首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The space-weather complexes including characteristics of solar streams (parameters of the solar wind, components of the interplanetary magnetic-field vector) and temporal quantitative estimates of their geomagnetic effects (Dst index) are classified. Comparative and neural-network methods for this classification are developed. As a result of numerical neural-network experiments, types of solar streams responsible for generation of geomagnetic perturbations with different intensities are established. It is confirmed that, on the basis of the selected space weather complexes, it is possible to refine the influence of these streams on the electromagnetic state of the magnetic sphere and, hence, improve the accuracy of predictions of this state.  相似文献   

2.
The period of interplanetary, geomagnetic and solar disturbances of September 7–15, 2005, is characterized by two sharp increases of solar wind velocity to 1000 km/s and great Dst variation of the geomagnetic field (~140 nT). The time variations of theoretical and experimental geomagnetic thresholds observed during this strong geomagnetic storm, their connection with solar wind parameters and the Dst index, and the features of latitudinal behavior of geomagnetic thresholds at particular times of the storm were studied. The theoretical geomagnetic thresholds were calculated with cosmic ray particle tracing in the magnetic field of the disturbed magnetosphere described by Ts01 model. The experimental geomagnetic thresholds were specified by spectrographic global survey according to the data of cosmic ray registration by the global station network.  相似文献   

3.
通过甘肃省嘉峪关台地磁场观测资料,研究嘉峪关台、瓜州台磁静日地电场日变化的时频特征波;由地电场分钟值观测数据的时序叠加残差方法,研究嘉峪关、瓜州山的地电暴变化。结果表明:(1)两台地电场静日变化以两次起伏变化为主,无相位差,但两台之间日变幅差异较大;(2)地电场分量变化与地磁场正交分量变化显著相关;地电场与地磁场日变波形不同,极值时间有差异。2个台存在很明显的高频成分,在去除了高频变化后,其优势周期也相同,从大到小依次为12 h、8 h、24 h。地磁场H分量因存在磁暴影响,故高频变化较多,在去除了磁暴影响后,其优势周期从大到小依次为24 h、12 h、8 h;(3)当电磁暴扰动剧烈时,两台可以较清晰地记录到地电暴的完整变化。在发生电磁暴时,地电场与地磁场的相关性明显降低,且不同台、不同测向之间的变化幅度也不尽相同。两台东分量E_Y暴日的日变幅较静日明显增大,磁暴期间Y分量变化率与地电场东分量E_Y观测数据显著相关,由此说明:两台日变幅的不同与台站台址电导率有关,太阳风引起的电离层活动是引起了地电场日变化主因。引起电暴的原因可能不同于引起日变化的原因,主要是两台之间及不同测向之间的浅、深层电阻率和地质构造等诸多因素的结果。  相似文献   

4.
The relation of the maximal daily average values of the relativistic electron fluxes with an energy higher than 2 MeV, obtained from the measurements on GOES geostationary satellites, during the recovery phase of magnetic storms to the solar wind parameters and magnetospheric activity indices has been considered. The parameters of Pc5 and Pi1 geomagnetic pulsations and the relativistic electron fluxes during the prestorm period and the main phase of magnetic storms have been used together with the traditional indices of geomagnetic activity (A E, K p, D st). A simple model for predicting relativistic electron fluxes has been proposed for the first three days of the magnetic storm recovery phase. The predicted fluxes of the outer radiation belt relativistic electrons well correlate with the observed values (R ∼ 0.8–0.9).  相似文献   

5.
R. I. Crickmore 《Annales Geophysicae》1994,12(10-11):1101-1113
Thermospheric winds on a total of 237 nights have been studied for the effects due to geomagnetic activity, solar flux, and season. The observations have been made from 1988 to 1992 by a Fabry-Perot interferometer (FPI) operating at Halley (75.5°S, 26.6°W), Antarctica. This is the first statistical study of thermospheric winds near the southern auroral zone. The main factor affecting the wind velocities is the geomagnetic activity. Increases in activity cause an increase in the maximum equatorward wind, and cause the zonal wind in the evening to become more westward. Smaller changes in the mean wind occur with variations in season and solar flux. The small variation with solar flux is more akin to the situation found at mid-latitudes than at high latitudes. Since the geomagnetic latitude of Halley is only 61°, it suggests that the variability of the wind with solar flux may depend more on geomagnetic than geographic latitude. These observations are in good agreement with the empirical Horizontal Wind Model (HWM90). However, comparisons with predictions of the Vector Spherical Harmonic Model (VSH) show that for low geomagnetic activity the predicted phases of the two components of the wind closely resemble the observations but the modelled amplitudes are too small by a factor of two. At high geomagnetic activity the major differences are that modelled zonal velocity is too westward in the evening and too eastward after 04 UT. The modelled ion densities at the F-region peak are a factor of up to 9 too large, whilst the predicted mean value and diurnal variation of the altitude of the peak are significantly lower than those observed. It is suggested that these differences result from the ion loss rate being too low, and an inaccurate model of the magnetic field.  相似文献   

