首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
河流阶地形成过程及其驱动机制再研究   总被引:4,自引:3,他引:1  
许刘兵  周尚哲 《地理科学》2007,27(5):672-677
河流阶地的形成是在内因(河流内部动力变化)和外因(低频和高频气候变化、构造运动、基准面变化)共同作用下的结果。受单一气候变化制约的河流阶地发育模式可以解释由于沉积物通量和径流量变化引起的河流堆积-侵蚀过程,但它难以解释形成多级阶地的逐步(或间歇性)下切过程。多级阶地的形成可能同时受到构造抬升和周期性气候变化的制约。由于下切过程的滞后效应,侵蚀和冰川均衡抬升、河谷的侧向侵蚀过程等影响,山地的构造抬升与河谷的下切之间并非一种简单的线性关系,应当慎用河谷的下切速率来代表山地的抬升速率。  相似文献   

2.
The Nysa K odzka river drainage basin in the Sudeten Mts., SW Poland, preserves a complex late Cainozoic succession that includes eight fluvial series or terraces and deposits from two glacial episodes as well as local volcanic rocks, slope deposits and loess. Fluvial sedimentation took place during the Late Pliocene and from the early Middle Pleistocene (Cromerian), with a long erosion phase (gap) during the Early Pleistocene. Fluvial series are dated to the Late Pliocene, Cromerian, Holsteinian, late Saalian/Eemian, Weichselian, and the Holocene. Glacial deposits represent the early Elsterian and early Saalian stages. Almost all these stratigraphic units have been observed in all geomorphic zones of the river: the mountainous K odzko Basin, the Bardo Mts. (Bardo gorge) and in the mountain foreland. The main phase of tectonic uplift and strong erosion was during the Early Pleistocene. Minor uplift is documented also during the post-early Saalian and probably the post-Elsterian. The post-early Saalian and post-Elstrian uplift phases are probably due to glacio-isostatic rebound. The Quaternary terrace sequence was formed due to base-level changes, epigenetic erosion after glaciations and neotectonic movements. The Cromerian fluvial deposits/terraces do not indicate tectonic influence at all. All other Quaternary terraces indicate clear divergence, and the post-early Saalian terraces also show fault scarps. The fluvial pattern remained stable, once formed during the Pliocene, with only minor changes along the uplifted block along the Bardo gorge, inferring an antecedent origin for the Bardo gorge. Only during the post-glacial times, have epigenetic incisions slightly modified the valley.  相似文献   

3.
The Tyrrhenian coastal sector of North Calabria, stretching between Torre S. Nicola and the Lao river, belongs to the inner extensional sector of the Neogene Apennines thrust belt. It is characterised by a stair of Quaternary marine and fluvial terraces representing the geomorphic response to the interaction between the Quaternary sea level fluctuations and the regional trend of tectonic uplift experienced by the margins of the Tyrrhenian back-arc basin. Since the last century, several authors studied the North Calabria coasts, where the flight of terraces preserves significant marine and continental successions, and proposed several paleo-geomorphological and tectonic reconstructions. In this paper we present a new stratigraphic and morphostructural setting of the North Calabria coasts based on both chronostratigraphical constraints obtained from marine deposits and detailed geomorphological analysis. A ten order stair of marine terraces, stepping between 240 and 0 m a.s.l., was recognized and time-constrained by the age of the Fornaci S. Nicola marine succession which was ascribed by integrated paleoecological, biostratigraphical and paleomagentic analyses to the early Middle Pleistocene (MIS 19–15). In particular, the 240, 200 and 160 m a.s.l. high strandlines were ascribed to the Early Pleistocene and the ones between 100 and 15 m a.s.l. to the Middle Pleistocene. The total amount of the vertical motion experienced by the studied area was estimated, and evaluation of the average rates of uplift for the Middle and Late Pleistocene times were also given. Considering the elevation a.s.l. of the oldest terraces, a tectonic uplift of at least 240 m was calculated for the North Calabria coasts since the Early Pleistocene times, 100 m of which gained from the beginning of the Middle Pleistocene. On the other hand, the 8-m high Late Pleistocene strandlines display a negligible vertical displacement affecting the area during the last 130 ka. The entire staircase of terraces preserves a record of slowing down in the rate of uplift, which attained an average value of 0.15 mm/year during the Middle Pleistocene.  相似文献   

