首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Freezing and thawing during the winter season change soil properties such as density. The density change in the particulate media influences soil stiffness. In addition, freezing of partially or fully saturated soils changes the soil matrix from a particulate media to a continuum. The goal of this study is to investigate the cyclic freezing and thawing effects on elastic waves. Sand-silt mixtures with 10% silt fraction in weight and 40% saturation are prepared. The sand-silt mixtures are placed in a nylon cell, onto which a pair of bender elements and a pair of piezoelectric disk elements are installed for the measurement of shear and compressional waves, respectively. The temperature of the mixtures decreases from 20°C to 10°C to freezing. The frozen sample is gradually thawed at room temperature (20°C). These freezing-thawing processes are repeated three times. The test result shows that the shear and compressional wave velocities significantly increase when the specimen is frozen. When the temperature is greater than 0°C, the elastic wave velocities are lower during thawing than during freezing due to soil structure change. This study demonstrates that soil structure change during the winter season may be effectively estimated from elastic waves.  相似文献   

2.
Two major earthquakes in Alaska, namely the 1964 Great Alaska Earthquake and the 2002 Denali Earthquake, occurred in winter seasons when the ground crust was frozen. None of the then-existing foundation types was able to withstand the force from the lateral spreading of frozen crust. This paper presents results from the analysis of pile foundations in frozen ground overlying liquefiable soil utilizing the Beam-on-Nonlinear-Winkler-Foundation (BNWF) (or p-y approach). P-multipliers were applied on traditional sandy soil p-y curves to simulate soil strength degradation during liquefaction. Frozen soil p-y curves were constructed based on a model proposed in a recent study and the frozen soil mechanical properties obtained from testing of naturally frozen soils. Pile response results from the p-y approach were presented along with those from fluid-solid coupled Finite Element (FE) modeling for comparison purpose. Finally, the sensitivity of pile response to frozen soil parameters was investigated and a brief discussion is presented.  相似文献   

3.
Ultrasonic P-wave tests of frozen silt and frozen sand were conducted during uniaxial loading by using an RSM®-SY5(T) nonmetal ultrasonic test meter to study the velocity characteristics of P-waves. The experimental results indicate that the P-wave velocity is affected by soil materials, temperature, and external loads, so the P-wave velocity is different in frozen silt and frozen sand, but all decrease with an increase of temperature and increase at first and then decrease with strain during the loading process. There is an exponential relationship between uniaxial compressive strength and P-wave velocity, and the correlation between them is very good. The characteristic parameters of acoustic waves can, to some extent, reflect the development of internal cracks in frozen soils during loading.  相似文献   

4.
Seasonally frozen soil is a four-phase material and its physical-mechanical properties are more complex compared to the unfrozen soil. Its physical properties changes during the freeze-thaw process; repeated freeze-thaw cycles change the characteristics of soil, which can render the soil from an unstable state to a new dynamic equilibrium state. The freezing process changes the structure coupled between the soil particle arrangements, which will change the mechanical properties of the soil. The method of significance and interaction between different factors should be considered to measure the influence on the properties of soil under freeze-thaw cycles.  相似文献   

5.
In order to determine the changing rule of long-term frozen soil strength and elucidate the connection between long-term strength and soil physical properties,frozen loess was subjected to 4,6,8,10,and 50 freeze-thaw cycles,under closed-state conditions in a constant-temperature box.The frozen samples were tested on a spherical template indenter,and the results show that under the effect of repeated freeze-thaw cycles,the long-term strength of frozen loess decreased; changes in the mechanical property indices were highly unstable during the first 10 cycles; the soil strength and density were the greatest at the eighth cycle while the void ratio was the smallest; and after eight cycles all of the indices had less fluctuation and certain rising or falling tendencies.By converting the number of freeze-thaw cycles into elapsed time in the tests,three different forecasting methods of long-term soil strength could be assessed and the soil equivalent cohesive force after 10 years,20 years,or 30 years could be estimated.  相似文献   