6.
The variation of the H, Z, and T components of the geomagnetic field at repeat stations on Romanian territory between 1964 and 1981 is discussed in terms of internal secular and solar cycle related variations. Their geographical distribution is accounted for by the magnetic and electric structure of the interior of the Earth. The effects of magnetic and electromagnetic induction caused by the solar cycle related variation were evaluated.  相似文献   

7.
利用2019年度大华北秋季复测156个测点的流动地磁矢量资料,获得河北及周边地区岩石圈磁场半年变化图,分析归纳河北及周边地区岩石圈磁场的总体变化特征,并研究测区内2019年12月3日河北怀安MS3.4地震和2019年12月5日河北丰南MS4.5地震前岩石圈磁场局部变化和异常特征。结果表明:丰南MS4.5地震发生在H矢量的转向区,总强度F负异常的高值区,D要素负异常的高梯度带和Z值变化的高值区;怀安MS3.4地震则发生在H矢量幅值弱化且转向区,D要素零值线附近的正值区和Z值变化的低值区。  相似文献   

8.
The diurnal-variation anomalies of the vertical-component in geomagnetic field are mainly the changes of phase and amplitude before strong earthquakes. On the basis of data recorded by the network of geomagnetic observatories in China for many years, the anomalous features of appearance time of the minima of diurnal variations (i.e, low-point time) of the geomagnetic vertical components and the variation of their spatial distribution (i.e, phenomena of low-point displacement) have been studied before over 30 strong earthquakes with M S≥6.6 such as Kunlunshan M S=8.1 earthquake on November 14, 2001; Bachu-Jashi M S=6.8 earthquake on February 24, 2003; Xiaojin M S=6.6 earthquake on September 22, 1989, etc. There are good relations between such rare phenomena of geomagnetic anomalies and the occurrence of earthquakes. It has been found that most earthquakes occur in the vicinity of the boundary line of sudden change of the low-point displacement and generally within four days before and after the 27th or 41st day counting from the day of appearance of the anomaly. In addition, the anomalies of diurnal-variation amplitude near the epicentral area have been also studied before Kunlunshan M S=8.1 earthquake and Bachu-Jiashi M S=6.8 earthquake. Foundation item: National Science Technology Tackle Key Project during the Tenth Five-year Plan (2001BA601B01-05-04)  相似文献   

9.
The relation of the Kp index of geomagnetic activity to the solar wind electric field (E SW) and the projection of this field onto the geomagnetic dipole has been estimated. An analysis indicated that the southward component of the IMF vector (B z < 0) is the main geoeffective parameter, as was repeatedly indicated by many researchers. The presence of this component in any combinations of the interplanetary medium parameters is responsible for a high correlation between such combinations and geomagnetic activity referred to by the authors of different studies. Precisely this field component also plays the main role in the relation between the Kp index and the relative orientation of E SW and the Earth’ magnetic moment.  相似文献   

10.
本文提出了将主成分分析方法和地磁日变分析方法相结合以从较强干扰背景中提取相对较弱地震地磁信息的一种新思路.具体以1998年日本岩手县北部6.1级地震为例,选用三个地磁观测台资料进行研究.利用调和分析方法得到了各台基于多次谐波拟合的地磁日变曲线,在此基础上对各台的地磁日变形态进行了研究,发现距震中最近地磁台的日变形态在地震前大约两周出现了明显的异常,而其他两个距离震中相对较远的观测台日变形态基本正常.最后,将主成分分析方法应用于上述拟合地磁日变结果,得到了各主成分及其所占能量比的时间变化,结果表明在地震前两周左右第二主成分所占能量比显著增加,而且距离震中最近的台站的上述变化明显高于另两个较远的台站.上述结果表明地震前两周左右检测到的地磁日变异常可能与震中附近地下电阻率的变化或孕震过程中产生的电磁信号存在一定关系,相关研究结果有助于加深对地震电磁现象的认识和理解.  相似文献   