4.
The generation and degradation of marine terraces   总被引:2,自引:0,他引:2  
Marine terraces are ephemeral planar landforms. While tectonic and climatic forcings responsible for the generation of existing marine terraces have operated for at least 1 Myr, terraces have been completely removed by erosion above a given altitude (and hence above a given age). Above this altitude, the landscape has forgotten that it was once terraced. We ask what controls this characteristic time-scale, which we term the ‘forget time’, in a landscape. We approach the problem with simple scaling arguments, and 1-D numerical models of landscape evolution. Using a simple cliff erosion model with a realistic sea-level history, rock uplift and a cliff retreat rule, we find that the most important means of terrace removal is through the deeper transgression of a subsequent sea cliff into the landmass. The sequence of preserved terraces depends upon the history of sea cliff incursion into the landmass. The extent of sea cliff incursion depends on the duration of the sea-level highstand, the far-field wave energy input and the degree to which bathymetric drag dissipates wave energy. This portion of the marine terrace survival problem is an example of a common problem in geomorphology, in which the record of past tectonic or climatic events is rendered incomplete by the potential for younger events to wipe the topographic slate clean. While sea cliffs decay through time, their form can still be recognized many hundreds of thousands of years after formation. This reflects the diffusive nature of their decay: early rapid evolution and lowering of maximum slopes yields to slower rates through time. Incision by streams, on the other hand, is rapid, as the streams respond to base-level history driven by sea-level changes. The rate of incision reflects the local climate conditions, and is limited by the rate of base-level fall. The principal means of vanquishing a marine terrace is by backwearing of slopes adjacent to these incising streams. The forget time should be proportional to the spacing between major incising streams and to the angle of hillslope stability, and should be inversely proportional to the rate of channel incision. This yields an overestimate of the forget time, as the terraced interfluves are reduced as well by the headward incision of tributary streams. The resulting landscape may be viewed as a terraced fringe separating the sea from the fully channellized landscape. Over time-scales corresponding to many glacial–interglacial sea-level oscillations, this fringe can achieve a nearly steady width. The rate of generation of new terraced landscape, reflecting the uplift rate pattern, is then balanced by the rate at which the terraces are erased beyond recognition by channel and hillslope processes. The width of this fringe should depend upon the precipitation, and upon the distance to the nearest drainage divide, both of which limit the maximum power available to drive channel incision.  相似文献   

5.
Stream-terrace genesis: implications for soil development   总被引:3,自引:0,他引:3  
Genesis of three distinct types of stream terraces can be understood through application of the concepts of tectonically induced downcutting, base level of erosion, complex response, threshold of critical power, diachronous and synchronous response times, and static and dynamic equilibrium. Climatic and tectonic stream terraces are major terraces below which flights of minor complex-response degradation terraces can form.These three types of terraces can be summarized by describing a downcutting-aggradation-renewed downcutting sequence for streams with gravell bedload. By tectonically induced downcutting, streams degrade to achieve and maintain a dynamic equilibrium longitudinal profile at the base level of erosion. Lateral erosion bevels bedrock beneath active channels to create major straths that are the fundamental tectonic stream-terrace landform. Aggradation events record brief reversals of long-term tectonically induced downcutting because they raise active channels. They may be considered as major (the result of climatic perturbations) or minor (the result of complex-response model types of perturbations). Climatically controlled aggradation followed by degradation leaves an aggradation surface; this type of fill-terrace tread is the fundamental climatic stream-terrace landform. Aggradation surfaces may be buried by subsequent episodes of deposition unless intervening tectonically induced downcutting is sufficient for younger aggradation surfaces to form below older surfaces. Raising of the active channel by either tectonic uplift or by climatically induced aggradation provides the vertical space for degradation terraces to form; first in alluvial fill and then in underlying bedrock along tectonically active streams. These are complex-response terraces because they result from interactions of dependent variables within a given fluvial system. Pauses in degradation to a new base level of erosion, and/or minor episodes of backfilling, lead to formation of complex-response fill-cut and strath, or of fill terraces. Fill-cut terraces are formed in alluvium; they are complex-response terraces because they are higher than the base level of erosion. Good exposures and dating are needed to distinguish static equilibrium complex-response minor strath terraces from dynamic equilibrium tectonic (major) straths. Strath terraces may be regarded as complex-response terraces where degradation rates between times terrace-tread formation exceed the long-term uplift rate for the reach based on ages and positions of tectonic terraces.Late Quaternary global climatic changes control aggradation events and even the times of cutting of major (tectonic) straths, because the base level of erosion can not be attained during times of climatically driven aggradation-degradation events.Most terrace soils form on treads of climatic and complex-response terraces. Aggradation surfaces may provide an ideal flight of terraces on which to study a soils chronosequence. Each aggradation event is recorded by a single relict soil where tectonically induced downcutting is sufficient to provide clear altitudinal separation of the terrace treads. Multiple paleosols are typical of tectonically stable regions where younger aggradation events spread alluvium over treads of older climatic terraces. Pedons on a climatic terrace in a small fluvial system commonly are roughly synchronous - variations of soil properties that can be attributed to temporal differences will be minor compared to altitudinally controlled climatic factors. Climatic terraces of adjacent watersheds also should be roughly synchronous (correlatable) - variations of soil properties that can be attributed to temporal differences will be minor compared to lithologic and climatic factors between different watersheds. Such generalizations may not apply to basins with sufficient relief that geomorphic responses to climatic changes occur at different and overlapping times, and to large rivers whose widely separated reaches are characterized by different response times to climatic perturbations. Soils on climatic terraces of distant watershedswill not be synchronous if their respective aggradation events occur during full-glacial times and interglacial times. Soils on some complex-response terraces may be diachronous within a given fluvial system, and typically are diachronous between watersheds.  相似文献   

