首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The presented scenario of free convection flows in a subduction zone is based on experimental and theoretical simulation. The experimental simulation of free convection flows is carried out under various conditions of heat transfer that occurs between the oceanic and continental limbs of the subduction zone. The experiments show that to provide insights into subduction zones, it is necessary to estimate the horizontal forces acting on the left and right sides of the plunging plate, as well as the resulting horizontal force and its direction. The vector sum of horizontal and gravity forces of the subducting plate determines the slope angle of this plate at different depths. Heat transfer in the subducting plate has been considered. The y min coordinate of the temperature minimum in a plate and the value of minimum temperature have been estimated. The forces that arise due to phase transition and owing to the horizontal temperature gradient along the thickness of the descending lithosphere in the transitional mantle layer C are estimated as well. These forces are directed in opposite direction from the y min coordinate and induce spreading of the subducting lithosphere along the boundary between the upper and lower mantle. Theoretical simulation of the hydrodynamics and heat transfer in combination with experimental simulation of convection flows in a subduction zone indicates that a significant part of the upper mantle material of the plunging plate circulates in the oceanic limb of the subduction zone owing to spreading from the region of minimum temperature along a 670 km boundary.  相似文献   

2.
This paper presents results obtained from numerical model experiments to show different patterns of mantle flow produced by lithospheric movement in subduction zones. Using finite element models, based on Maxwell rheology (relaxation time ∼ 1011S), we performed three types of experiments: Type 1, Type 2 and Type 3. In Type 1 experiments, the lithospheric slab subducts into the mantle by translational movement, maintaining a constant subduction angle. The experimental results show that the flow perturbations occur in the form of vortices in the mantle wedge, irrespective of subduction rate and angle. The mantle wedge vortex is coupled with another vortex below the subducting plate, which tends to be more conspicuous with decreasing subduction rate. Type 2 experiments take into account a flexural deformation of the plate, and reveal its effect on the flow patterns. The flexural motion induces a flow in the form of spiral pattern at the slab edge. Density-controlled lithospheric flexural motion produces a secondary flow convergence zone beneath the overriding plate. In many convergent zones the subducting lithospheric plate undergoes detachment, and moves down into the mantle freely. Type 3 experiments demonstrate flow perturbations resulting from such slab detachments. Using three-dimensional models we analyze lithospheric stresses in convergent zone, and map the belts of horizontal compression and tension as a function of subduction angle.  相似文献   

3.
Slow–ultraslow spreading oceans are mostly floored by mantle peridotites and are typified by rifted continental margins, where subcontinental lithospheric mantle is preserved. Structural and petrologic investigations of the high-pressure (HP) Alpine Voltri Massif ophiolites, which were derived from the Late Jurassic Ligurian Tethys fossil slow–ultraslow spreading ocean, reveal the fate of the oceanic peridotites/serpentinites during subduction to depths involving eclogite-facies conditions, followed by exhumation.

The Ligurian Tethys was formed by continental extension within the Europe–Adria lithosphere and consisted of sea-floor exposed mantle peridotites with an uppermost layer of oceanic serpentinites and of subcontinental lithospheric mantle at the rifted continental margins. Plate convergence caused eastward subduction of the oceanic lithosphere of the Europe plate and the uppermost serpentinite layer of the subducting slab formed an antigorite serpentinite-subduction channel. Sectors of the rather unaltered mantle lithosphere of the Adria extended margin underwent ablative subduction and were detached, embedded, and buried to eclogite-facies conditions within the serpentinite-subduction channel. At such P–T conditions, antigorite serpentinites from the oceanic slab underwent partial HP dehydration (antigorite dewatering and growth of new olivine). Water fluxing from partial dehydration of host serpentinites caused partial HP hydration (growth of Ti-clinohumite and antigorite) of the subducted Adria margin peridotites. The serpentinite-subduction channel (future Beigua serpentinites), acting as a low-viscosity carrier for high-density subducted rocks, allowed rapid exhumation of the almost unaltered Adria peridotites (future Erro–Tobbio peridotites) and their emplacement into the Voltri Massif orogenic edifice. Over in the past 35 years, this unique geologic architecture has allowed us to investigate the pristine structural and compositional mantle features of the subcontinental Erro–Tobbio peridotites and to clarify the main steps of the pre-oceanic extensional, tectonic–magmatic history of the Europe–Adria asthenosphere–lithosphere system, which led to the formation of the Ligurian Tethys.

