首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The attenuation of coda waves is analysed for nine seismic stations in the area of convergent motion of the Adriatic microplate and the Dinarides. The frequency dependent coda quality factor of the form Qc = Q0 fn is estimated for up to seven central frequencies (1.5, 3, 6, 9, 12, 18 and 24 Hz) and for 21 successive 30 s long time windows. Q0 was found to increase from 68–353 for short lapse times of 20–50 s, to 158–373 for lapse times of 90–100 s. Parameter n is observed to vary between 0.46 and 0.89, with a pronounced tendency to decrease with increasing Q0, and vice versa. Both Q0 and n seem to stabilize for lapse times larger than 50–80 s, indicating that a change in rock properties controlling coda attenuation occurs at depths of about 100–160 km. The spatial distribution of observed Q0 is well correlated with observed seismicity and inferred tectonic activity. In particular, we observe significant negative correlation of Q0 with the peak ground acceleration (PGA) estimate for the return period of 475 years. The degree of frequency dependence n, is the smallest for stations on the islands, where the crust is the thinnest. The largest n is observed over the thickest crust in the region, where the Moho lies at depths of over 55 km.  相似文献   

2.
S coda wave of seventy-four local earthquakes recorded in a network of ten seismic stations were used to calculate coda Q attenuation (Qc) in the João Câmara area (northeastern Brazil). The estimates show Qc as a strong function of frequency in the range from 6.0 to 20.0 Hz. We found out that Qc in João Câmara has a functional form given by Qc= Q0 f, where Q0= 151 ± 99 and = 0.98 ± 0.05. If the standard deviations are taken into account,we conclude that there are no relevant changes in both Q0 and values from one station to another. The estimated Q0 values at the different stations suggest that the Samambaia fault is a boundary between two different seismic attenuation zones. In one side of the fault (left), where stations were installed in Pre-Cambrian terrain and thick sedimentary layer, the seismic attenuation is stronger than in the other side (stations installed in thin sedimentary layer and limestone outcrop).The anomalous Q0 values in the left side of the Samambaia fault can be explained due to the presence of a shallow conductive layer in the upper crust( 10 km), such as proposed by Padilha et al. (1992). According to our results, if there is a conductive layer in the area, it probably spreads over João Câmara city and surrounding regions.However, more detailed investigation either with seismic methods (seismic attenuation,3D tomography with P and/or S wave velocities) or with other geophysical methods is needed to interpret the observed differences in Q0 values between the two sides of the Samambaia fault.  相似文献   

3.
Based on the single scattering model of coda power spectrum analysis, digital waveform data of 50 events recorded by the real-time processing system of the Chengdu telemetry network are analyzed to estimate the Q c values of earth medium beneath the Chengdu telemetry network for several specified frequencies. It is found that the Q c shows the frequency dependency in the form of Q c = Q 0 f n in the range of 1.0 to 20.0Hz. Estimated Q 0 ranges from 60.83 to 178.05, and n is found to be 0.713 to 1.159. The average value of Q 0 and n are 117 and 0.978 respectively. This result indicates the strong frequency dependency of the attenuation of coda waves beneath the Chengdu telemetry network. Comparing with the results obtained in other regions of the world, it is found that Q 0 −1 value and its change with frequency are similar to those in regions with strong tectonic activity. This subject is supported by the Ministry of Personnel, China for partly sponsoring.  相似文献   

4.
For short-period near-earthquake records in eastern China, from the empirical attenuation formula of coda ground motion amplitudeA with timeτ: lgA=G−2. 235 lgτ, using the single scattering theory modified with epicentral distance, we obtain the curve family of corrected coda amplitudeA c(r,t), andω/2Q c values for each time interval of coda. From this,Q c(f,h) values, which correspond to each observational average frequency and sampling depth, are calculated. The results substantially agree with those observationalQ c values in Yunnan, Beijing and central Asia.  相似文献   