6.
Staircases of strath terraces and strongly incised valleys are the most typical landscape features of Portuguese rivers. This paper examines the incision achieved during the late Cenozoic in an area crossed by the Tejo river between the border with Spain and the small town of Gavião. In the more upstream reach of this area, the Tejo crosses the Ródão tectonic depression, where four levels of terraces are distinguished. During the late Cenozoic fluvial incision stage, the Ródão depression underwent less uplift than the adjacent areas along the river. This is reflected by the greater thicknesses and spatial extent of the terraces; terrace genesis was promoted by impoundment of alluvium behind a quartzitic ridge and the local presence of a soft substratum. Outside this tectonic depression, the Tejo has a narrow valley incised in the Hercynian basement, with some straight reaches that probably correspond to NE–SW and NNW–SSE faults, the terraces being nearly absent. Geomorphological evidence of tectonic displacements affecting the Ródão dissected terrace remnants is described. Geochronological dating of the two younger and lower terrace levels of this depression suggests a time-averaged incision rate for the Tejo in the Ródão area, of ca. 1.0 m/ka over the last 60 thousand years. A clear discrepancy exists between this rate and the 0.1 m/ka estimated for the longer period since the end of the Pliocene. Although episodes of valley incision may be conditioned by climate and base-level changes, they may also have been controlled by local factors such as movement of small fault-bounded blocks, lithology and structure. Regional crustal uplift is considered to be the main control of the episodes of valley incision identified for this large, long-lived river. A model is proposed in which successive regional uplift events—tectonic phases—essentially determined the long periods of rapid river downcutting that were punctuated by short periods of lateral erosion and later by some aggradation, producing strath terraces.  相似文献   

7.
海岸阶地的形成通常是海准面变动、地壳变动或两者共同作用之结果.研究海阶不仅可印证推论古气候、往昔海准面变化及地壳变动状况,更可藉以了解各区域间变动的差异,全盘了解大地构造的意义,而且小规模的海阶变动,时常与地震活动伴生,因此,研究海阶更可作为判读地震周期的依据之一,所以,世界各地位于地壳活动带的国家对于海阶的型态与演育...  相似文献   