6.
The acquisition of spatial-temporal information of frozen soil is fundamental for the study of frozen soil dynamics and its feedback to climate change in cold regions. With advancement of remote sensing and better understanding of frozen soil dynamics, discrimination of freeze and thaw status of surface soil based on passive microwave remote sensing and numerical simulation of frozen soil processes under water and heat transfer principles provides valuable means for regional and global frozen soil dynamic monitoring and systematic spatial-temporal responses to global change. However, as an important data source of frozen soil processes, remotely sensed information has not yet been fully utilized in the numerical simulation of frozen soil processes. Although great progress has been made in remote sensing and frozen soil physics, yet few frozen soil research has been done on the application of remotely sensed information in association with the numerical model for frozen soil process studies. In the present study, a distributed numerical model for frozen soil dynamic studies based on coupled water-heat transferring theory in association with remotely sensed frozen soil datasets was developed. In order to reduce the uncertainty of the simulation, the remotely sensed frozen soil information was used to monitor and modify relevant parameters in the process of model simulation. The remotely sensed information and numerically simulated spatial-temporal frozen soil processes were validated by in-situ field observations in cold regions near the town of Naqu on the East-Central Tibetan Plateau. The results suggest that the overall accuracy of the algorithm for discriminating freeze and thaw status of surface soil based on passive microwave remote sensing was more than 95%. These results provided an accurate initial freeze and thaw status of surface soil for coupling and calibrating the numerical model of this study. The numerically simulated frozen soil processes demonstrated good performance of the distributed numerical model based on the coupled water-heat transferring theory. The relatively larger uncertainties of the numerical model were found in alternating periods between freezing and thawing of surface soil. The average accuracy increased by about 5% after integrating remotely sensed information on the surface soil. The simulation accuracy was significantly improved, especially in transition periods between freezing and thawing of the surface soil.  相似文献   

7.
The shear properties of ice-frozen soil interface are important when studying the constitutive model of frozen soil and slope stability in cold regions. In this research, a series of cryogenic direct shear tests for ice-frozen clay soil interface were conducted. Based on experimental results, a nonlinear interface structural damage model is proposed to describe the shear properties of ice-frozen clay soil interface. Firstly, the cementation and friction structural properties of frozen soil materials were analyzed, and a structural parameter of the ice-frozen clay soil interface is proposed based on the cryogenic direct shear test results. Secondly, a structural coefficient ratio is proposed to describe the structural development degree of ice-frozen clay soil interface under load, which is able to normalize the shear stress of ice-frozen clay soil interface,and the normalized data can be described by the Duncan-Chang model. Finally, the tangent stiffness of ice-frozen clay soil interface is calculated, which can be applied to the mechanics analysis of frozen soil. Also, the shear stress of ice-frozen clay soil interface calculated by the proposed model is compared with test results.  相似文献   

8.
Ultrasonic detection technology is of great significance in the detection and evaluation of physical and mechanical properties of frozen soil, but wave propagation characteristics in frozen soil are unclear. Based on the three-phase composition of frozen saturated soil and the mixture theory, considering Bishop's effective stress formula, the wave propagation equations are establish for frozen saturated soil. In wave propagation, an entropy inequality was introduced to describe the coupling of different phases. The analytic expressions of propagation velocity and attenuation law of waves in frozen soil are obtained, and wave propagation characteristics in frozen saturated soil are discussed. Results show that four types of waves(i.e., P1, P2, P3 and S) are found in frozen saturated soil and all four wave types are dissipative waves, in which the attenuation of P3 is the maximum. The velocity of four waves increases sharply at the excitation frequency range of 10~3–10~9 Hz,but the wave velocity at high-frequency and low-frequency is almost constant. When volume ice content increases, the wave propagation velocity of P1 and S decreases dramatically, and the velocity of P2 increases gradually, but P3 velocity increases first and then decreases to zero with increasing saturation. The attenuation coefficients of P1 and S waves begins to increase gradually when the volume ice content is about 0.4, P2 increases first and then decreases with an increase of volume ice content and P3 increases with the volume ice content and decreases rapidly from extreme to zero.  相似文献   