5.
Crustal attenuation for Jamaica, West Indies   总被引:1,自引:0,他引:1  
The S and coda wave spectra of small earthquakes on the island of Jamaica were used to determine the near surface and coda Q attenuation, and Q c,respectively. Q c determined by the single-station method was found in the range of 1 to 10 Hertz to be given by the relationship, Q c= 60 ± 5f 0.87±0.05. This suggests that the Jamaican crust is highly attenuating which is further supported by the observation of rapid intensity fall-off with distance for earthquakes that have affected the island in the past. , determined from S-wave spectra with short travel times was found to be 0.058 ± 0.012 on the central crustal block, which makes up nearly two-thirds of the island, and 0.080 ± 0.014 in surrounding belt sub-regions. The pattern of values seems to fit with the surface geology in that the central block has areas of exposed outcrops of older and harder rock than the belts, which are characterized by thicker sedimentary sequences as well as intense fracturing and faulting.Atkinson and Boore (1998) and Atkinson(2001) presented an alternative method to stochastic modelling for ground motion in Eastern North America, whereby California attenuation relationships were modified to account for crustal differences invelocity-depth profile, Q and between both regions. Following their example, the California spectral attenuation relation of Boore, Joyner and Fumal (1997) was modified to account for differences between the California and Jamaica crust, resulting in an attenuation relation that is deemed to be more appropriate for Jamaica. Spectral accelerations for Jamaica when compared to California, are especially reduced beyond 20 km from the source and at high frequencies, f 1 hertz.The study concludes that the Jamaican crust, although having an oceanic composition is highly attenuating, which may be a result of intensive tectonic processes, whereas is consistent with near-rock conditions on the central block and soft rock conditions elsewhere on the island.  相似文献   

6.
We present the first systematic study of attenuation derived from the S-wave coda in the frequency range 1-32 Hz for the southern part of the Netherlands and its surroundings. For this we used two methods, the codaQ (Q c) method and the Multiple Lapse Time Window (MLTW) method. In the interpretation of the results both single and multiple scattering in a half space are considered. Our aim is to validate these interpretations in our region and to try to identify theeffects of attenuation due to intrinsic absoprtion (Q i)and scattering attenuation (Q s). For this we analyzedmore than 100 3-component high-quality digital seismograms from 43 crustalevents and 23 different stations in the Netherlands, Germany and Belgium.Coda Q results show smaller Q c (=Q 0fn) values for epicentral distances shorter than 25 km (Q 0=90) compared to larger epicentral distances (Q 0=190), but similar frequency dependence (f-0.9). Interpretation of MLTW results provided a seismic albedo smaller then 0.5, suggesting that the intrinsic absorption dominates over scattering in this region. Both Q i and Q s show similar frequency dependences as Q c. These results are comparable to those obtained in other areas, but we also show that more sophisticated models are required to remove ambiguities in the interpretation. For short lapse times and shortevent-station distances we find for the simple half space model a correspondinginterpretation of both methodologies, where Q c correspondsto Q t, suggesting that a model with single scattering in ahalf space is appropriate. For long lapse times and long event station distances, however, we find that the S-wave coda is, most probably, too much influenced by crust-mantel heterogenities and more sophisticated Qinversion models using larger data sets are required for more reliable attenuation estimates.  相似文献   

7.
Coda Q Estimates in the Koyna Region, India   总被引:1,自引:0,他引:1  
—The coda Q, Q c ?, have been estimated for the Koyna region of India. The coda waves of 76 seismograms from thirteen local earthquakes, recorded digitally in the region during July–August, 1996, have been analyzed for this purpose at nine central frequencies viz., 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 12.0, 16.0 and 24.0 Hz using a single backscattering model. All events with magnitude less than 3 fall in the epicentral distances less than 60 km and have focal depths which range from 0.86 to 9.43 km. For the 30 sec coda window length the estimated Q c values vary from 81 to 261 at 1.5 Hz and 2088 to 3234 at 24 Hz, whereas the mean values of Q c with the standard error vary from 148 ± 13.5 at 1.5 Hz to 2703 ± 38.8 at 24 Hz. Both the estimated Q c values and their mean values exhibit the clear dependence on frequency in the region and a frequency dependence average attenuation relationship, Q c = 96f 1.09, has been obtained for the region, covering an approximate area of 11500 km2 with the surfacial extent of about 120 km and depth of 60 km.¶Lapse time dependence of Q c has also been studied for the region, with the coda waves analyzed at five lapse time windows from 20 to 60 sec duration with the difference of 10 sec. The frequency dependence average Q c relationships obtained at these window lengths Q c = 66f 1.16 (20 sec), Q c = 96f 1.09 (30 sec), Q c =131f 1.04 (40 sec), Q c = 148f 1.04 (50 sec), Q c = 182f 1.02 (60 sec) show that the frequency dependence (exponentn) remains mostly stationary at all the lapse time window lengths, while the change in Q 0 value is significant. Lapse time dependence of Q c in the region is also interpreted as the function of depth.  相似文献   