8.
海岸阶地的形成通常是海准面变动、地壳变动或两者共同作用之结果.研究海阶不仅可印证推论古气候、往昔海准面变化及地壳变动状况,更可藉以了解各区域间变动的差异,全盘了解大地构造的意义,而且小规模的海阶变动,时常与地震活动伴生,因此,研究海阶更可作为判读地震周期的依据之一,所以,世界各地位于地壳活动带的国家对于海阶的型态与演育过程均作详细的调查及研究.本研究以淡水河以南至大安溪以北之海阶作为研究范围,发现台湾西北部位于观音山北部沿海、新竹山子顶沿海、客雅溪口南岸、后龙溪口南岸等4个地区,都有零星的海阶分布.经过阶地分布、地形特征与阶序对比,并利用世界海阶对比基图求出该地区的地壳隆升率与海阶可能形成的年代,藉以了解各区域间变动的差异.台湾西北部海岸地区的海阶大致上可划分为高位及低位2群阶:也,高位海阶分布的高度在15~275m之间,阶面覆盖着红壤层,为晚更新世时所造成;低位海阶分布的范围与高度较小,在海滩与高位阶地末端阶崖之间,沿着海岸成带状分布,阶面无红壤掩覆,海拔大多在10m以下.低位海阶构成的物质多以砾石及砂为主,属全新世海阶,即第四纪最后一次冰期结束后,近1万年以来全球高海水位时期所形成.利用海阶对比基图与已有的定年数据,辅以地形地貌及堆积物特征比较,获得各段阶地之平均隆升率,观音山北部沿海、客雅溪口南岸、后龙溪口南岸3个地区,经过比对,分别是2.1mm/a、2.2mm/a、2.15mm/a,数值相近,显示该区之地盘隆升率及海准面变动状况大致相同;仅新竹山子顶沿海地盘隆升率较小,为1.4mm/a.此表示,台湾岛的海阶变化不仅受到海准面变动的影响,尚受到区域性地壳隆升的控制.  相似文献   

9.
海岸阶地的形成是海平面变动、地壳变动或两者共同作用之结果.研究海阶不仅可印证推论古气候、往昔海平面变化及地壳变动状况,更可藉以了解各区域间变动的差异,全盘了解大地构造的意义,同时,小规模的海阶变动,常与地震活动伴生,研究海阶可作为判读地震周期的依据之一,所以,世界各地位于地壳活动带的国家对于海阶的形态与演育过程均作详细的调查及研究.位于台湾海峡北部两侧的台湾西北部以及马祖、金门等海岸地区,都有海阶的分布.透过阶地分布、地形特征与阶序对比,同时,利用世界海阶对比基图找出该地区的地壳隆升率与海阶可能形成的年代,并藉以了解各区域间变动的差异.前述地区的海阶大致上可分成高位与低位2群,高位海阶分布的高度在15~275m之间,上覆红壤层,为晚更新世时期产物;低位海阶分布的范围较小,高度较矮,大部分分布于海滩与高位阶地末端阶崖问,沿着海岸呈带状分布,阶面大多无红壤层覆盖,海拔在10m以下.组成的物质多以砾石及砂为主,属于全新世时期的产物,即近1万年以来全球高海水位时期(第四纪最后一次冰期结束后)所形成.利用海阶对比基图与已有的定年数据,辅以地形地貌及堆积物特征比较,获得各段阶地之平均隆升率,台湾西北部之观音山北部沿海、客雅溪口南岸、后龙溪口南岸3个地区,分别是2.1mm/a、2.2mm/a、2.15mm/a,数值相近,显示该区之地盘隆升率及海平面变动状况大致相同;仅新竹山子顶沿海地盘隆升率较小,为1.4mm/a.此表示,台湾岛的海阶变化不仅受到海平面变动的影响,尚受到区域性地壳隆升的控制.马祖与金门地区的隆升率则分别为1.6mm/a、1.3mm/a,由于该区仅受新华夏断裂构造的控制,因此,其活动的幅度相对而言较台湾为小.  相似文献   