9.
干旱区绿洲不同土地利用方式和强度对土壤粒度分布的影响   总被引:22,自引:3,他引:19  
以干旱区三工河流域下游绿洲作为研究区,应用SPSS数理统计软件,选择12种土地利用系统,采集上层(0~20cm)和下层土壤(20-40cm)样品,分析出不同土地利用系统对土壤粒度分布的影响。研究结果表明:(1)研究区土壤主要由砂和粉砂组成,土地利用系统对砂、粉砂和粘土粒度分布的影响显著,无论上层还是下层,不同土地利用系统土壤砂、粉砂和粘土含量差异明显。(2)绿洲土壤砂含量随着土地种植年限增加有降低的趋势,而粉砂和粘土含量有增加的趋势。在不同的土地利用强度下土壤粒度分布表现出了不同的特征。土地利用强度大的一年生作物和多年生作物土壤粉砂和粘土含量较高。土壤质量得到了逐步改善;而受人类活动干扰较小的土地利用系统土壤砂和粉砂含量高,土壤质地差。说明干旱区绿洲的人类农业活动基本趋于合理。绿洲生态环境正逐步得到改善并持续发展。  相似文献   

10.
This paper puts forward the coupling model of the heat-moisture-stress field based on the governing equation of non-stationary heat transfer, moisture movement and the basic differential equations of deformation problem by displacement under axisymmetric conditions. Using a detailed calculation example for the section of the Xiang Pi Mountain in 109th National Highway, a mechanical model of the cylinder made by typical silty clay soil is simulated. Results show that in the coupling process, dynamic stress pays little contribution to the distribution of temperature field along different depths, and the amount of thawing deformation increased with dynamic loading time under the same frequency and amplitude.  相似文献   

11.
The soil-freezing characteristic curve (SFCC), which represents the relationship between unfrozen water content and sub-freezing temperature (or suction at ice-water interface) in a freezing soil, can be used for understanding the transportation of heat, water, and solute in frozen soils. In this paper, the soil freezing process and the similarity between the SFCC of saturated frozen soil and soil-water characteristic curve (SWCC) of unfrozen unsaturated soil are reviewed. Based on similar characteristics between SWCC and SFCC, a conceptual SFCC is drawn for illustrating the main features of soil freezing and thawing processes. Various SFCC expressions from the literature are summarized. Four widely used expressions (i.e., power relationship, exponential relationship, van Genuchten 1980 equation and Fredlund and Xing 1994 equation) are evaluated using published experimental data on four different soils (i.e., sandy loam, silt, clay, and saline silt). Results show that the exponential relationship and van Genuchten (1980) equation are more suitable for sandy soils. The simple power relationship can be used to reasonably best-fit the SFCC for soils with different particle sizes; however, it exhibits limitations when fitting the saline silt data. The Fredlund and Xing (1994) equation is suitable for fitting the SFCCs for all soils studied in this paper.  相似文献   

12.
流沙地恢复过程中土壤特性演变研究   总被引:11,自引:4,他引:7  
以毛乌素沙地西南缘的盐池县沙边子及位于腾格里沙漠东南缘的沙坡头地区为例,研究了该地区不同程度沙漠化土地恢复过程中土壤机械组成及土壤养分的动态变化。结果表明:不同地区或同一地区不同区域的沙漠化土地中,随着植被盖度的增加及恢复程度的增强,土壤中的粉粒、粘粒含量都有显著增加(P<0.05),土壤质地向着壤质化和细粒化方向发展;土壤的有机质、全氮、全磷含量也有显著增加(P<0.05);速效氮、速效磷含量也有相应的增加。土壤有机质、全氮和全磷的含量与土壤粉粒、粘粒含量呈显著正相关,且前三者之间也呈极显著正相关;但是土壤粉粒和粘粒含量与速效氮、速效磷和速效钾之间的关系则因区域和土地利用的不同表现出明显的差异。  相似文献   