8.
In the paper, we introduce Allegre's scaling-rule theory of rock fracture and the probability to develop a method for predicting earthquake occurrence time on its basis. As an example, we study the characteristics of seismological precursors (seismic spatial correlation length and coda Qc) associated with the earthquake (M=6.1) occurred in Shandan-Minle, Gansu Province. The results show an increasing trend of seismic spatial correlation length and coda Qc before the earthquake. And a power exponent relation is used to fit the increasing variation form of these two parameters. The study has provided a basis for creating a method and finding indexes to predict the earthquake occurrence time by using the monitored seismic spatial correlation length and coda Qc.  相似文献   

9.
We studied spatial and temporal characteristics of seismic attenuation inCentral Italy using S- and coda- waves recorded by the MarchesanSeismograph Network from earthquakes located in the epicentral area ofthe 1997 Umbria-Marche sequence. The amplitude decay of the S waveswith distance was defined calculating empirical attenuation functions at 15frequencies between 1 and 25 Hz. We analyzed separately foreshocks andaftershocks and we found the same attenuation functions, suggesting thatthe possible temporal variations could be confined in a small area. Thefrequency dependence of Q S was approximated by the equation Q S=18 · f 2.0between 1 and 10 Hz. At higher frequencies (10–25 Hz), the frequencydependence of Q s weakens, having an average value of Q S=990. We also estimated Q from coda waves (Q C) using the single-scattering models of Aki andChouet (1975) and Sato (1977). We found that Q C=77 · f 0.6, (between 2 and 20Hz) at the western side of the mountain chain, using either foreshocks oraftershocks. This relation is consistent with previous estimates of Q Creported for the Central Apennines. For a volume sampling the Colfioritobasin, the Apennines and the Marche region we found that Q C=55 · f 0.8,indicating highattenuation below the mountain belt. To detect small temporal changes ofQ, we calculated spectral ratios of 5 temporal doublets located in theepicentral area and recorded at the closest station. We found temporalchanges of Q that vary from 27% to 56%, depending on the locationof the doublets. This variability suggests that the temporal change ofattenuation may depend on the spatial variation of Q and perhaps on thespatial distribution of tectonic stress in the epicentral area.  相似文献   

10.
Using simulated coda waves, the resolution of the single-scattering model to extract codaQ (Q c ) and its power law frequency dependence was tested. The back-scattering model ofAki andChouet (1975) and the single isotropic-scattering model ofSato (1977) were examined. The results indicate that: (1) The inputQ c models are reasonably well approximated by the two methods; (2) almost equalQ c values are recovered when the techniques sample the same coda windows; (3) lowQ c models are well estimated in the frequency domain from the early and late part of the coda; and (4) models with highQ c values are more accurately extracted from late code measurements.  相似文献   

11.
In the light of the single scattering model of coda originating from local earthquakes, and based on the aftershock coda registered respectively at the 4 short period stations installed near the foci shortly after theM7.6 Lancang andM7.2 Gengma earthquakes, this paper has tentatively calculated the rate of amplitude attenuation and theQ c-value of the coda in the Lancang and Gengma areas using a newly-founded synthetic determination method. Result of the study shows the rate of coda amplitude attenuation demonstrates remarkable regional differences respectively in the southern and northern areas. The southern area presents a faster attenuation (Q c=114), whereas the northern area shows a slower attenuation (Q c=231). The paper also discusses the reasons causing such differences. Result of the study also suggests a fairly good linear relation between the coda source factorA o(f) and the seismic moment and the magnitude. Using the earthquake scaling law, the following formulas can be derived: lgM 0=lgA 0(f)+17.6,M D=0.67lgA 0(f)+1.21 and logM 0=1.5M D+15.79. In addition, the rates of amplitude attenuationβ s andβ m are respectively calculated using the single scattering and multiple scattering models, and the ratioβ sm=1.20−1.50 is found for the results respectively from the two models. Finally, the mean free pathL of the S-wave scattering in the southern and northern areas are determined to be 54 km and 122 km respectively by the relations which can distinguish between the inherentQ i and scatteringQ s, testify to this areas having lowQ-values correspond to stronger scatterings. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, 71–82, 1992. This study is partly supported by the Seismological Science Foundation of the State Seismological Bureau of China, and the present English version of the paper is translated from its Chinese original by Wenyi Xia, Seismological Bureau of Yunnan Province.  相似文献   

12.
Digital recordings of three component microearthquake codas from shallow seismic events in the volcanic region of Campi Flegrei — Southern Italy — were used with an automatic technique to calculate the attenuation factorQ c (codaQ) in the hypothesis of singleS toS backscattering.Results show the same value ofQ for each of the three components. This result is interpreted as due to isotropicS wave radiation pattern.A check of the coda method was performed using a single station method based on simple assumptions on the direct SH wave spectrum. Single stationQ was averaged over the stations and over the earthquakes. Results show that the two methods lead to comparable results.A frequency dependence quite different from that evaluated in active tectonic regions was found for coda attenuation, comparable to other volcanic areas throughout the world. This is interpreted as due to the presence of magma that affects anelasticity and scattering.  相似文献   

