首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We develop a simple, time-dependent Comptonization model to probe the origins of spectral variability in accreting neutron star systems. In the model, soft 'seed photons' are injected into a corona of hot electrons, where they are Compton upscattered before escaping as hard X-rays. The model describes how the hard X-ray spectrum varies when the properties of either the soft photon source or the Comptonizing medium undergo small oscillations. Observations of the resulting spectral modulations can determine whether the variability is due to (i) oscillations in the injection of seed photons, (ii) oscillations in the coronal electron density, or (iii) oscillations in the coronal energy dissipation rate. Identifying the origin of spectral variability should help clarify how the corona operates and its relation to the accretion disc. It will also help in finding the mechanisms underlying the various quasi-periodic oscillations (QPOs) observed in the X-ray outputs of many accreting neutron star and black hole systems. As a sample application of our model, we analyse a kilohertz QPO observed in the atoll source 4U 1608–52. We find that the QPO is driven predominantly by an oscillation in the electron density of the Comptonizing gas.  相似文献   

2.
We present XMM–Newton /EPIC spectra for the Laor et al. sample of Palomar Green (PG) quasars. We find that a power law provides a reasonable fit to the 2–5 keV region of the spectra. Excess soft X-ray emission below 2 keV is present for all objects, with the exception of those known to contain a warm absorber. However, a single power law is a poor fit to the 0.3–10.0 keV spectrum and instead we find that a simple model, consisting of a broken power law (plus an iron line), provides a reasonable fit in most cases. The equivalent width of the emission line is constrained in just 12 objects but with low (<2σ) significance in most cases. For the sources whose spectra are well fitted by the broken-power-law model, we find that various optical and X-ray line and continuum parameters are well correlated; in particular, the power-law photon index is well correlated with the FWHM of the Hβ line and the photon indices of the low- and high-energy components of the broken power law are well correlated with each other. These results suggest that the 0.3–10 keV X-ray emission shares a common (presumably non-thermal) origin, as opposed to suggestions that the soft excess is directly produced by thermal disc emission or via an additional spectral component. We present XMM–Newton Optical Monitor (OM) data, which we combine with the X-ray spectra so as to produce broad-band spectral energy distributions (SEDs), free from uncertainties due to long-term variability in non-simultaneous data. Fitting these optical–UV spectra with a Comptonized disc model indicates that the soft X-ray excess is independent of the accretion disc, confirming our interpretation of the tight correlation between the hard and soft X-ray spectra.  相似文献   

3.
In this paper we study the relation of radio emission to X-ray spectral and variability properties for a large sample of black hole X-ray binary systems. This is done to test, refine and extend – notably into the timing properties – the previously published 'unified model' for the coupling of accretion and ejection in such sources. In 14 outbursts from 11 different sources we find that in every case the peak radio flux, on occasion directly resolved into discrete relativistic ejections, is associated with the bright hard to soft state transition near the peak of the outburst. We also note the association of the radio flaring with periods of X-ray flaring during this transition in most, but not all, of the systems. In the soft state, radio emission is in nearly all cases either undetectable or optically thin, consistent with the suppression of the core jet in these states and 'relic' radio emission from interactions of previously ejected material and the ambient medium. However, these data cannot rule out an intermittent, optically thin, jet in the soft state. In attempting to associate X-ray timing properties with the ejection events we find a close, but not exact, correspondence between phases of very low integrated X-ray variability and such ejections. In fact the data suggest that there is not a perfect one-to-one correspondence between the radio, X-ray spectral or X-ray timing properties, suggesting that they may be linked simply as symptoms of the underlying state change and not causally to one another. We further study the sparse data on the reactivation of the jet during the transition back to the hard state in decay phase of outbursts, and find marginal evidence for this in one case only. In summary we find no strong evidence against the originally proposed model, confirming and extending some aspects of it with a much larger sample, but note that several aspects remain poorly tested.  相似文献   

4.
ASCA observations of the two Type II AGNs, NGC 7314 and NGC 7582, show clear variations in the broad X-ray band (0.4-10keV) on short timescales - 104s. Spectral analysis indicates that they both have an absorbed hard X-ray component and an unabsorbed soft "excess" component. To clarify the origin of the latter, we made a cross-correlation analysis of the two components. The results show that, for NGC 7314, the soft X-ray variability is proportional to that of the hard X-ray component. This indicates that the active nucleus of NGC 7314 must be partially covered and so the soft emission is a "leaking" of the variable hard component. For NGC 7582, there is no detectable variability in the soft component, although there is a definite one in the hard component. This indicates that the variable nucleus of NGC 7582 must be fully blocked by absorbing matter, and the soft emission is most likely the scattered component predicted by the AGN unified model.  相似文献   

