首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross‐shore grading of sediment has been observed on the surface of estuarine beaches but the swash zone processes responsible for this grading have not been measured. This study was conducted to provide an explanation for the cross‐shore grading of sediment on a predominantly sandy estuarine foreshore. Data on wave and swash characteristics and sediment trapped in the uprush and backwash during 25 swash events were gathered from mid‐rising to mid‐falling tide on a small transgressive barrier in Delaware Bay, New Jersey, USA. Sediment is predominantly quartz and feldspar, medium to coarse sands with a gravel fraction of granules and pebbles. Wave energies increased with tidal rise. The percentage of gravel in transport in the uprush and backwash is similar (11% and 13%) during the rising tide when the swash zone is at mid‐foreshore, decreases in the uprush (9%) and increases in the backwash (18%) when the swash zone is on the upper foreshore. When the swash zone is at mid‐foreshore on the falling tide, the quantity of gravel in the backwash (30%) is greater than in the uprush (24%). The low proportion of gravel within the foreshore prior to trapping, and the increase in the percentage of gravel when the waves and swash are on the upper foreshore, suggests that the step is the primary source of gravel high on the foreshore. The size of the step increases as wave heights increase with tidal rise. The rate of delivery of gravel into the swash is enhanced by sediment entrained during wave breaking and interaction of the uprush with the previous backwash. The lag in the rate of step migration relative to breaker migration during the falling tide increases the likelihood of mining gravel from the step and subsequent transport in the uprush and backwash. These findings are important for low energy estuarine beaches sensitive to small changes in tidal range and wave energy that cause sedimentological change across the foreshore.  相似文献   

2.
On different time scales of suspended matter dynamics in the Weser estuary   总被引:1,自引:0,他引:1  
Long-term observations in the Weser estuary (Germany) between 1983 and 1997 provide insight into the response of the estuarine turbidity maximum (ETM) under a wide range of conditions. In this estuary the turbidity zone is closely tied to the mixing zone, and the positions of the ETM and the mixing zone vary with runoff. The intratidal suspended particulate matter (SPM) concentrations vary due to deposition during slack water periods, subsequent resubsequent and depletion of temporarily-formed and spatially-limited deposits during the following ebb or flood, and subsequent transport by tidal currents. The corresponding time history of SPM concentrations is remarkably constant over the years. Spring tide SPM concentrations can be twice the neap tide concentrations or even larger. A hysteresis in SPM levels between the falling and rising spring-neap cycle is attributed to enhanced resuspension by the stronger spring tidal currents. There is evidence that the ETM is pushed up-estuary during times of higher mean water levels due to storms. During river floods the ETM is flushed towards the outer estuary. If river floods and their decreasing parts occur during times of relatively high mean water levels, the ETM seems to be maintained in the outer estuary. If river floods and their decreasing parts occur during times of relatively low mean water levels, the ETM seems to loose inventory and may need up to half a year of non-event conditions to gain its former magnitude. During this time seasonal effects may be involved. Analyses of storm events and river floods have revealed that the conditions in the seaward boundary region play an equally important role for the SPM dynamics as those arising from the river.  相似文献   

3.
Data are presented from several experiments in the freshwater-saltwater interface (FSI) region of the Tamar Estuary. Longitudinal surveys of salinity and suspended particulate matter (SPM) at high water showed that the location of the FSI could be predicted in terms of a power-law regression with freshwater runoff. Longitudinal transects also were surveyed over periods of several hours. The FSI was observed to advect into the region on the flood with strong vertical mixing. After high water, stratification became intense as fresher water ebbed in the surface layers. The near-bed water in the stratified region began to ebb between 2 h and 3 h before low water. A model of the vertical structure of longitudinal currents showed that the enhanced stratification on the ebb, coupled with the longitudinal density gradient, partly produced this long period of slack, near-bed currents following high water. A strong turbidity maximum (TM) occurred during spring tides and was located slightly up-estuary of the FSI at high water. Longitudinal transects during a period of low freshwater runoff and large neap tide showed that at the start of the flood the TM was associated with the FSI region. As the FSI advected up-estuary on the flood there was considerable resuspension of sediment at the FSI. Some of this SPM moved with the FSI and reached the limit of saline intrusion, where it formed a slowly-eroding TM as particles settled during the long, high-water slack period. As the near-bed currents increased on the ebb and the FSI moved down-estuary, strong vertical mixing and resuspension of recently deposited sediment occurred in the unstratified water behind the FSI and the associated TM advected down-estuary. Additional effects were present with stronger tides and increased runoff.  相似文献   