13.
The seismic quality factor (Q c) and the attenuation coefficient (δ) in the earth’s crust in southwest (SW) Anatolia are estimated by using the coda wave method based on the decrease of coda wave amplitude by time on the seismogram. The quality factor Q o, the value of Q c at 1 Hz, and its frequency dependency η are determined from this method depending on the attenuation properties of scattered coda waves. δ is determined from the observations of amplitude variations of seismic waves. In applying the coda wave method, firstly, a type curve representing the average pattern of the individual coda decay curves for 0.75, 1.5, 3.0, 6.0, 12.0, and 24.0 Hz values was estimated. Secondly, lateral variation of coda Q and the attenuation coefficients for three main tectonic patterns are estimated. The shape of the type curve is controlled by the scattering and attenuation in the crustal volume sampled by the coda waves. The Q o and η values vary from 30 to 180 and from 0.55 to 1.25, respectively for SW Anatolia. In SW Anatolia, coda Qf relation is described by and δ = 0.008 km−1. These results are expected to help in understanding the degree of tectonic complexity of the crust in SW Anatolia.  相似文献   

14.
21 earthquakes recorded by a temporary seismic network in the Changbaishan Tianchi volcanic area in Northeast China operated during the summer of 2002 and 2003 were analyzed to estimate the S coda attenuation. The attenuation quality factor Qc was estimated using the single scattering attenuation model of Sato (1977) in the frequency band from 4 to 24 Hz. All the events studied in this paper occurred at depths from 2 to 6 km with ML of 1.4–2.8. The epicentral distances are less than 25 km. For all events which occurred near the Tianchi Lake (caldera), the Qc patterns obtained at the stations near the lake are similar, and the Qc values are relatively small. At the stations located about 15 km east of the Tianchi Lake, however, the average Qc is significantly higher. For an event which occurred 25km from the lake to the west, Qc patterns derived at the stations near the lake are quite similar to the above mentioned Qc for stations located in the east. Further study shows that Qc value in the north and central areas of the volcano is relatively lower than that in the surrounding area. Compared to other volcanic areas in the world, the average Qc of the Changbaishan Tianchi volcanic area is obviously lower. The deep seismic sounding and teleseismic receiver function studies indicated more than one lower velocity layer in the crust. The MT studies suggested the presence of high conductive bodies beneath the area. We interpret the strong attenuation of coda waves near the Changbaishan Tianchi volcano as being possibly related to high temperature medium caused by shallow magma chambers.  相似文献   

15.
The attenuation of coda waves in the earth’s crust in southwest (SW) Anatolia is estimated by using the coda wave method, which is based on the decrease of coda wave amplitude in time and distance. A total of 159 earthquakes were recorded between 1997 and 2010 by 11 stations belonging to the KOERI array. The coda quality factor Q c is determined from the properties of scattered coda waves in a heterogeneous medium. Firstly, the quality factor Q 0 (the value of Q c at 1 Hz.) and its frequency dependency η are determined from this method depending on the attenuation properties of scattered coda waves for frequencies of 1.5, 3.0, 6.0, 8.0, 12 and 20 Hz. Secondly, the attenuation coefficients (δ) are estimated. The shape of the curve is controlled by the scattering and attenuation in the crustal volume sampled by the coda waves. The average Q c values vary from 110 ± 15 to 1,436 ± 202 for the frequencies above. The Q 0 and η values vary from 63 ± 7 to 95 ± 10 and from 0.87 ± 0.03 to 1.04 ± 0.09, respectively, for SW Anatolia. In this region, the average coda Qf relation is described by Q c = (78 ± 9)f 0.98±0.07 and δ = 0.012 km?1. The low Q 0 and high η are consistent with a region characterized by high tectonic activity. The Q c values were correlated with the tectonic pattern in SW Anatolia.  相似文献   

16.
Estimation of seismic wave attenuation in the shallow crust in terms of coda wave Q structure previously investigated in the vicinity of Cairo Metropolitan Area was improved using seismograms of local earthquakes recorded by the Egyptian National Seismic Network. The seismic wave attenuation was measured from the time decay of coda wave amplitudes on narrow bandpass filtered seismograms based on the single scattering theory. The frequency bands of interest are from 1.5 to 18 Hz. In general, the values obtained for various events recorded at El-Fayoum and Wadi Hagul stations are very similar for all frequency bands. A regional attenuation law Q c = 85.66 f 0.79 was obtained.  相似文献   