5.
ASCA observations of the two Type Ⅱ AGNs,NGC7314 and NGC 7582,show clear variations in the broad X-ray band(0.4-10keV)on short timescales-10^4s.Spectral analysis indicates that they bot have an absorbed hard X-ray component and an unabsorbed soft“excess” component.To clarify the origin of the latter,we made a cross-correlation analysis of the two components.The results show that,for NGC7314,the soft X-ray variability is proportional to that of the hard X-ray component.This indicates that the active nucleus of NGC 7314 must be partially covered and so the soft emission is a “leaking” of the variable hard component.For NGC 7582,there is no detectable variability in the soft component, although there is a definite one in the hard component.This indicates that the variable nucleus of NGC 7582 must be fully blocked by absorbing matter,and the soft emission is most likely the scattered component predicted by the AGN unified model.  相似文献   

6.
7.
《New Astronomy Reviews》2000,44(7-9):387-394
The excellent soft X-ray sensitivity of the PSPC detector onboard the ROSAT satellite provided the first chance to study precisely the spectral and timing properties of Narrow-Line Seyfert 1 galaxies. ROSAT observations of Narrow-Line Seyfert 1 galaxies have revealed (1) the existence of a giant soft X-ray excess, (2) a striking, clear correlation between the strength of the soft X-ray excess emission and the FWHM of the Hβ line, (3) the general absence of significant soft X-ray absorption by neutral hydrogen above the Galactic column, (4) short doubling time scales down to about 1000 s, (5) the existence of persistent giant (above a factor of 10), and rapid (less than 1 day) X-ray variability in extragalactic sources. The soft X-ray results on Narrow-Line Seyfert 1 galaxies indicate that their black hole regions are directly visible, further supporting the Seyfert 1 nature of these objects. The extreme X-ray properties of Narrow-Line Seyfert 1 galaxies make them ideal objects for understanding many of the problems raised generally by the Seyfert phenomenon.  相似文献   

8.
We present ASCA data on RE J2248−511, extending existing optical and soft X-ray coverage to 10 keV, and monitoring the soft component. These data show that, despite a very strong ultrasoft X-ray excess below 0.3 keV and a soft 0.3–2 keV spectral index in earlier ROSAT data, the hard X-ray spectrum ( α ∼−0.8; 0.6–10 keV) is typical of type 1 active galactic nuclei (AGN), and the soft component has since disappeared. Optical data taken at two different epochs show that the big blue bump is also highly variable. The strength of the ultrasoft X-ray component and the extreme variability in RE J2248−511 are reminiscent of the behaviour observed in many narrow line Seyfert 1s (NLS1s). However, the high-energy end of the ROSAT spectrum, the ASCA spectrum and the Balmer line full widths at half maximum of ∼3000 km s−1 in RE J2248−511 are typical of normal Seyfert 1 AGN.
The change in the soft X-ray spectrum as observed in the ROSAT and ASCA data is consistent with the behaviour of Galactic Black Hole Candidates (GBHCs) as they move from a high to a low state, i.e. a fall in the ultrasoft component and a hardening of the X-ray continuum. This GBHC analogy has also been proposed for NLS1s. Alternatively, the variability may be caused by opacity changes in a hot, optically thin corona which surrounds a cold, dense accretion disc; this was first suggested by Guainazzi et al. for 1H 0419−577, an object which shows remarkably similar properties to RE J2248−511.  相似文献   

9.
The simultaneous presence of a strong quasi-periodic oscillation, of period ∼10 s, in the optical and X-ray light curves of the X-ray transient XTE J1118+480 suggests that a significant fraction of the optical flux originates from the inner part of the accretion flow, where most of the X-rays are produced. We present a model of magnetic flares in an accretion disc corona where thermal cyclo-synchrotron emission contributes significantly to the optical emission, while the X-rays are produced by inverse Compton scattering of the soft photons produced by dissipation in the underlying disc and by the synchrotron process itself. Given the observational constraints, we estimate the values for the coronal temperature, optical depth and magnetic field intensity, as well as the accretion rate for the source. Within our model we predict a correlation between optical and hard X-ray variability and an anticorrelation between optical and soft X-rays. We also expect optical variability on flaring time-scales (∼tens of ms), with a power-density spectrum similar to that observed in the X-ray band. Finally, we use both the available optical/extreme-ultraviolet/X-ray spectral energy distribution and the low-frequency time variability to discuss limits on the inner radius of the optically thick disc.  相似文献   