4.
为进一步研究南海北部陆坡海洋动力过程对深海海底边界层的影响,研发了“深海海底边界层原位观测系统(In-situ Observation System for Bottom Boundary Layer in Abyssal Sea)”,ABBLOS。观测系统主体为坐底式深海运载平台,最大工作水深可达6 700 m(实际工作水深取决于搭载设备的耐压水深),是研究深海海底边界层问题的重要技术创新。观测平台由上下两部分框架结构组成,上部框架用于搭载和回收观测设备,下部支撑架为配重,并且用于提供距离海底1 m的观测空间;同时创新性地设计了“卡槽定位-螺栓紧固”的连接方式连接上下两部分,连接方式简单可靠,保证了平台回收成功率。ABBLOS集成了75 k-ADCP、高频ADCP、ADV、高精度压力计、海底摄像机等设备,以及甲烷、温盐深、浊度、溶解氧、氧化还原电位等传感器,首次实现了内波、中尺度涡等海洋动力过程与海底边界层物理化学参数的动态变化同步观测,特别是可以观测距离海底1 m高度范围的水体流速剖面,并且达到7 mm一层的垂向空间分辨率。研制完成后,2020年在南海北部陆坡神狐海域655 m和1 405 m水深处分别成功布放并回收,观测时间共计34天,采集到观测站位上覆海水的流速剖面结构,捕捉到了平均周期为1天1次的内波作用过程,以及海底边界层的多种物理化学参数。初步分析655 m水深处的观测数据后,发现深海海底边界层的温度、压力、溶解氧、密度和盐度等参数受控于海洋潮汐过程,尤其是温度和压力的变化基本与潮汐周期同步。海底边界层氧化环境较为稳定,甲烷浓度由高变低,但是基本在海洋溶解甲烷平均浓度范围内。与潮汐相比,内孤立波对深海海底边界层水体的影响程度较小,但是明显可以引起沉积物的再悬浮,引起的海底边界层的海水浊度从背景值的0.01 NTU增大到48 NTU,海底摄像机也记录到了内孤立波期间深海底层海水突然变浑浊的过程,说明南海内孤立波可以影响海底沉积物的输运。  相似文献   

5.
A series of cruises was carried out in the estuarine turbidity maximum (ETM) region of Chesapeake Bay in 1996 to examine physical and biological variability and dynamics. A large flood event in late January shifted the salinity structure of the upper Bay towards that of a salt wedge, but most of the massive sediment load delivered by the Susquehanna River appeared to bypass the ETM zone. In contrast, suspended sediments delivered during a flood event in late October were trapped very efficiently in the ETM. The difference in sediment trapping appeared to be due to increases in particle settling speed from January to October, suggesting that the fate of sediments delivered during large events may depend on the season in which they occur. The ETM roughly tracked the limit of salt (defined as the intersection of the 1 psu isohaline with the bottom) throughout the year, but it was often separated significantly from the limit of salt with the direction of separation unrelated to the phase of the tide. This was due to a lag of ETM sediment resuspension and transport behind rapid meteorologically induced or river flow induced motion of the salt limit. Examination of detailed time series of salt, suspended sediment, and velocity collected near the limit of salt, combined with other indications, led to the conclusion that the convergence of the estuarine circulation at the limit of salt is not the primary mechanism of particle trapping in the Chesapeake Bay ETM. This convergence and its associated salinity structure contribute to strong tidal asymmetries in sediment resuspension and transport that collect and maintain a resuspendable pool of rapidly settling particles near the salt limit. Without tidal resuspension and transport, the ETM would either not exist or be greatly weakened. In spite of this repeated resuspension, sedimentation is the ultimate fate of most terrigenous material delivered to the Chesapeake Bay ETM. Sedimentation rates in the ETM channel are at least an order of magnitude greater than on the adjacent shoals, probably due to focusing mechanisms that are poorly understood.  相似文献   