17.
We analyzed the local earthquakes waveform recorded on a broadband seismic network in the northwestern Himalayan Region to compute lapse time and frequency dependence of coda Q (Q c). The observed Q c values increase with increasing lapse time at all frequency bands. The increase in Q c values with lapse time is attributed to an increase in Q c with depth. This implies that attenuation decreases with increasing depth. The approximate radius of medium contributing to coda generation varies from 55 to 130 km. By comparing the Q c values with those from other regions of the world, we find that they are similar to those obtained from tectonically active regions. The estimated Q c values show a frequency-dependent relationship, Q c = Q 0 f n , where Q 0 is Q c at 1 Hz and n represents degree of frequency dependence. They represent the level of heterogeneity and tectonic activity in an area. Our results show that northwest Himalayas are highly heterogeneous and tectonically very active. Q 0 increases from 113 ± 7 to 243 ± 10 and n decreases from 1.01 ± 0.05 to 0.85 ± 0.03 when lapse time increases from 30 to 70 s. As larger time window sees the effect of deeper part of the Earth, it is concluded that Q 0 increases and n decreases with increasing depth; i.e., heterogeneity decreases with depth in the study area.  相似文献   

18.
The study of coda waves has recently attracted increasing attention from seismologists. This is due to the fact that it is viewed as a new means by which the stress accumulation stage preceding a large earthquake can be measured, since the scattering paths nearly uniformly cover a fairly large region around the focus and observation stations, compared with the direct ray paths. To date, we have had many reports on the temporal variation of the relation between coda duration and amplitude magnitude, and that of the coda attenuationQ c –1 which is estimated from coda amplitude decay. Some of these have shown a precursor-like behavior; however, others seem to have shown a coseismic change. We have critically reviewed these reports, and discussed what these observational facts tell us about the change in the heterogeneous crust. We found significant temporal variations, not only in the mean but also in the scatter ofQ c –1 , associated with the mainshock occurrence. The formation of new cracks, the reopening and growing of existing cracks, the interaction of these cracks, and the pore water movement through these cracks might correspond to such variations. In addition, we may expect an inhomogeneous distribution of crack clusters in a fairly large region, compared with the aftershock region. The gradual appearance of such crack clusters seems to be the most plausible mechanism by which coda decay gradients are caused to largely scatter in the stress accumulation stage.  相似文献   

19.
In this paper, considering the influences of source spectrum, the scattering property of medium and instrument response on the dominant frequency of coda, a method of using the coda of local earthquake to determine the correlation length of medium andQ-value is given. We find the following formula as: {fx719-1} wheret* =t/Q, f is the dominant frequency of coda,u 1 andu 2 are the parameters depend on the correlation length and the corner frequency of the source spectrum respectively,I(f) is a function of instrument response. If the source parameter is given, we can obtain the correlation length andQ-value by means of the inversion of observed curves off-t of coda. We processed the data of coda wave of more than 40 earthquakes from 1982 to 1989 in Lingwu region, China, determined the correlation length andQ-value, and preliminarily studied the temporal change of correlation length before and after moderately strong earthquakes. The result suggests that there are indications that the correlation length of medium decreases before the moderate earthquake. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, 62–70, 1992.  相似文献   

20.
—?The digital data acquired by 16 short-period seismic stations of the Friuli-Venezia-Giulia seismic network for 56 earthquakes of magnitude 2.3–4.7 which occurred in and near NE Italy have been used to estimate the coda attenuation Q c and seismic source parameters. The entire area under study has been divided into five smaller regions, following a criterion of homogeneity in the geological characteristics and the constrains imposed by the distribution of available events. Standard IASPEI routines for coda Q c determination have been used for the analysis of attenuation in the different regions showing a marked anomaly in the values measured across the NE border between Friuli and Austria for Q 0 value. A large variation exists in the coda attenuation Q c for different regions, indicating the presence of great heterogeneities in the crust and upper mantle of the region. The mean value of Q c (f) increases from 154–203 at 1.5?Hz to 1947–2907 at 48?Hz frequency band with large standard deviation estimates.¶Using the same earthquake data, the seismic-moment, M 0, source radius, r and stress-drop, Δσ for 54 earthquakes have been estimated from P- and S-wave spectra using the Brune's seismic source model. The earthquakes with higher stress-drop (greater than 1?Kbar) occur at depths ranging from 8 to 14?km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号