10.
Distinguishing tectonic from climatic controls on range-front sedimentation   总被引:3,自引:0,他引:3  
Geologic and chronometric studies of alluvial fan sequences in south-central Australia provide insights into the roles of tectonics and climate in continental landscape evolution. The most voluminous alluvial fans in the Flinders Ranges region have developed adjacent to catchments uplifted by Plio-Quaternary reverse faults, implying that young tectonic activity has exerted a first-order control on long-term sediment accumulation rates along the range front. However, optically stimulated luminescence (OSL) dating of alluvial fan sequences indicates that late Quaternary facies changes and intervals of sediment aggradation and dissection are not directly correlated with individual faulting events. Fan sequences record a transition from debris flow deposition and soil formation to clast-supported conglomeritic sedimentation by ∼30 ka. This transition is interpreted to reflect a landscape response to increasing climatic aridity, coupled with large flood events that episodically stripped previously weathered regolith from the landscape. Late Pleistocene to Holocene cycles of fan incision and aggradation post-date the youngest-dated surface ruptures and are interpreted to reflect changes in the frequency and magnitude of large floods. These datasets indicate that tectonic activity controlled long-term sediment supply but climate governed the spatial and temporal patterns of range-front sedimentation. Mild intraplate tectonism appears to have influenced Plio-Quaternary sedimentation patterns across much of the southern Australian continent, including the geometry and extent of alluvial fans and sea-level incursions.  相似文献   

11.
The Rhine–Meuse system in the west‐central Netherlands is a continental‐scale fluvial system bordered by an extremely wide continental shelf. Consequently, late Quaternary eustatic sea‐level changes have resulted in dramatic shoreline displacements, by as much as 800 km. In addition, changes in climate have been severe, given the latitudinal and palaeogeographic setting of the Rhine–Meuse system. We investigated the relative importance of these allogenic controls on fluvial aggradation and incision during the last two glacial–interglacial cycles. We used optical dating of quartz from ~30 samples in a cross‐section perpendicular to the palaeoflow direction, allowing us to correlate periods of aggradation and incision with independent records of sea‐level change, climate change and glacio‐isostatic crustal movements. We found the long‐term aggradation rate to be ~8 cm kyr?1, a value similar to previous estimates of tectonic subsidence rates in the study area. Several excursions from this long‐term aggradation trend could be identified for the last glacial–interglacial cycle. Dry climatic conditions with relatively high sediment supply induced aggradation during oxygen‐isotope stages (OIS) 4 and 3. Build‐up of a glacio‐isostatic forebulge during OIS 2 is a likely cause of incision around the Last Glacial Maximum, followed by an aggradation phase during forebulge collapse. Sea‐level highstands during OIS 5 have likely resulted in the aggradation of coastal prisms, but only minor, basal estuarine deposits have been preserved because these coastal prisms were prone to erosion during ensuing sea‐level falls. Overall, the sedimentary record is dominated by strata formed during time intervals when the study area was completely unaffected by sea‐level control, and our evidence shows that the falling‐stage systems tract has the highest preservation potential. Our study highlights the importance of considering the complex interplay of both upstream and downstream controls to obtain a comprehensive understanding of the evolution of basin‐margin successions.  相似文献   

12.
The geomorphological evolution of the Northeastern Tibetan Plateau (NETP) could provide valuable information for reconstructing the tectonic movements of the region. And the considerable uplift and climatic changes at here, provide an opportunity for studying the impact of tectonic and monsoon climate on fluvial morphological development and sedimentary architecture of fluvial deposits. The development of peneplain-like surface and related landscape transition from basin filling to incision indicate an intense uplift event with morphological significance at around 10–17 Ma in the NETP. After that, incision into the peneplain was not continuous but a staircase of terraces, developed as a result of climatic influences. In spite of the generally persisting uplift of the whole region, the neighbouring tectonic blocks had different uplift rates, leading to a complicated fluvial response with accumulation terraces alternating with erosion terraces at a small spatial and temporal scale. The change in fluvial activity as a response to climatic impact is reflected in the general sedimentary sequence on the terraces from high-energy (braided) channel deposits (at full glacial) to lower-energy deposits of small channels (towards the end of the glacial), mostly separated by a rather sharp boundary from overlying flood-loams (at the glacial-interglacial transition) and overall soil formation (interglacial). Pronounced incision took place at the subsequent warm-cold transitions. In addition, it is hypothesized that in some strongly uplifted blocks energy thresholds could be crossed to allow terrace formation as a response to small climatic fluctuations (103–104 year timescale). Although studies of morpho-tectonic and geomorphological evolution of the NETP, improve understanding on the impacts of tectonic motions and monsoonal climate on fluvial processes, a number of aspects, such as the distribution and correlation of peneplain and the related morphological features, the extent and intensity of tectonic movements influencing the crossing of climatic thresholds, leading to terrace development, need to be studied further.  相似文献   