6.
本文从海洋物理学角度出发,以内波波动理论为基础,通过建立两个不同密度的水层界面上的两层模型的波动方程对内波的传播特征进行定量解释。通过定量解释表达式可知:内波在两个不同密度的水层界面上传播时,两层内波流之水平速度方向相反,保持通过海底的整个截面的流通量为零。在密度界面之下,波谷处内波流的运动方向与内波前进方向相反,由于波谷相对于波峰更接近于海底,即波谷处截面积较小,故波谷下方的流速较波峰下方的流速大,容易形成与内波前进方向相反的单向优势流动,这种单向优势流动搬运沉积物的总趋势与内波的前进方向相反。  相似文献   

7.
塔中地区中晚奥陶世内波、内潮汐沉积   总被引:35,自引:7,他引:28  
现代海底普遍发育由内波、内潮汐引起的深水牵引流,内波、内潮汐不仅可形成各种厘米级的深水牵引流沉积构造,还可建造千米级的大型沉积物波。这种大型沉积物波既可沿斜坡向下迁移,也可沿斜坡向上迁移。在古代地层记录中已发现各种厘米级的内波、内潮汐沉积单元,但尚未发现内波成因的大型沉积物波。塔中地区中上奥陶统碎屑岩段内发育内波及内潮汐形成的各种牵引流沉积构造单元。通过详细的岩心观察,识别出 4种内波、内潮汐沉积微相类型及 5种基本垂向沉积层序。此外,通过地震剖面分析,在研究区中上奥陶统陆坡相中识别出顺坡向上迁移的大型沉积物波,该沉积物波的特征与现代海底发育的沉积物波的特征类似,运用内波理论可对其成因进行合理的解释。  相似文献   

8.
珠江口磨刀门枯季水文特征及河口动力过程   总被引:15,自引:0,他引:15       下载免费PDF全文
根据磨刀门2003年12月9~15日的大、中潮同步水文观测资料,分析了磨刀门枯季的潮汐、潮流、余流、悬移质含沙量、盐度等水文特征,并对枯季河口动力过程,如咸淡水混合、河口射流等进行了初步研究。在枯季由于径流较弱,潮流成为主要动力。表层由于受径流和风的影响余流基本上沿河道走向向下游,中层以下有稳定的向上的余流存在。枯季磨刀门含沙量较小(<1 kg/m3),盐度在平面上和垂向上均有一定变化。磨刀门枯季咸淡水混合类型为缓混合型,各站盐度分层参数均在0.01~1.0。从实测流速的分布情况来看,河口下层有反向的水流,存在明显的因密度差而形成的密度环流。根据枯季实测资料计算所得的密度弗劳德数,磨刀门枯季以浮力射流为主。  相似文献   

9.
Wave–current interaction (WCI) is important in modulating hydrodynamics and water mixing in estuaries, and thereby the transport of water-borne materials. However, the effects of WCI on salt transport and salt intrusion in estuaries during storm events have been rarely examined. In the present study, we use a coupled atmosphere–ocean–wave–sediment transport (COAWST) modeling system to investigate the effects of WCI on salt intrusion in the highly stratified Modaomen Estuary during Typhoon Hagupit (2008). The model is validated by the measured wave, water elevation, and surface salinity data, and several diagnostic model experiments are conducted. WCI increases the storm surge by 0.8 m at the peak surge (25% of the total surge height). The wave-breaking-induced momentum flux and the Stokes drift increase the magnitude of the landward flow by 0.3 m s?1 (30% of the total landward flow). In addition, the waves increase water mixing by 2–4 times compared with that without waves. Hence, WCI significantly increases the landward advective salt transport and decreases the steady shear transport. The net effect of the WCI is a significant increase of salt import and salt intrusion during the typhoon event. However, in the aftermath of the storm, the imported salt water is rapidly flushed out by the increased river discharge, and the estuary regains its stratification within one day.  相似文献   