10.
We reanalyse archival Ginga data of the soft X-ray transient source GS 2023+338 covering the beginning of its 1989 May outburst. The source showed a number of rather unusual features: very high and apparently saturated luminosity, dramatic flux and spectral variability (often on ∼1 s time-scale), and generally very hard spectrum, with no obvious soft thermal component characteristic for soft/high state.
We describe the spectrum obtained at the maximum of flux and we demonstrate that it is very different from spectra of other soft X-ray transients at similar luminosity. We confirm previous suggestions that the dramatic variability was the result of heavy and strongly variable photoelectric absorption. We also demonstrate that for a short time the spectrum of the source did look like a typical soft/high state spectrum but that this coincided with very heavy absorption.  相似文献   

11.
The X-ray quasi-periodic oscillation (QPO) seen in RE J1034+396 is so far unique amongst active galactic nuclei (AGN). Here, we look at another unique feature of RE J1034+396, namely its huge soft X-ray excess, to see if this is related in any way to the detection of the QPO. We show that all potential models considered for the soft energy excess can fit the 0.3–10 keV X-ray spectrum, but the energy dependence of the rapid variability (which is dominated by the QPO) strongly supports a spectral decomposition where the soft excess is from low-temperature Comptonization of the disc emission and remains mostly constant, while the rapid variability is produced by the power-law tail changing in normalization. The presence of the QPO in the tail rather than in the disc is a common feature in black hole binaries (BHBs), but low-temperature Comptonization of the disc spectrum is not generally seen in these systems. The main exception to this is GRS 1915+105, the only BHB which routinely shows super-Eddington luminosities. We speculate that the super-Eddington accretion rates lead to a change in disc structure, and that this also triggers the X-ray QPO.  相似文献   

12.
XMM–Newton X-ray spectra of the hard state black hole X-ray binaries (BHXRBs) SWIFT J1753.5−0127 and GX 339−4 show evidence for accretion disc blackbody emission, in addition to hard power laws. The soft and hard band power spectral densities (PSDs) of these sources demonstrate variability over a wide range of time-scales. However, on time-scales of tens of seconds, corresponding to the putative low-frequency Lorentzian in the PSD, there is additional power in the soft band. To interpret this behaviour, we introduce a new spectral analysis technique, the 'covariance spectrum', to disentangle the contribution of the X-ray spectral components to variations on different time-scales. We use this technique to show that the disc blackbody component varies on all time-scales, but varies more, relative to the power law, on longer time-scales. This behaviour explains the additional long-term variability seen in the soft band. Comparison of the blackbody and iron line normalizations seen in the covariance spectra in GX 339−4 implies that the short-term blackbody variations are driven by thermal reprocessing of the power-law continuum absorbed by the disc. However, since the amplitude of variable reflection is the same on long and short time-scales, we rule out reprocessing as the cause of the enhanced disc variability on long time-scales. Therefore, we conclude that the long time-scale blackbody variations are caused by instabilities in the disc itself, in contrast to the stable discs seen in BHXRB soft states. Our results provide the first observational evidence that the low-frequency Lorentzian feature present in the PSD is produced by the accretion disc.  相似文献   

13.
We have studied the 1999 soft X-ray transient outburst of XTE J1859+226 at radio and X-ray wavelengths. The event was characterized by strong variability in the disc, corona and jet – in particular, a number of radio flares (ejections) took place and seemed well-correlated with hard X-ray events. Apparently unusual for the canonical 'soft' X-ray transient, there was an initial period of low/hard state behaviour during the rise from quiescence but prior to the peak of the main outburst – we show that not only could this initial low/hard state be a ubiquitous feature of soft X-ray transient outbursts, but also it could be extremely important in our study of outburst mechanisms.  相似文献   

14.
We present an XMM–Newton observation of the bright, narrow-line, ultrasoft type 1 Seyfert galaxy Ton S180. The  0.3–10 keV  X-ray spectrum is steep and curved, showing a steep slope above 2.5 keV  (Γ∼ 2.3)  and a smooth, featureless excess of emission at lower energies. The spectrum can be adequately parametrized using a simple double power-law model. The source is strongly variable over the course of the observation but shows only weak spectral variability, with the fractional variability amplitude remaining approximately constant over more than a decade in energy. The curved continuum shape and weak spectral variability are discussed in terms of various physical models for the soft X-ray excess emission, including reflection off the surface of an ionized accretion disc, inverse Compton scattering of soft disc photons by thermal electrons, and Comptonization by electrons with a hybrid thermal/non-thermal distribution. We emphasize the possibility that the strong soft excess may be produced by dissipation of accretion energy in the hot, upper atmosphere of the putative accretion disc.  相似文献   