13.
青藏高原西部区域多年冻土分布模拟及其下限估算   总被引:3,自引:0,他引:3  
南卓铜  黄培培  赵林 《地理学报》2013,68(3):318-327
准确评估青藏高原西部多年冻土的空间分布及多年冻土下限深度情况对该区地下水资源利用、生态环境保护有重要意义.本文依托科技基础性工作专项“青藏高原多年冻土本底调查”在该区及周边取得的冻土调查资料,利用遥感数据和扩展地面冻结数模型模拟了该区多年冻土的空间分布,调查区的模拟验证表明该方法有较高的精度.在此基础上,根据有限的地温实测资料建立了地温与位置、高程、坡向和太阳辐射的关系,并根据地温-下限关系估算了该区多年冻土下限深度的分布情况.研究表明,该区有多年冻土约占36.9%,季节冻土占57.5%,多年冻土主要分布在34°N~36.5°N范围的喀喇昆仑、西昆仑一带,季节冻土主要分布在塔里木盆地和34°N以南地区.阿里高原及以南是岛状多年冻土分布区域,其多年冻土分布面积少于此前出版的冻土图所绘制的.青藏高原西部区域的多年冻土下限深度整体表现为由东南-西北逐渐加深.  相似文献   

14.
湿地蓄水量动态SD仿真研究--以三江平原沼泽湿地为例   总被引:1,自引:0,他引:1  
在沼泽湿地水循环系统分析基础上,根据系统动力学方法和原理,探讨湿地蓄水量动态仿真的方法、步骤和过程;以三江平原湿地生态实验站沼泽湿地为例,通过系统分析、函数建立、程序编写等过程建立了沼泽湿地蓄水量动态仿真模型,对模型反复检验和调试,直到获得较好的仿真效果;通过1997、1998、1999连续三年湿地水位变化实测与仿真结果的对比显示,仿真效果较好。  相似文献   

15.
Earth fissures have developed at Wadi Al-Yutamah, western Saudi Arabia. The fissues are associated with land subsidence which is considered to be due to both rapid draw down of the ground-water level and hydrocompaction of the wadi soil after flooding. This phenomenon is relatively recent in the area.The wadi soil was investigated and classified in the field, and disturbed and undisturbed samples were collected for laboratory testing and analysis. The engineering properties of the wadi soils were determined, including in situ field density, specific gravity, liquid limit, plastic limit, plasticity index, shrinkage limit, and consolidation characteristics such as total settlement and coefficient of subsidence (collapse).Four types of silty soil of different colours were identified, in addition to yellowish-brown sand (representing the dunes) which accumulated on the surface of the study area. The silty soils include yellowish-brown silty sand, yellowish-gray silt, pale brown silt and yellowish-brown clayey silt. The results of X-ray diffraction analysis indicated that the clay is mainly kaolinite and illite with minor smectite. The dominant soil type in the study area is silt of low plasticity, high void ratio and low density which decreased with depth. This soil was classified as loess-like materials.The studied soils are of a collapsing type, and settlement is greatly increased by excessive wetting under constant pressure. The calculated coefficients of subsidence (collapse) of the soils at different depths generally increased with decreasing soil density and ranged between 3·1% and 10·8%. The wadi soils are considered to pose a moderate problem when wetted.  相似文献   

16.
The dynamic strain and strength of frozen silt under long-term dynamic loading are studied based on creep tests. Three groups of tests are performed (Groups I, II, and III). The initial deviator stresses of Groups I and II are same and the dynamic stress amplitude of Group II is twice as that of Group I. The minimum value of dynamic stress in Group III is near zero and its dynamic stress amplitude is larger than those of Groups I and II. In tests of all three groups there are similar change trends of accumulative strain, but with different values. The accumulative strain curves consist of three stages, namely, the initial stage, the steady stage, and the gradual flow stage. In the tests of Groups I and II, during the initial stage with vibration times less than 50 loops the strain amplitude decreased with the increase of vibration times and then basically remained constant, fluctuating in a very small range. For the tests of Group III, during the initial and steady stages the strain amplitude decreased with the increase of vibration times, and then increased rapidly in the gradual flow stage. The dynamic strength of frozen silt decreases and trends to terminal dynamic strength as the vibration times of loading increase.  相似文献   