10.
11.
Lateral Saltwater Intrusion in the North Channel of the Changjiang Estuary   总被引:2,自引:0,他引:2  
Saltwater intrusion typically develops in the along-channel direction but exceptions can be found in bifurcated estuaries. Based on the observational data, we found that the saltwater intrusion in the upper reaches of the North Channel (NC) of Changjiang Estuary is dominated by the lateral saltwater intrusion from a small northern outlet (denoted as NONC) of this channel. This phenomenon has severe effects on the freshwater usage in this region. To investigate the underlying mechanisms of this pattern of intrusion, numerical experiments were conducted using a well-validated model. A flux decomposing method was used to decompose the process of saltwater intrusion into several mechanisms. During the neap tide, the saltwater begins to intrude landward into the NONC through shear transport induced by estuarine circulation. During the transition period between the neap tide and the following spring tide, the saltwater that previously reached the NONC further intrudes into the NC via Lagrangian and tidal pumping transports, causing a significant salinity increase in the middle and upper reaches of the NC. During the spring tide and the subsequent middle tide, saltwater intrusion in the NONC retreats. The impacts of the topography of the NONC and the wind stress on this lateral saltwater intrusion were also evaluated in this study.  相似文献   

12.
The seasonal cycling of fine sediment in the upper reaches of a hypothetical macrotidal estuary and its possible consequences for the behaviour of a contaminant which partitions between dissolved and particulate forms are investigated theoretically. The simplest one-dimensional models are used as a starting point for future studies: (a) a within-tide hydrodynamic (tidal) model, (b) an associated sediment transport model and (c) a tidally-averaged contaminant dispersal model. The calculations are made for a four-year period and show that a cyclic migration of mobile sediment occurs in the upper reaches of the estuary. Sediment accumulates during spring to late summer, and is redistributed in the lower estuary during high runoff periods (autumn and winter). For a fluvial input of contaminant, the dissolved contaminant levels during summer are greatly depressed below conservative mixing values in the upper (turbidity maximum) region, whereas they are slightly enhanced in the lower reaches. During winter, the levels are substantially greater than conservative values except for a slight depression at very low salinities. Thus, sediment here acts as a source of contaminant for most of the salinity range. For a marine input of contaminant, levels are enhanced above the conservative mixing line at low salinities throughout the year, the effect being much larger during summer.  相似文献   

13.
现场试验表明,三角架观测系统稳定性良好,获取了边界层内多层位、连续的温、盐、流速、浊度同步观测数据,适用于浅海近底部沉积动力过程高分辨率观测及物质输运研究。观测结果显示:观测期间,边界层内存在向陆的余流,并呈现逐渐减小的趋势,其主要由涨、落潮流的不对称造成,大风天气和密度环流亦是影响余流强弱的重要因素;观测期间多数时刻底部切应力大于起动切应力,底质沉积物可产生明显的搬运甚至再悬浮;悬沙浓度对沉积动力的响应在涨、落潮,大、小潮阶段均有各自的特点,水动力的变化、潮流加/减速时间的长短、床面泥沙的供应量、上部水体泥沙的沉降是导致悬沙浓度变化的主要原因;底部边界层内,涨、落潮期间不对称输沙导致潮周期内悬沙净向河口湾内输运。  相似文献   