11.
Method of short-term forecast intensity of geomagnetic storms, expected by effect Solar wind magnetic clouds in the Earth’s magnetosphere is developed. The method is based calculation of the magnetic field clouds distribution, suitable to the Earth, the initial satellite measurements therein components of the interplanetary magnetic field in the solar ecliptic coordinate system. Conclusion about the magnetic storm intensity is expected on the basis of analysis of the dynamics of the reduced magnetic field Bz component clouds and established communication intensity of geomagnetic storms on Dst-index values and Bz component of the interplanetary magnetic field vector.  相似文献   

12.
This review deals with how the changes of the large-scale solar magnetic fields are related to the occurrence of solar phenomena, which are associated with geomagnetic storms. The review also describes how artificial neural networks have been used to forecast geomagnetic storms either from daily solar input data or from hourly solar wind data. With solar data as input predictions 1–3 days or a month in advance are possible, while using solar wind data as input predictions about an hour in advance are possible. The predictions one hour ahead of the geomagnetic storm indexD st from only solar wind input data have reached such high accuracy, that they are of practical use in combination with real-time solar wind observations at L1. However, the predictions days and a month ahead need to be much improved in order to be of real practical use.  相似文献   

13.
Geomagnetic storms are large disturbances in the Earth's magnetosphere caused by enhanced solar wind–magnetosphere energy transfer. One of the main manifestations of a geomagnetic storm is the ring current enhancement. It is responsible for the decrease in the geomagnetic field observed at ground stations. In this work, we study the ring current dynamics during two different levels of magnetic storms. Thirty-three events are selected during the period 1981–2004. Eighteen out of 33 events are very intense (or super-intense) magnetic storms (Dst ⩽−250 nT) and the remaining are intense magnetic storms (−250<Dst ⩽−100 nT). Interplanetary data from spacecraft in the solar wind near Earth's orbit (ACE, IMP-8, ISEE-3) and geomagnetic indices (Dst and Sym-H) are analyzed. Our aim is to evaluate the interplanetary characteristics (interplanetary dawn–dusk electric field, interplanetary magnetic field component BS), the ε parameter, and the total energy input into the magnetosphere () for these two classes of magnetic storms. Two corrections on the ε energy coupling function are made: the first one is an already known correction in the magnetopause radius to take into account the variation in the solar wind pressure. The second correction on the Akasofu parameter, first proposed in this work, accounts for the reconnection efficiency as a function of the solar wind ram pressure. Geomagnetic data/indices are also employed to study the ring current dynamics and to search for the differences in the storm evolution during these events. Our corrected ε parameter is shown to be more adequate to explain storm energy balance because the energy input and the energy dissipated in the ring current are in better agreement with modern estimates as compared with previous works. For super-intense storms, the correction of the Akasofu ε is on average a scaling factor of 3.7, whilst for intense events, this scaling factor is on average 3.4. The injected energy during the main phase using corrected ε can be considered a criterion to separate intense from very intense storms. Other possibilities of cutoff values based on the energy input are also investigated. A threshold value for the input energy is much more clear when a new classification on Dst=−165 nT is considered. It was found that the energy input during storms with Dst<−165 nT is double of the energy for storms with Dst>−165 nT.  相似文献   

14.
The time variations in the CR geomagnetic cutoff rigidity and their relation to the interplanetary parameters and the Dst index during a strong magnetic storm of November 18–24, 2003, have been analyzed. The Tsyganenko (Ts03) model of a strongly disturbed magnetosphere [Tsyganenko, 2002a, 2002b; Tsyganenko et al., 2003] have been used to calculate effective geomagnetic thresholds with the help of the method for tracing CR particle trajectories in the magnetospheric magnetic field. The geomagnetic thresholds have been calculated using the method of global spectrographic survey (GSS), based on the data from the global network of CR stations, and the results have been compared with the effective geomagnetic cutoff rigidities. The daily anisotropy of effective geomagnetic thresholds during the Dst variation minimum have been estimated. The relation of the theoretical and experimental geomagnetic thresholds, obtained using the GSS method, to the interplanetary parameters and Dst variation is analyzed. The Dst variations, IMF B z , and solar wind density are most clearly defined in the geomagnetic thresholds during this storm. The correlation between B y and experimental geomagnetic thresholds is higher than such a correlation between this parameter and theoretical thresholds by a factor 2–3, which suggests that a real dawn-dusk asymmetry during this storm was stronger than such an asymmetry represented by the Ts03 model.  相似文献   

