首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We derived Sr, Y, Zr, and Ce abundances for a sample of 74 cool dwarfs and subgiants with iron abundances, [Fe/H], between 0.25 and ?2.43. These estimates were obtained using synthetic spectra, assuming local thermodynamic equilibrium (LTE) for Y, Zr, and Ce, allowing for non-LTE conditions for Sr. We used high-resolution (λ/Δλ?40 000 and 60 000) spectra with signal-to-noise ratios between 50 and 200. We find that the Zr/Y, Sr/Y, and Sr/Zr ratios for the halo stars are the same in a wide metallicity range (?2.43 ≤ [Fe/H] ≤ ?0.90), within the errors, indicating a common origin for these elements at the epoch of halo formation. The Zr/Y ratios for thick-disk stars quickly decrease with increasing Ba abundance, indicating a lower rate of production of Zr compared to Y during active thick-disk formation. The thick-disk and halo stars display an increase in the [Zr/Ba] ratio with decreasing Ba abundance and a correlation of the Zr and Eu overabundances relative to Ba. The evolutionary behavior of the abundance ratios found for the thick-disk and halo stars does not agree with current models for the Galaxy’s chemical evolution. The abundance ratios of Y and Zr to Fe and Ba for thin-disk stars, as well as the abundance ratios within each group, are, on average, solar, though we note a slight decrease of Zr/Ba and Zr/Y with increasing Ba abundance. These results provide evidence for a dominance of asymptotic-giant-branch stars in the enrichment of the interstellar medium in heavy elements during the thin-disk epoch, in agreement with the predictions of the nucleosynthesis theory for the main s-process component.  相似文献   

2.
The chemical compositions of the atmospheres of six metal-poor stars are analyzed. Spectra with signal-to-noise ratios of no less than 100 and a resolution of R≈17 000 were obtained using the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. The abundances of Li, O, α-process elements (Mg, Si, Ca, Ti), Na, K, Sc, iron-peak elements (Cr, Mn, Fe, Ni, Cu, Zn), and s-process elements (Y, Ba) are derived. The star G251-54 ([Fe/H]=?1.55, T eff=5541 K, logg=3.58) is deficient in some elements compared to both stars with similar metallicities and the Sun. The atmosphere of G251-54 has the following elemental abundances relative to iron: [O/Fe]=+0.47, [α/Fe]≈?0.3, [Na/Fe]=?0.60, [Sc/Fe]=?0.57, [Cr, Ni, Fe]≈0, [Zn/Fe]=+0.16, [Cu/Fe]=?0.66, [Y/Fe]=?0.70, and [Ba/Fe]=?1.35. The remaining five stars have metallicities in the range ?1.6<[Fe/H]相似文献   

3.
We have determined the atmospheric abundances of Y, Ba, La, Ce, Pr, Nd, and Eu for a sample of 171 giants selected as clump giants with metallicities [Fe/H] between ?0.7 and 0.3 dex, based on photometric criteria. In our analysis, we assumed local thermodynamic equilibrium and fit the parameters of model atmospheres to high-resolution (R = 42 000) echelle spectra with high signal-to-noise ratios. The Ba and Eu abundances were derived using synthetic spectra, including hyperfine structure. We find no significant difference in the abundances of s-or r-process neutron-capture elements between clump giants and ascending-branch giants selected by us earlier. We also analyze the relation between the abundances of neutron-capture elements and [Fe/H].  相似文献   

4.
The evolutionary status of the bright peculiar carbon giant TU Gemis fairly uncertain. The possibility that this is aCH star—aGalactic halo star with characteristic chemical-composition anomalies—is considered. Unfortunately, data on the atmospheric chemical composition of TUGem are relatively few and are ambiguous. The results of an analysis of a moderate-resolution optical and near-infrared spectrum of TU Gem obtained on the 2-m telescope of Terskol Peak Observatory (Northern Caucasus) is presented. The atmospheric parameters of TU Gem T eff = 3100 K, C/O = 1.10, and [N/Fe] = 0.0 for the derived metallicity [Fe/H] = 0.0 are taken from [1]. The abundances of Na, Mg, Ca, Ti, and Cr are estimated to be normal or slightly enhanced, and the lithium abundance is log N(Li) = +0.1. The abundances of s-process elements are substantially enhanced in the atmosphere of TU Gem, namely, [s/Fe] ≈ 2, for both light and heavy s-process elements. The range of uncertainty in [Fe/H] is 0.0?0.3, and the uncertainties in other estimates are Δ[M/Fe]≈ ±0.3 and Δ[s/Fe] = ±0.5. The results show that TU Gem is an anomalous carbon giant, but not a CH star.  相似文献   