17.
围封对沙漠化草地土壤理化性质和固碳潜力恢复的影响   总被引:1,自引:0,他引:1  
过度放牧是科尔沁沙地退化的主要原因,禁牧围封可以有效地控制牲畜对植被-土壤系统的破坏,促进退化生态系统的有效恢复。以过度放牧后的沙漠化草地为对象,调查了禁牧围封13年后沙漠化草地土壤理化性质的变化特征,并分析了围封对土壤固碳潜力的影响。结果表明:(1)沙漠化草地围封13年后,土壤砂粒含量减少、粉粒和黏粒含量增加,且粉粒增加最为明显,平均含量增加123%;土壤容重在不同土壤深度均呈下降趋势。(2)围封后土壤有机质、全氮、速效氮和速效钾含量呈增加趋势,分别增加了102%、97%、123%和24%,但土壤有效磷和缓效钾呈减少趋势;土壤pH显著升高,阳离子交换量呈现增加趋势。(3)除土壤有效铁外,其余有效微量元素包括有效铜、有效锰和有效锌平均含量均呈增加趋势,分别增加44%、30%和82%。(4)土壤有机质与pH值、阳离子交换量、全氮、速效氮、速效钾、有效铜、有效锰、有效锌含量呈显著正相关关系。(5)沙漠化草地围封13年后,100 cm深度土壤有机碳储量增加393.45 g·m-2,碳截存速率为30.27 gC·m-2·a-1。对于因持续过度放牧所导致的严重退化草地,禁牧围封可有效促进土壤有机质、养分和微量元素的增加,影响土壤质地及固碳潜力等的变化,但严重退化沙漠化草地的恢复需要一个长期的过程,土壤有机碳储量要恢复到科尔沁非沙漠化草地水平至少需要百年的时间尺度。  相似文献   

18.
Edelvang, Karen; Larsen, Michael; Pejrup, Morten: Tidal Variation in Field Settling Velocities of Suspended Sediment in a Tidal Channel. Geografisk Tidsskrift 92:116–121. Copenhagen 1992.

Particles of silt and clay may form large, low density floes when suspended in salt water. The sediment floes have settling velocities much higher than the single small particles constituting them and therefore, the flocculation process may strongly influence the transport of cohesive sediment in estuarine environments. will be described in this paper, the field settling velocities of suspended sediment were investigated in a large tidal channel with tidal current velocities up to 1.3 m/s and depths of about 10 m. The analyses of suspended sediment were made on both bottom and surface samples. For the bottom samples, equivalent median fall diameters in the range 26–98 μm were measured. For surface samples, the range was 15–40 μm. During most of the tidal period, the occurrence of much larger settling diameters near the bottom was due to the suspension of individual sand and silt particles. For the investigated periods, high-tide was the only possible time to observe flocculation influencing the vertical distribution of finegrained sediment in the water column.  相似文献   

19.
石林地区土壤性质与喀斯特洼地发育   总被引:7,自引:0,他引:7  
梁福源  宋林华  唐涛 《地理研究》2004,23(3):321-328
对石林地区洼地边坡和底部红壤的物理、化学性质差异进行了研究 ,结果表明土壤的化学成分、水分含量和粒度组成都和所处的地貌部位有关。洼地底部的土壤细粘粒含量、水分含量、Al2 O3和Fe2 O3含量低于洼地边坡 ,而粗粉粒含量、SiO2 含量则高于洼地边坡。土壤SiO2 含量随粒径变细而减少 ,Al2 O3和Fe2 O3则随粒径变细而增加 ,土壤中水分含量与细粘粒含量正相关 ,与粗粉粒含量负相关。因此 ,不同地貌部位土壤的粒度组成差异决定了洼地底部和边坡的水分含量及化学组成的差异  相似文献   

20.
为解决季节性冻土水分在冻融过程中迁移复杂性及空间非均一性的定量化描述困难问题,以季节性冻土区土壤剖面水分为研究对象,运用地统计学的理论与方法对季节性冻土区不同时期土壤剖面水分的空间变异特征进行研究。结果表明,不同时期土壤剖面水分具有良好的空间结构及较强的空间相关性;季节冻融过程削弱土壤剖面水分的空间相关性,并且对土壤含水量具有强烈的空间重分布作用。地统计学理论与方法的应用可为季节性冻土区土壤冻融过程中水分运移机理的研究提供一种新的思路和方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号