15.
The method for searching statistical relations between different solar wind parameters and the aa index of geomagnetic activity, which formed the basis for restoring the average annual values of some of these parameters (indicating that the solar coronal magnetic field increased by not more than 10% during the last century), has been proposed.  相似文献   

16.
Ground-based geomagnetic Pc5 (2–7 mHz) pulsations, caused by the passage of dense transients (density disturbances) in the solar wind, were analyzed. It was shown that intensive bursts can appear in the density of the solar wind and its fluctuations, up to Np ~ 30–50 cm3, even during the most magnetically calm year in the past decades (2009). The analysis, performed using one of the latest methods of discrete mathematical analysis (DMA), is presented. The energy functional of a time-series fragment (called “anomaly rectification” in DMA terms) of two such events was calculated. It was established that fluctuations in the dynamic pressure (density) of the solar wind (SW) cause the global excitation of Pc5 geomagnetic pulsations in the daytime sector of the Earth’s magnetosphere, i.e., from polar to equatorial latitudes. Such pulsations started and ended suddenly and simultaneously at all latitudes. Fluctuations in the interplanetary magnetic field (IMF) have turned up to be less geoeffective in exciting geomagnetic pulsations than fluctuations in the SW density. The pulsation generation mechanisms in various structural regions of the magnetosphere were probably different. It was therefore concluded that the most probable source of ground-based pulsations are fluctuations of the corresponding periods in the SW density.  相似文献   

17.
基于虚拟日变台进行地磁矢量数据日变通化方法   总被引:3,自引:1,他引:2       下载免费PDF全文
流动地震地磁矢量观测是一种获取地震前兆异常的方法,试验研究和观测实例表明,地震孕育引起的地磁场异常变化量级较小,因此在观测、数据处理过程中都要尽可能消除误差提高精度.本文主要从地磁矢量数据日变通化精度方面开展讨论,首先使用反距离加权插值法由泰安、武汉、崇明、杭州4个地磁台观测资料计算出蒙城地磁台相应的虚拟地磁数据,其磁偏角、水平分量、垂直分量三个要素与真实观测值的相关系数分别高达0.9987、0.9946和0.9806,验证了反距离加权插值方法对地磁观测数据空间插值的有效性.其次,选择东部和西部测区分别使用反距离加权插值方法建立各地磁矢量测点位置的虚拟日变台并用其进行通化,实例计算结果表明,该方法可有效提高日变通化精度,对于地磁台站稀疏地区更具实际应用价值.  相似文献   

18.
选用甘肃嘉峪关、兰州和天水地磁台2011—2013年的观测数据,重点研究地磁垂直向日变化波形下行段的赫斯特指数变化的时序特征。结果表明,在此3年内,嘉峪关台和兰州台地磁垂直向日变化波形下行段的赫斯特指数变化范围分别是0.08和0.06,天水台在2012年存在一个赫斯特指数幅度超过正常变化范围的过程,在此过程完成后的2013年7月22日,在距离天水130km的漳县和岷县交界发生M6.6地震。结合其他学者的研究结果,认为这一赫斯特指数的异常变化过程可能反映了区域性地球深部(下地壳与上地幔)热物质运移变化而引起地球局部居里面变化,也可能是地震孕育过程在地磁日变中的表征。这一发现有益于进一步研究地磁日变异常的机理、震磁关系以及地震预报的探索。  相似文献   

19.
汶川8.0级地震前地磁日变化异常综合分析   总被引:2,自引:0,他引:2  
运用地磁低点位移、地磁加卸载响应比和地磁Z分量日变幅逐日比3种地磁分析方法,分析了2008年5月12日汶川8.0级地震前的地磁前兆异常现象。研究发现,运用上述3种方法,汶川地震前出现多次异常,地震发生在异常预测线集中交汇区域。综合分析结果显示,地磁多方法综合分析可以有效提升地震预测的精确性。文章还讨论了地磁日变化畸变异常机理问题。  相似文献   

20.
利用空间相关法对2013年岷县—漳县6.6级地震前后151个台站地磁垂直分量日变化进行分析,结果显示:(1)2013年7月3日、4日在震中附近分别出现16和17个台站的地磁Z分量日变化明显反相位异常,具有明显的分界线。(2)利用S变换方法对分界线两侧的天水和兰州台的Z分量日变化进行分频率相关系数计算,发现7月3日、4日的地磁Z分量的日变化均在6 h左右的周期出现负相关变化。其他时段未出现类似变化,认为岷县—漳县6.6级地震前地磁Z分量日变化异常产生的反相位异常主要在6 h左右。此外,还对异常产生的机理进行了解释。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号