5.
The properties of the relative abundances of rapid and slow neutron-capture elements are studied using a catalog containing spectroscopic abundance determinations for 14 elements produced in various nuclear-synthesis processes for 90 open clusters. The catalog also contains the positions, ages, velocities, and elements of the Galactic orbits of the clusters. The relative abundances of both r-elements (Eu) and s-elements (Y, Ba, La, and Ce) in clusters with high, elongated orbits and in field stars of the Galactic thin disk display different dependences on metallicity, age, Galactocentric distance, and the elements of the Galactic orbits, supporting the view that these objects have different natures. In young clusters, not only barium, but also the three other studied s-elements display significantly higher relative abundances than field stars of the same metallicity. The relative abundances of Eu are lower in highmetallicity clusters ([Fe/H] > -0.1) with high, elongated orbits than in field giants, on average, while the [Eu/Fe] ratios in lower-metallicity clusters are the same as those in field stars, on average, although with a large scatter. The metallicity dependence of the [O, Mg/Eu] ratios in clusters with high, elongated orbits and in field stars are substantially different. These and other described properties of the Eu abundances, together with the properties of the abundances of primary a-elements, can be understood in a natural way if clusters with high, elongated orbits with different metallicities formed as a result of interactions of two types of high-velocity clouds with the interstellar medium of the Galactic disk: low-metallicity highvelocity clouds that formed from “primordial” gas, and high-metallicity clouds with intermediate velocities that formed in “Galactic fountains.”  相似文献   

6.
The basic parameters and detailed chemical compositions of three asymptotic giant branch stars with similar effective temperatures and surface gravities have been determined using CCD spectra obtained with the échelle spectrometers of the SAO 6-m telescope. The metallicity and chemical composition of the optical counterpart of the OH/IR star IRAS 18123 + 0511 have been derived for the first time. The abundance [X/H] of the iron group elements (V, Cr, Fe) is ?0.45 dex. An overabundance of oxygen, [O/Fe]=1.44 dex, is detected in the atmosphere of this star. The abundances of s-process heavy elements are not enhanced, and are instead underabundant with respect to the metallicity: the average value of [X/Fe] for Y, Zr, Ba, La, Ce, Pr, Nd is ?0.25. The derived abundances confirm that IRAS 18123 + 0511 is in the AGB stage of its evolution. The metallicity of the object, together with its radial velocity V r=78.0 km/s and Galactic latitude |b|=11°, suggest that it belongs to the old disk population. The expansion velocity of the circumstellar envelope, V exp≈21 km/s, is derived from the positions of circumstellar absorption bands. The set of parameters obtained for the low-metallicity, highlatitude supergiants BD + 18° 2757 and BD + 18° 2890 (with iron abundances [Fe/H]=2.10 and ?1.48, respectively) confirm that they are evolved halo stars, and probably UU Her-type stars.  相似文献   

7.
The atmospheric abundances of 30 chemical elements in the halo star HD 221170 are analyzed by fitting synthetic spectra to observed spectra (i) with a resolution of 60 000 and signal-to-noise ratios of about 200 taken with the 1.93-m telescope of the Observatoire de Haute Provence and (ii) with a resolution of 35 000 and signal-to-noise ratios of more than 100 taken with the 2-m telescope of the Terskol Peak Observatory. The derived parameters of the stellar atmosphere are Teff=4475 K, log g=1.0, [Fe/H]=?2.03, Vmicro=1.7 km/s, and Vmacro=4 km/s. The parameters Teff, log g, [Fe/H], and Vmicro can be determined by analyzing the variations of the rms error of the mean iron abundance derived using different model atmospheres. The chemical composition of the star’s atmosphere is analyzed. The abundances of a total of 35 elements in HD 221170 have been derived in this paper and in previous studies. Overall, the abundances of elements lighter than praseodymium are consistent with the elemental abundances in the atmospheres of stars with similar metal deficits. Copper and manganese are underabundant by ?2.9 and ?2.6 dex, respectively, relative to the Sun (when the analysis includes the effects of hyperfine structure). Heavy r-process elements (starting from praseodymium) are overabundant compared to iron-group elements. This can be explained by an enrichment in r-process elements of the material from which the star was formed.  相似文献   