14.
潮汐强度与咸潮上溯距离试验   总被引:1,自引:0,他引:1       下载免费PDF全文
采用物理模型实验方法对不同潮差驱动下咸水入侵距离进行实验研究,结果表明存在潮差临界值使得咸水入侵距离最短,当潮差小于该临界值,咸水入侵距离随潮差增大呈快速减小趋势,而大于该临界值则呈缓慢增大趋势。基于实验数据对盐淡水混合进行理论分析,揭示了实验现象的产生机制:①潮差增大过程中盐淡水混合由高度分层变为均匀混合,导致驱动咸潮入侵的动力发生了改变;②当盐淡水为弱混合类型,盐淡水高度分层,重力环流输运是盐进入河口的主要方式,潮汐强度增大减小了盐淡水分层,减弱了重力环流的输运作用,因此入侵距离变小;③当盐淡水为强混合类型,盐淡水混合均匀,重力环流输运作用大大减弱,潮汐扩散成为主要的输运方式,潮汐增强使得扩散能力增大,因此潮汐强度越大,咸潮入侵距离越大。  相似文献   

15.
We describe the tidal circulation and salinity regime of a coastal plain estuary that connects to the ocean through a flood tide delta. The delta acts as a sill, and we examine the mechanisms through which the sill affects exchange of estuarine water with the ocean. Given enough buoyancy, the dynamics of tidal intrusion fronts across the sill and selective withdrawal (aspiration) in the deeper channel landward appear to control the exchange of seawater with estuarine water. Comparison of currents on the sill and stratification in the channel reveals aspiration depths smaller than channel depth during neap tide. During neap tide and strong vertical stratification, seawater plunges beneath the less dense estuarine water somewhere on the sill. Turbulence in the intruding bottom layer on the sill promotes entrainment of fluid from the surface layer, and the seawater along the sill bottom is diluted with estuarine water. During ebb flow, salt is effectively trapped landward of the sill in a stagnant zone between the aspiration depth and the bottom where it can be advected farther upstream by flood currents. During spring tide, the plunge point moves landward and off the sill, stratification is weakened in the deep channel, and aspiration during ebb extends to the bottom. This prevents the formation of stagnant water near the bottom, and the estuary is flooded with high salinity water far inland. The neapspring cycle of tidal intrusion fronts on flood coupled with aspiration during ebb interacts with the sill to play an important role in the transport and retention of salt within the estuary.  相似文献   

16.
深水牵引流形成的床形单元组合   总被引:10,自引:2,他引:8       下载免费PDF全文
海底上发育深水牵引流形成的各种床形单元,包括等深岩丘及大型沉积物波在内的不同床形单元有规律地组合在一起,对于此类床形组合的确切形成机理,目前仍在探讨之中。本文经详细研究得出以下几点进展:① 运用内波理论可对海底上大型沉积物波各组成单元的成因作出较为合理的解释,向深海方向传播的内波可形成向上坡方向迁移的大型沉积物波;② 在等深流与上覆低密度水体之间的界面上具备产生大规模界面内波的条件;③ 某些底流成因的床形单元组合属于等深流与等深流所引发内波的联合作用的产物,首次提出了等深流-内波沉积组合的概念;④ 在现代海底上及古代地层记录中均发现了等深流-内波沉积组合的实例;⑤ 建立了一个古代地层记录中的深水牵引流沉积组合综合模式。  相似文献   

17.
利用黄河下游1950-1985年间218场洪水资料,讨论了黄河下游花园口河段洪水起涨和回落过程中河床形态调整的不同过程.在洪水起涨阶段,花园口河段河床宽深比以增大为主,且洪水最大含沙量越大,宽深比增大的幅度越大,洪峰增幅比在3以下时,宽深比随最大含沙量的增大而增大,洪峰增幅比在3以上时,呈随含沙量的增大而减小的趋势.在洪水回落阶段,宽深比的变化方向则相反.在含沙量较小时,河床宽深比的减小主要发生在洪水起涨阶段,在含沙量很大时,河床宽深比的减小主要发生在洪水回落阶段.  相似文献   

