenile white shrimp ≤?12 mm carapace length. Spotted seatrout Cynoscion nebulosus, which consumed relatively large shrimp, was the most important predator based on the FO index. Bay whiff Citharichthys spilopterus, which ate the smallest shrimp, was the most important predator based on the RPI. The size distribution of shrimp removed from predator stomachs differed from those collected in the study area; the smallest shrimp were disproportionally more abundant in predator stomachs. Using the RPI, we identified some potentially important predators (e.g., bay whiff) that may impact shrimp populations by consuming the smallest shrimp in estuarine nurseries. Our approach could be useful for examining predator impacts on other populations of juvenile penaeids and more generally for any prey consumed by fish predators.  相似文献   

20.
We examined the community structure of fish and selected decapod crustaceans and tested for within estuary differences among habitats at depths of 0.6 m to 7.9 m, in Great Bay and Little Egg Harbor in southern New Jersey. Several habitat types were identified a priori (e.g., eelgrass, sea lettuce, and marsh creeks) and sampled by trawl (4.9 m headrope, 19-mm mesh wings, 6.3-mm mesh liner), monthly, from June 1988 through October 1989. Repetitive (n=4) 2-min trawl tows were taken at each habitat type from 13 locations. The fishes and decapod crustaceans collected were typical of other Mid-Atlantic Bight estuaries but varied greatly inseasonal abundance and species. In the years sampled, bay anchovy (Anchoa mitchilli) was the dominant species (50.5% of the total number), followed by spot (Leiostomus xanthurus) (10.7%), Atlantic silverside (Menidia menidia) (9.7%), fourspine stickleback (Apeltes quadracus) (5.9%), blue crab (Callinectes sapidus) (4.6%), and northern pipefish (Syngnathus fuscus) (4.2%). The biota were examined by multi-dimensional scaling (MDS) for habitat associations and “best abiotic predictor” of community structure. Percent silt combined with salinity was the most important abiotic determinant of the faunal distributions among habitats. Temperature was a major factor influencing seasonal occurrence of the biota but had less effect on habitat comparisons. The analysis confirmed the distinct nature of the assemblages associated with the habitats, that is, eelgrass, upper estuary subtidal creeks, channels, and open bay areas. Several species were associated with specific habitats: for example,A. quadracus andS. fuscus with eelgrass, clupeids with subtidal creek stations,L. xanthurus with marsh channels, and black sea bass (Centropristis striata) and spotted hake (Urophycis regia) with sponge-peat habitat. Species richness appeared to be positively related to habitat structural heterogeneity. Thus, the best predictors for these estuarine fish and decapod crustacean assemblages were seasonal temperature, percent silt and salinity combined, and the physical heterogeneity of the habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号