8.
Using atmosphere models based on high-resolution spectra, we have derived the abundances of chemical elements in the atmospheres of seven classical barium stars and compared them with the elemental abundances of moderate barium stars and normal red giants. The behavior of elements up to the iron peak is the same in all three groups of giants, providing evidence that they have a common origin. The dependence of the anomalous abundances of s-process elements on stellar mass and metallicity is qualitatively similar for all three groups, probably indicating that a substantial role is played by the evolutionary phase of the stars. We conclude that the barium-star phenomenon and the overabundances of s-process elements in barium stars cannot be explained as a consequence of binarity alone. The extent to which the s-process elements are overabundant is affected by the mass, metallicity, and evolutionary phase of the given star, and any of these parameters may prove to be important in a specific object.  相似文献   

9.
A differential analysis of the magnesium abundances in 61 F-K dwarfs and subgiants with metallicities ?2.6<[Fe/H]<+0.2 is performed based on published observational data. Fundamental parameters for 36 stars are determined: T eff from V-K and V-R; logg from HIPPARCOS parallaxes, and [Fe/H] and ξt from Fe II lines. The computations allow for non-LTE effects in the formation of the Mg I lines. For most of the stars, the standard errors in the Mg abundances do not exceed 0.07 dex. The metallicity dependence of [Mg/Fe] is analyzed. Magnesium shows a constant overabundance relative to Fe of 0.46±0.06 dex for metallicities ?2.6<[Fe/H] $\overline {[Mg/Fe]} = + 0.22 dex$ ) compared to the [Mg/Fe] values for other stars with similar [Fe/H].  相似文献   

10.
The dependences of the velocity ellipsoids of F-G stars of the thin disk of the Galaxy on their ages and metallicities are analyzed based on the new version of the Geneva-Copenhagen Catalog. The age dependences of the major, middle, and minor axes of the ellipsoids, and also of the dispersion of the total residual velocity, obey power laws with indices 0.25, 0.29, 0.32, and 0.27 (with uncertainties ±0.02). Due to the presence of thick-disk objects, the analogous indices for all nearby stars are about a factor of 1.5 larger. Attempts to explain such values are usually based on modeling relaxation processes in the Galactic disk. Elimination of stars in the most numerous moving groups from the sample slightly reduces the corresponding indices (0.22, 0.26, 0.27, and 0.24). Limiting the sample to stars within 60 pc of the Sun, so that the sample can be considered to be complete, leaves both the velocity ellipsoids and their age dependences virtually unchanged. With increasing age, the velocity ellipsoid increases in size and becomes appreciablymore spherical, turns toward the direction of the Galactic center, and loses angular momentum. The shape of the velocity ellipsoid remains far from equilibrium. With increasing metallicity, the velocity ellipsoid for stars of mixed age increases in size, displays a weak tendency to become more spherical, and turns toward the direction of the Galactic center (with these changes occurring substantially more rapidly in the transition through the metallicity [Fe/H]≈−0.25). Thus, the ellipsoid changes similarly to the way it does with age; however, with decreasing metallicity, the rotational velocity about the Galactic center monotonically increases, rather than decreases (!). Moreover, the power-law indices for the age dependences of the axes depend on the metallicity, and display a maximum near [Fe/H] ≈−0.1. The age dependences of all the velocity-ellipsoid parameters for stars with equal metallicity are roughly the same. It is proposed that the appearance of a metallicity dependence of the velocity ellipsoids for thin-disk stars, recorded from the close to the Sun, is most likely due to the radial migration of stars.  相似文献   