18.
中国沿海地区海水入侵现状与分析   总被引:16,自引:1,他引:15  
首先介绍了我国存在着严重海水入侵灾害的三大河三角洲——长江三角洲、珠江三角洲、老黄河三角洲(莱州湾地区)海水入侵现状。长江口和珠江口海水入侵主要受河流入海径流量和河口潮汐影响,莱州湾地区海水入侵的产生则主要是人类过量开采地下淡水所致。地下淡水和咸水之间存在着一个动态平衡的混合界面,淡水储存一旦减少,平衡状态被打破,该界面便会向陆移动。最终产生海水入侵。海水入侵的发生受着诸多因素制约,在中国沿海地区。地下淡水的储备与人类的用水需求之间存在着矛盾,人类过量开采地下淡水是产生海水入侵的主导因素。因而开源节流、人工回灌地下淡水、阻隔水流等措施在防治海水入侵方面是行之有效的。  相似文献   

19.
A model study of turbidity maxima in the York River estuary,Virginia   总被引:2,自引:0,他引:2  
A three-dimensional numerical model is used to investigate the mechanisms that contribute to the formation of the turbidity maxima in the York River, Virginia (U.S.). The model reproduces the basic features in both salinity and total suspended sediments (TSS) fields for three different patterns. Both the prominent estuary turbidity maximum (ETM) and the newly discovered secondary turbidity maximum (STM) are simulated when river discharge is relatively low. At higher river inflow, the two turbidity maxima move closer to each other. During very high river discharge event, only the prominent turbidity maximum is simulated. Diagnostic model studies also suggest that bottom resuspension is an important source of TSS in both the ETM and the STM, and confirm the observed association between the turbidity maxima and the stratification patterns in the York River estuary. The ETM is usually located near the head of salt intrusion and the STM is often associated with a transition zone between upriver well mixed and downriver more stratified water columns. Analysis of the model results from the diagnostic studies indicates that the location of the ETM is well associated with the null point of bottom residual flow. Convergent bottom residual flow, as well as tidal asymmetry, is the most important mechanisms that contribute to the formation of the STM. the STM often exists in a region with landward decrease of bottom residual flow and net landward sediment flux due to tidal asymmetry. The channel depth of this region usually decreases sharply upriver. As channel depth decreases, vertical mixing increases and hence the water column is better mixed landward of the STM.  相似文献   

20.
A field study was undertaken on the Florida Bay side of Fiesta Key, Florida, to identify the chemical characteristics of a previously unexplored offshore groundwater system and to define the critical parameters affecting groundwater movement and interaction with sediment pore fluids and bedrock. Emphasis was placed on the upper 2 meters of bedrock, where groundwater recharge and discharge potentials are maximized, along a 100 meter transect extending from the island margin. Bedrock cores were used to describe Pleistocene depositional textures, and were sampled at discrete depths to determine the extent of water-rock interaction. Piezometers installed into each core hole were used to monitor surface and ground water tide levels, and for the systematic collection of water samples for a large suite of chemical determinations.Aqueous chemical data indicate that these groundwaters are marine in origin, anoxic, and moderately hypersaline (S = 36–40). Exchange of bedrock pore fluids with overlying Bay waters is restricted by a layer of Holocene sediment and a discontinuous soilstone crust formed at the modern bedrock surface. Groundwater chemistry near the sediment/bedrock interface is marked by elevated concentrations of total alkalinity and Ca2+, and by significant Mg2+ depletion. These waters likely acquired their unusual chemistry by mixing between deeper groundwaters and overlying, early diagenetically altered, sediment porewaters. High alkalinity and calcium concentrations presumably result from the combination of the effects of aerobic metabolism, carbonate dissolution, and sulfate reduction. Mg-depletion most likely resulted from the precipitation of Mg-calcite. These unusual chemistries disappear by 2 m depth in the groundwater system, where Ca2+ and Mg2+ concentrations are similar to those expected for seawater under slightly hypersaline conditions.The Pleistocene bedrock contains low Mg, Sr, F, and P concentrations relative to the overlying unconsolidated Holocene carbonate sediments. This is consistent with the diagenetic recrystallization processes that the bedrock has undergone. Hydraulic conditions favor the net recharge of Florida Bay seawater to the groundwater system, but there are insufficient tide data to identify cyclical water exchange rates or groundwater flow patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号