13.
Variations in the coupling of sediment transfer between different parts of a fluvial catchment, e.g., hillslope to axial stream, can hamper understanding but are an integral part of the geomorphological record. Depositional environments respond to a combination of land use, climate, storms (floods), and autogenic conditioning. The distribution of sediment in the upland landscapes of NW England is out of equilibrium with contemporary climate and geomorphological processes; more a function of peri- and paraglacial mobilisation of glacigenic deposits. Soil and vegetation development after deglaciation have interrupted any progression toward sediment exhaustion with sediment release controlled largely by extrinsic perturbation, with late Holocene anthropogenic activity, climate and extreme hydrological events the likely candidates. This paper presents a new radiocarbon-dated Holocene geomorphological succession for the River Hodder (NW England), alongside evaluating new palaeoecological and geoarchaeological data to discern the impacts of human activity. These data show a late Holocene expansion in human occupation and use of the landscape since the Iron Age (700–0 cal. B.C.), with more substantial changes in the character and intensity of upland land use in the last 1300 years. The geomorphological responses in the uplands were the onset of considerable and widespread hillslope erosion (gullying) and associated alluvial fan development. Interpretation of the regional radiocarbon chronology limits gullying to four, more extensive and aggressive phases after 500 cal. B.C. The downstream alluvial system has responded with considerable valley floor deposition and lateral channel migration that augmented sediment supply by remobilising the existing floodplain terraces and led to the aggradation of a series of inset alluvial terraces. The timing of these changes between states of aggradation and incision in alluvial reaches reflects the increased connectivity between the hillslope and alluvial systems. Aspects of both the regional climate and land use histories are conducive to increasing discharge and sediment flux, but the region wide lowering of erosion thresholds appears a key driver conditioning these sediment-rich conditions and producing a landscape that was more susceptible to erosion under lower magnitude flows.  相似文献   

14.
A vast bajada consisting of coalescing low-gradient (< 0.3°) alluvial fans exceeding 100 km in length formed along the southwestern margin of the Oman Mountains. It comprises an old fan sequence of inferred Miocene to Pliocene age termed Barzaman Formation, diagenetically highly altered to dolomitic clays, and a thin veneer of weakly cemented Quaternary gravels. A combination of remote sensing, lithological analyses and luminescence dating is used to interpret the complex aggradation history of the Quaternary alluvial fans from the interior of Oman in the context of independent regional climate records. From satellite imagery and clast analysis four fans can be discerned in the study area. While two early periods of fan formation are tentatively correlated to the Miocene–Pliocene and the Early Pleistocene, luminescence dating allows the distinction of five phases of fan aggradation during the Middle–Late Pleistocene. These phases are correlated with pluvial periods from Marine Isotope Stage (MIS) 11 through 3, when southern Arabia was affected by monsoonal precipitation. It is concluded that the aggradation of the alluvial fans was triggered by the interplay of increased sediment production during arid periods and high rainfall with enhanced erosion of hillslopes and transport rates during strong monsoon phases. However, the lack of fine-grained sediments, bioturbation and organic material implies that although the Quaternary fans are sourced by monsoonal rains they formed in a semi-arid environment. Thus, it appears that, in contrast to the Oman Mountains, the interior was not directly affected by monsoonal precipitation.  相似文献   