11.
Data from the literature are used to construct a homogeneous catalog of fundamental astrophysical parameters for 145 globular clusters of the Milky Way Galaxy. The catalog is used to analyze the relationships between chemical composition, horizontal-branch morphology, spatial location, orbital elements, age, and other physical parameters of the clusters. The overall globular-cluster population is divided by a gap in the metallicity function at [Fe/H]=?1.0 into two discrete groups with well-defined maxima at [Fe/H]=?1.60±0.03 and ?0.60±0.04. The mean spatial-kinematic parameters and their dispersions change abruptly when the metallicity crosses this boundary. Metal-poor clusters occupy a more or less spherical region and are concentrated toward the Galactic center. Metal-rich clusters (the thick disk subsystem), which are far fewer in number, are concentrated toward both the Galactic center and the Galactic plane. This subsystem rotates with an average velocity of V rot=165±28 km/s and has a very steep negative vertical metallicity gradient and a negligible radial gradient. It is, on average, the youngest group, and consists exclusively of clusters with extremely red horizontal branches. The population of spherical-subsystem clusters is also inhomogeneous and, in turn, breaks up into at least two groups according to horizontal-branch morphology. Clusters with extremely blue horizontal branches occupy a spherical volume of radius ~9 kpc, have high rotational velocities (V rot=77±33 km/s), have substantial and equal negative radial and vertical metallicity gradients, and are, on average, the oldest group (the old-halo subsystem). The vast majority of clusters with intermediate-type horizontal branches occupy a more or less spherical volume ≈18 kpc in radius, which is slightly flattened perpendicular to the Z direction and makes an angle of ≈30° to the X-axis. On average, this population is somewhat younger than the old-halo clusters (the young-halo subsystem), and exhibits approximately the same metallicity gradients as the old halo. As a result, since their Galactocentric distance and distance from the Galactic plane are the same, the young-halo clusters have metallicities that are, on average, Δ[Fe/H] ≈0.3 higher than those for old-halo clusters. The young-halo subsystem, which apparently consists of objects captured by the Galaxy at various times, contains many clusters with retrograde orbits, so that its rotational velocity is low and has large errors, V rot=?23±54 km/s. Typical parameters are derived for all the subsystems, and the mean characteristics of their member globular clusters are determined. The thick disk has a different nature than both the old and young halos. A scenario for Galactic evolution is proposed based on the assumption that only the thick-disk and old-halo subsystems are genetically associated with the Galaxy. The age distributions of these two subsystems do not overlap. It is argued that heavy-element enrichment and the collapse of the proto-Galactic medium occurred mainly in the period between the formation of the old-halo and thick-disk subsystems.  相似文献   

12.
The non-LTE sodium abundances of 100 stars with metallicities ?3<[Fe/H]<0.3 are determined using high-dispersion spectra with high signal-to-noise ratios. The sodium abundances [Na/Fe] obtained are close to the solar abundance and display a smaller scatter than values published previously. Giants (logg<3.8) with [Fe/H]g>3.8) with metallicities ?2<[Fe/H]相似文献   

13.
Based on high-resolution observations (R = 60 000 and 75 000), we have studied the optical spectral variability of the star BD + 48°1220, identified with the IR source IRAS 05040+4820. We have measured the equivalent widths of numerous absorption lines of neutral atoms and ions at wavelengths from 4500 Å to 6760 Å, as well as the corresponding radial velocities. We use model atmospheres to determine the effective temperature T eff = 7900 K, surface gravity log g = 0.0, microturbulence velocity ξ t = 6.0, and the abundances for 16 elements. The star’s metallicity differs little from the solar value: [Fe/H] = ?0.10 dex. The main peculiarity of the chemical composition of the star is a large helium excess, derived from the Hel λ 5876 Å absorption, [He/H] = +1.04, and the equally large oxygen excess, [O/Fe] = +0.72 dex. The carbon excess is small, [C/Fe] = +0.09 dex, and the ratio [C/O] < 1. We obtained an altered relation for the light-metal abundances: [Na/Fe] = +0.87 dex with [Mg/Fe] = ?0.31 dex. The barium abundance is low, [Ba/Fe] = ?0.84 dex. It is concluded that the selective separation of elements onto dust grains of the envelope is probably efficient. The radial velocity of the star measured from photospheric absorption lines over three years of observations varies in the interval V = ?(7–15) km/s. Time-variable differential line shifts have been revealed. The entire set of available data (the luminosity M v ≈ ?5 m , velocity V lsr ≈ ?20 km/s, metallicity [Fe/H] = ?0.10, and peculiarities of the optical spectrum and chemical composition) confirms the status of BD + 48°1220 as a post-AGB star with He and O excesses belonging to the Galactic disk.  相似文献   

14.
We present our analysis of elemental abundances in the atmospheres of 16 classical barium stars derived from high-resolution spectra and model atmospheres. Comparison of the results with analogous data for moderate barium stars and normal red giants shows that the abundance patterns for elements before the iron peak are the same for all three groups of red giants, testifying to a similar origin. For binary systems, we confirm the influence of the orbital period and, hence, the component separation, on the overabundance of s-process elements. The amount of enrichment in s-process elements is also influenced by mass, metallicity, and evolutionary phase. Any of these parameters can be important in individual objects.  相似文献   