15.
We present an analysis of X-ray variability in a flux-limited sample of quasi-stellar objects (QSOs). Selected from our deep ROSAT survey, these QSOs span a wide range in redshift (0.1< z <3.2) and are typically very faint, so we have developed a method to constrain the amplitude of variability in ensembles of low signal-to-noise ratio light curves. We find evidence for trends in this variability amplitude with both redshift and luminosity. The mean variability amplitude declines sharply with luminosity, as seen in local active galactic nuclei (AGN), but with some suggestion of an upturn for the most powerful sources. We find tentative evidence that this is caused by redshift evolution, since the high-redshift QSOs ( z >0.5) do not show the anticorrelation with luminosity seen in local AGN. We speculate on the implications of these results for physical models of AGN and their evolution. Finally, we find evidence for X-ray variability in an object classified as a narrow-emission-line galaxy, suggesting the presence of an AGN.  相似文献   

16.
We present ten years optical/UV/X-ray observations of 3C 273 performed using XMM–Newton between 2000 and 2009. The short-time scale variability behaviour of the soft and hard X-ray light curves may suggest different origins of the soft/hard X-ray emissions. We fit well the 0.2–10 keV X-ray spectrum with a hard power-law component plus a soft Comptonization component. The lack of Γ???F correlation of the hard power-law component and the weakness of iron K α lines may support dominance of the jet component. The soft X-ray excess correlates much better with ultraviolet than with the hard power-law component, strongly suggesting that soft excess emission originates from inverse Comptonization of UV photons.  相似文献   

17.
《New Astronomy Reviews》2000,44(7-9):423-425
Evenly-sampled hard X-ray monitoring was obtained with RXTE for one NLS1 (Akn 564) and four BLS1s. The variability amplitude of the NLS1 was no larger than the mean of the BLS1s, and the NLS1 showed stronger variability in the harder portion of the RXTE band, while the BLS1s were more strongly variable in the relatively soft part of the band. This contribution discusses possible explanations for these surprising results, including possible calibration errors or systematic differences between long and short time scale variability in NLS1s and BLS1s.  相似文献   

18.
LMC X-1 and LMC X-3 are the only known persistent stellar-mass black-hole candidates that have almost always shown spectra that are dominated by a soft, thermal component. We present here results from 170-ks-long Rossi X-ray Timing Explorer ( RXTE ) observations of these objects, taken in 1996 December, where their spectra can be described by a disc blackbody plus an additional soft     high-energy power law (detected up to energies of 50 keV in LMC X-3). These observations, as well as archival Advanced Satellite for Cosmology and Astrophysics ( ASCA ) observations, constrain any narrow Fe line present in the spectra to have an equivalent width ≲90 eV. Stronger, broad lines (≈150 eV EW,     are permitted. We also study the variability of LMC X-1. Its X-ray power spectral density (PSD) is approximately proportional to     between 10−3 and 0.3 Hz with a root-mean-square (rms) variability of ≈7 per cent. At energies >5 keV, the PSD shows evidence of a break at     possibly indicating an outer disc radius of ≲1000  GM c 2 in this likely wind-fed system. Furthermore, the coherence function     a measure of the degree of linear correlation between variability in the >5 keV band and variability in the lower energy bands, is extremely low (≲50 per cent). We discuss the implications of these observations for the mechanisms that might be producing the soft and hard X-rays in these systems.  相似文献   

19.
We present an analysis of X-ray variability in a sample of 156 radio-quiet quasars taken from the ROSAT archive, covering a redshift range  0.12)  in the sense that QSOs of the same X-ray luminosity are more variable at  z>2  . We discuss possible explanations for this effect. The simplest explanation may be that high-redshift QSOs are accreting at a larger fraction of the Eddington limit than local AGNs.  相似文献   

20.
We report on the results of cross-correlation of a sample of 903 Utraluminous IRAS galaxies (ULIRGs) with the ROSAT-All Sky Survey Bright Source Catalogue and the ROSAT archived pointing observations. The sample of ULIRGs has been compiled from the recently released PSCz redshift survey. In total,35 ULIRGs are securely detected by the ROSAT All-Sky Survey and pointing observations, five of which are blazars. The statistical properties of these sources in the soft X-ray band are determined and compared with their properties on other wavebands. We find that the ratio of the soft X-ray to the far-infrared flux spans about five orders of magnitude and reaches values of about unity. This ratio is a good indicator of the main energy source of ULIRGs. Those with soft X-ray to far-infrared flux exceeding 0.01 are probably powered by accretion onto central supermassive black holes while those with ratios smaller than 0.001 are probably powered by starbursts or other heating processes, or are Compton thick sources. Some ULIRGs have energy contributions from both. This ratio is low for most ULIRGs and hyperluminous infrared galaxies, which explains their low detection rate by ROSAT and ASCA.We also find that some ULIRGs have a similar soft X-ray luminosity vs. temperature relation to that for groups of galaxies and elliptical galaxies,suggesting a common origin of these systems. Our study also reveals a tight correlation between the hardness ratio and the soft X-ray luminosity for Seyfert 1s/QSOs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号