15.
The Andean Plateau of NW Argentina is a prominent example of a high‐elevation orogenic plateau characterized by internal drainage, arid to hyper‐arid climatic conditions and a compressional basin‐and‐range morphology comprising thick sedimentary basins. However, the development of the plateau as a geomorphic entity is not well understood. Enhanced orographic rainout along the eastern, windward plateau flank causes reduced fluvial run‐off and thus subdued surface‐process rates in the arid hinterland. Despite this, many Puna basins document a complex history of fluvial processes that have transformed the landscape from aggrading basins with coalescing alluvial fans to the formation of multiple fluvial terraces that are now abandoned. Here, we present data from the San Antonio de los Cobres (SAC) area, a sub‐catchment of the Salinas Grandes Basin located on the eastern Puna Plateau bordering the externally drained Eastern Cordillera. Our data include: (a) new radiometric U‐Pb zircon data from intercalated volcanic ash layers and detrital zircons from sedimentary key horizons; (b) sedimentary and geochemical provenance indicators; (c) river profile analysis; and (d) palaeo‐landscape reconstruction to assess aggradation, incision and basin connectivity. Our results suggest that the eastern Puna margin evolved from a structurally controlled intermontane basin during the Middle Miocene, similar to intermontane basins in the Mio‐Pliocene Eastern Cordillera and the broken Andean foreland. Our refined basin stratigraphy implies that sedimentation continued during the Late Mio‐Pliocene and the Quaternary, after which the SAC area was subjected to basin incision and excavation of the sedimentary fill. Because this incision is unrelated to baselevel changes and tectonic processes, and is similar in timing to the onset of basin fill and excavation cycles of intermontane basins in the adjacent Eastern Cordillera, we suspect a regional climatic driver, triggered by the Mid‐Pleistocene Climate Transition, caused the present‐day morphology. Our observations suggest that lateral orogenic growth, aridification of orogenic interiors, and protracted plateau sedimentation are all part of a complex process chain necessary to establish and maintain geomorphic characteristics of orogenic plateaus in tectonically active mountain belts.  相似文献   

16.
黔中乌当盆地阶地沉积特征及其对盆地演化的指示   总被引:1,自引:0,他引:1  
蒋玺  陈文奇  宁凡  郑军  罗维均  周涌 《地理研究》2020,39(6):1242-1254
黔中乌当盆地是贵州省山间盆地的典型代表,四级河流阶地清晰地记录了新构造运动中区域地壳抬升和盆地演化。通过阶地沉积物砾组统计、粒度分析、光释光(OSL)测年,探讨盆地的发育和演化。结果显示,阶地砾石排列指示盆地水系古流向与现代河流基本一致,砾石磨圆度变化大,分选较差,岩性继承了区域地层。砾石组合特征反映了构造抬升期盆地内强烈的冲刷剥蚀。漫滩沉积物粒度表明盆地在稳定阶段河流水动力整体呈增大趋势。T4和T3发育阶段区域以冲刷剥蚀为主并塑造了盆地雏形。T2阶地沉积特征及测年结果(177.4 ka~87.6 ka)表明中更新世末期持续数万年的沉积夷平作用使盆地基本成型。T1阶地形成时代约25ka,指示了黔中地区最近一次构造抬升和盆地的最终定型。  相似文献   

17.
距今二亿年前的三迭纪晚期一系列之大地构造运动,形成福建沿海的平潭-东山褶皱带,以及长樂-诏安断裂带,又因为构造运动以及岩浆活动的影响,在褶皱带与断裂带的东缘形成一系列的岛屿,马祖列岛的形成,与中国东南沿海的造山运动有密切关系,皆受到影响而产生变动。马祖地区的海阶,共有9 段阶地,各段阶地的海拔高度依序为0~10 m、20~38 m、40~56 m、58~78 m、80~97 m、100~128 m、142~160 m、172~182 m、238~248 m。依据晚更新世海阶序列与隆升率关系对比基图迭合法的推估,各段阶地生成年代分别为6 ka BP、46 ka BP、55 ka BP、76 kaBP、79 ka BP、94 ka BP、105 ka BP、119 ka BP、175 ka BP,除了第一级阶地为全新世时期所形成,其余皆为更新世时期的产物,比对马祖列岛海阶的高度与间距,测得整个地区的基盘平均隆升速率为1.6 mm/a。  相似文献   