15.
An analysis of the abundance of cobalt in atmospheres of red giants, indicates they can be divided into two groups: stars with the normal [Co/Fe] abundance and those with a small [Co/Fe] excess. A comparative analysis of the spectrograms taking into account the effect of superfine splitting provides evidence for a [Co/Fe] excess in some stars. We have also detected physical and kinematical differences between these groups. Stars with a [Co/Fe] excess are related to the thick-disk population of the Galaxy. These stars are older and less massive, display lower metallicities, and have Galactic velocities corresponding to those of thick-disk objects. It is suggested that the observed pattern of a [Co/Fe] excess in the halo and thick disk reflects the chemical composition of the Galaxy at a very early stage of its evolution, when Population III objects existed. The lower abundance excess in the thick disk compared to the halo and the absence of an excess in the thin disk are due to the contributiuon from Type I supernovae at later stages of the Galaxy’s evolution. We have found that the thick disk of the Galaxy displays gradients of its cobalt and iron abundances, possibly providing evidence that the thick disk formed as a result of the collapse of a protogalactic cloud.  相似文献   

16.
A catalog compiling the parameters of 346 open clusters, including their metallicities, positions, ages, and velocities has been composed. The elements of the Galactic orbits for 272 of the clusters have been calculated. Spectroscopic determinations of the relative abundances, [el/Fe], for 14 elements synthesized in various nuclear processes averaged over data from 109 publications are presented for 90 clusters. The compiled data indicate that the relative abundances of primary α elements (oxygen and magnesium) exhibit different dependences on metallicity, age, Galactocentric distance, and the elements of the Galactic orbits in clusters with high, elongated orbits satisfying the criterion (Zmax2 + 4e2)1/2 > 0.40 and in field stars of the Galactic thin disk (Zmax is the maximum distance of the orbit from the Galactic plane in kiloparsec and e is the eccentricity of the Galactic orbit). Since no systematic effects distorting the relative abundances of the studied elements in these clusters have been found, these difference suggest real differences between clusters with high, elongated orbits and field stars. In particular, this supports the earlier conclusion, based on an analysis of the elements of the Galactic orbits, that some clusters formed as a result of interactions between high-velocity,metal-poor clouds and the interstellar mediumof theGalactic thin disk. On average, clusters with high, elongated orbits and metallicities [Fe/H] < -0.1 display lower relative abundances of the primary a elements than do field stars. The low [O, Mg/Fe] ratios of these clusters can be understood if the high-velocity clouds that gave rise to them were formed of interstellar material from regions where the star-formation rate and/or the masses of Type II supernovae were lower than near the Galactic plane. It is also shown that, on average, the relative abundances of the primary a elements are higher in relatively metal-rich clusters with high, elongated orbits than in field stars. This can be understood if clusters with [Fe/H] > -0.1 formed as a result of interactions between metal-rich clouds with intermediate velocities and the interstellar medium of the Galactic disk; such clouds could form from returning gas in a so-called “Galactic fountain.”  相似文献   

17.
Marsakov  V. A.  Koval’  V. V.  Gozha  M. L. 《Astronomy Reports》2019,63(4):274-288

A catalog of Galactic globular clusters has been compiled and used to analyze relations between the chemical and kinematic parameters of the clusters. The catalog contains positions, distances, luminosities, metallicites, and horizontal-branch morphology indices for 157 globular clusters, as well as space velocities for 72 globular clusters. For 69 globular clusters, these data are suppleented with the relative abundances of 28 chemical elements produced in various nuclear-synthesis processes, taken from 101 papers published between 1986 and 2018. The tendency for redder horizontal branches in lowmetallicity accreted globular clusters is discussed. The discrepancy between the criteria for cluster membership in the thick-disk and halo subsystems based on chemical and kinematic properties is considered. This is manifest through the fact that all metal-rich ([Fe/H] > ?1.0) clusters are located close to the center and plane of the Galaxy, regardless of their kinematic membership in particular Galaxy subsystems. An exception is three accreted clusters lost by a dwarf galaxy in Sagittarius. At the same time, the fraction of more distant clusters is high among metal-poorer clusters in any kinematically selected Galactic subsystem. In addition, all metal-rich clusters whose origins are related to the same protogalactic cloud are located in the [Fe/H]–[α/Fe] diagram considerably higher than the strip populated with field stars. All metal-poor clusters (most of them accreted) populate the entire width of the strip formed by high-velocity (i.e., presumably accreted) field stars. Stars of dwarf satellite galaxies (all of them being metal-poor) are located in this diagram much lower than accreted field stars. These facts suggest that all stellar objects in the accreted halo are remnants of galaxies with higher masses than those in the current environment of the Galaxy. Differences in the relative abundances of α-process elements among stellar objects of the Galaxy and surrounding dwarf satellite galaxies confirmthat the latter have left no appreciable stellar traces in the Galaxy, with the possible exception of the low-metallicity cluster Rup 106, which has low relative abundances of α-process elements.

  相似文献   

18.
We have derived the atmospheric parameters of the R CrB carbon star DY Per. The spectrum of DY Per near its maximum brightness was obtained using the 2.6-m ZTSh telescope of the Crimean Astrophysical Observatory, and has a resolution of about 1.74 Å per pixel. We compare the absolute observed and theoretical spectral energy distributions (SEDs) of DY Per for λλ 430–730 nm for the first time. The model atmospheres were computed using a code written by Ya.V. Pavlenko in the classical approximation, taking into account the main opacity sources in carbon-star atmospheres. The theoretical SEDs were computed using the list of atomic lines from the VALD database and the molecular line lists from CD-ROM No. 18 of Kurucz’s database. The estimated by spectral synthesis effective temperature of DY Per is in the range of 2900–3100 K, if we assume log g = 0. We find a metal deficiency in the atmosphere of DY Per. Quantitative estimates of the overall metallicity, carbon and nitrogen abundances, and the H/He ratio are somewhat uncertain: ?2 ≤ [Fe/H] ≤ ?0.5, 0.65 ≤ [C/Fe] ≤ 1.35, 0.0 ≤ [N/Fe] ≤ 0.8, 1/9 ≤ H/He ≤ 9/1. These high H/He values do not quite agree with qualitative observational estimates made by other authors. Our results confirm that DY Per is a unique stellar object. This is the coolest and possibly the most metal-poor of all known R CrB stars. We conclude that the large deficiencies of metals and hydrogen lead to [C/Fe] values in the atmosphere of DY Per characteristic of R CrB stars.  相似文献   

19.
We have used published, high-accuracy, ground-based and satellite proper-motion measurements, a compilation of radial velocities, and photometric distances to compute the spatial velocities and Galactic orbital elements for 174 RR Lyrae (ab) variable stars in the solar neighborhood. The computed orbital elements and published heavy-element abundances are used to study relationships between the chemical, spatial, and kinematic characteristics of nearby RR Lyrae variables. We observe abrupt changes of the spatial and kinematic characteristics at the metallicity [Fe/H]≈?0.95 and also when the residual spatial velocities relative to the LSR cross the critical value V res≈290 km/s. This provides evidence that the general population of RR Lyrae stars is not uniform and includes at least three subsystems occupying different volumes in the Galaxy. Based on the agreement between typical parameters for corresponding subsystems of RR Lyrae stars and globular clusters, we conclude that metal-rich stars and globular clusters belong to a rapidly rotating and fairly flat, thick-disk subsystem with a large negative vertical metallicity gradient. Objects with larger metal deficiencies can, in turn, be subdivided into two populations, but using different criteria for stars and clusters. We suggest that field stars with velocities below the critical value and clusters with extremely blue horizontal branches form a spherical, slowly rotating subsystem of the protodisk halo, which has a common origin with the thick disk; this subsystem has small but nonzero radial and vertical metallicity gradients. The dimensions of this subsystem, estimated from the apogalactic radii of orbits of field stars, are approximately the same. Field stars displaying more rapid motion and clusters with redder horizontal branches constitute the spheroidal subsystem of the accreted outer halo, which is approximately a factor of three larger in size than the first two subsystems. It has no metallicity gradients; most of its stars have eccentric orbits, many display retrograde motion in the Galaxy, and their ages are comparatively low, supporting the hypothesis that the objects in this subsystem had an extragalactic origin.  相似文献   

20.
We study the correlation between the central surface density and the halo core radius of the dark matter haloes of galaxies and clusters of galaxies. We find that the surface density within the halo characteristic radius r* is not an universal quantity as claimed by some authors (e.g., [1]), but it correlates with several physical quantities (e.g., the halo mass M200 and the magnitude M B ). The slope of the surface density—mass relation is 0.18 ± 0.05, leaving small room to the possibility of a constant surface density. Finally, we compare the results with the MOND prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号