18.
The landscapes of western Jameson Land bordering Hall Bredning fjord comprise upper river basins, glacial landscapes, lower river basins and a near‐shore zone. The upper river basins are incised into bedrock and display no cover of young sediments whilst the glacial landscapes, located closer to the coast, are dominated by Pleistocene deposits and an irregular topography with hills and ridges. The lower river basins, dissecting the glacial landscapes, are connected to the upper river basins and contain well‐defined Holocene delta terraces. The near‐shore zone, which includes the present coast, displays a few raised shorelines. Geomorphological observations combined with stratigraphic work and 14C dates provide a chronological framework for the development of landscape and shoreline, as presented by a four‐stage reconstruction. The first stage covers the deglaciation of western Jameson Land at the Weichselian‐Holocene transition after a collapse of the main fjord glacier in Hall Bredning. The sea inundated the low‐lying areas on Jameson Land forming small side‐entry fjord basins that possibly follow the track of older valleys. This was followed by a second stage, the paraglacial period, when large meltwater production and sediment transport resulted in a fast infilling of the side‐entry fjord basins by deltas. These are now exposed in terraces in the lower river basins at 70–80 m a.s.l. During a third stage, the relaxation period, fluvial activity decreased and the land surface was increasingly occupied by a cover of tundra vegetation. A glacio‐isostatic rebound resulted in a relative sea level fall and fluvial incision. During stages two and three the coast was exposed to shallow marine processes that aided the alignment of the coast. Stages one to three presumably lasted for less than 2000 years. During stage four, the stable period, lasting for several thousand years till the present, there were minor adjustments of shoreline and landscape. The four‐step reconstruction describes the sedimentary response of a lowland fjord margin to dramatic changes in climate and sea level. The distribution of erosion and sedimentation during this development was mainly controlled by topography. The reconstruction of the latest environmental development of Jameson Land puts new light on Jameson Land's long and complex Quaternary stratigraphic record. The reconstruction may also be used as a model for the interpretation of deposits in similar areas elsewhere.  相似文献   

19.
对贵州清水江上游马寨、翁东、三江、施洞沿江4个剖面的阶地特征、年代学结果进行了综合分析。发现以凯里断层为界,上游地区的马寨和翁东2个剖面的T2阶地形成时代约为51~57 ka B.P.,T1阶地的形成时代约为25 ka B.P.,下游地区的三江和施洞2个剖面的T2阶地形成时代约为122~102 ka B.P.,T1阶地的形成时代约为78 ka B.P.。选取各剖面的T2阶地的基座高度来计算了河流下切速率,发现上游地区2个剖面(马寨、翁东)的河流下切速率较接近,约为0.41~0.34 m/ka,明显高于下游地区的2个剖面(三江、施洞)的0.16~0.20 m/ka,表现为上游下切速率高,越往下游方向下切速率逐渐降低。这表明自晚更新世以来,清水江上游区域受到构造作用的影响而发生差异抬升,具体表现为西部构造抬升幅度大,阶地下切速率快;东部构造抬升幅度小,阶地下切速率慢。  相似文献   

20.
The New River crosses three physiogeologic provinces of the ancient, tectonically quiescent Appalachian orogen and is ideally situated to record variability in fluvial erosion rates over the late Cenozoic. Active erosion features on resistant bedrock that floors the river at prominent knickpoints demonstrate that the river is currently incising toward base level. However, thick sequences of alluvial fill and fluvial terraces cut into this fill record an incision history for the river that includes several periods of stalled downcutting and aggradation. We used cosmogenic 10Be exposure dating, aided by mapping and sedimentological examination of terrace deposits, to constrain the timing of events in this history. 10Be concentration depth profiles were used to help account for variables such as cosmogenic inheritance and terrace bioturbation. Fill-cut and strath terraces at elevations 10, 20, and 50 m above the modern river yield model cosmogenic exposure ages of 130, 600, and 600–950 ka, respectively, but uncertainties on these ages are not well constrained. These results provide the first direct constraint on the history of alluvial aggradation and incision events recorded by New River terrace deposits. The exposure ages yield a long-term average incision rate of 43 m/my, which is comparable to rates measured elsewhere in the Appalachians. During specific intervals over the last 1 Ma, however, the New River's incision rate reached 100 m/my. Modern erosion rates on bedrock at a prominent knickpoint are between 28 and 87 m/my, in good agreement with rates calculated between terrace abandonment events and significantly faster than 2 m/my rates of surface erosion from ancient terrace remnants. Fluctuations between aggradation and rapid incision operate on timescales of 104− 105 year, similar to those of late Cenozoic climate variations, though uncertainties in model ages preclude direct correlation of these fluctuations to specific climate change events. These second-order fluctuations appear within a longer-term signal of dominant aggradation (until 2 Ma) followed by dominant incision. A similar signal is observed on other Appalachian rivers and may be the result of sediment supply fluctuations driven by the increased frequency of climate changes in the late Cenozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号