Our present knowledge of the Voltri Massif provides fundamental information for enhanced understanding, from a mantle perspective, of formation, subduction, and exhumation of oceanic and marginal lithosphere of slow–ultraslow spreading oceans.  相似文献   

4.
The lithospheric sinking along subduction zones is part of the mantle convection. Therefore, computing the volume of lithosphere recycled within the mantle by subducting slabs quantifies the equivalent amount of mantle that should be displaced, for the mass conservation criterion. The rate of subduction is constrained by the convergence rate between upper and lower plates and the motion of the subduction hinge H that may either converge or diverge relative to the upper plate. Here, starting from the analysis of the slab hinge kinematics, we evaluate the subduction rate at 31 subduction zones worldwide, useful to compute volumes of sinking lithosphere into the mantle. Our results show that ∼190 km3/yr and ∼88 km3/yr of lithospheric slabs are currently subducting below H-divergent and H-convergent subduction zones, respectively. We also propose supporting numerical models providing asymmetric volumes of the subducted lithosphere, using the subduction rate instead of plate convergence, as boundary condition. Furthermore, H-divergent subduction zones appear to be coincident with subductions having “westward”-directed slabs, whereas H-convergent subduction zones are mostly compatible with those that have “eastward-to-northeastward”-directed slabs. On the basis of this geographical polarity, our lithospheric volume estimation gives ∼214 km3/yr and ∼88 km3/yr of subducting lithosphere, respectively. This entails that W-directed subduction zones contribute more than twice in lithospheric sinking into the mantle with respect to E-to-NE-directed ones. In accordance with the conservation of mass principle, this volumetric asymmetry in the mantle suggests a displacement of ∼120 km3/yr of mantle material from west to east, providing a constraint for global asymmetric mantle convection.  相似文献   

5.
Garnet‐bearing peridotite lenses are minor but significant components of most metamorphic terranes characterized by high‐temperature eclogite facies assemblages. Most peridotite intrudes when slabs of continental crust are subducted deeply (60–120 km) into the mantle, usually by following oceanic lithosphere down an established subduction zone. Peridotite is transferred from the resulting mantle wedge into the crustal footwall through brittle and/or ductile mechanisms. These ‘mantle’ peridotites vary petrographically, chemically, isotopically, chronologically and thermobarometrically from orogen to orogen, within orogens and even within individual terranes. The variations reflect: (1) derivation from different mantle sources (oceanic or continental lithosphere, asthenosphere); (2) perturbations while the mantle wedges were above subducting oceanic lithosphere; and (3) changes within the host crustal slabs during intrusion, subduction and exhumation. Peridotite caught within mantle wedges above oceanic subduction zones will tend to recrystallize and be contaminated by fluids derived from the subducting oceanic crust. These ‘subduction zone peridotites’ intrude during the subsequent subduction of continental crust. Low‐pressure protoliths introduced at shallow (serpentinite, plagioclase peridotite) and intermediate (spinel peridotite) mantle depths (20–50 km) may be carried to deeper levels within the host slab and undergo high‐pressure metamorphism along with the enclosing rocks. If subducted deeply enough, the peridotites will develop garnet‐bearing assemblages that are isofacial with, and give the same recrystallization ages as, the eclogite facies country rocks. Peridotites introduced at deeper levels (50–120 km) may already contain garnet when they intrude and will not necessarily be isofacial or isochronous with the enclosing crustal rocks. Some garnet peridotites recrystallize from spinel peridotite precursors at very high temperatures (c. 1200 °C) and may derive ultimately from the asthenosphere. Other peridotites are from old (>1 Ga), cold (c. 850 °C), subcontinental mantle (‘relict peridotites’) and seem to require the development of major intra‐cratonic faults to effect their intrusion.  相似文献   

6.
This paper presents an updated review of recent field/structural and petrologic/geochemical studies on orogenic peridotites from the Alpine–Apennine ophiolites (NW Italy). Results provide determinant constraints to the evolution of the lithospheric mantle during passive rifting of the fossil Ligurian Tethys oceanic basin.The pre-rift, spinel lherzolites precursors, preserved in the mantle section of the Ligurian ophiolites, were resident in the lithosphere along an intermediate geothermal gradient (T about 1000 °C, P compatible with spinel-peridotite facies). Passive rifting by far-field tectonic forces induced whole-lithosphere extension and thinning (the a-magmatic stage). After significant thinning of the lithosphere, the passively upwelling asthenosphere underwent decompression melting along the axial zone of extension. Silica-undersaturated melt fractions infiltrated via diffuse/focused porous-flow through the lithospheric mantle under extension (the magmatic stage) and underwent pyroxenes-dissolving/olivine-crystallizing interaction with the percolated host peridotite.Pyroxenes assimilation and olivine deposition modified the melt compositions into silica-saturated. These derivative liquids migrated to shallower, plagioclase-peridotite facies levels, where they stagnated and impregnated/refertilized the lithospheric mantle. Melt thermal advection by melt infiltration heated to temperatures higher than 1200 °C the lithospheric mantle column above the melting asthenosphere.The syn-rift magmatic and tectonic processes induced significant rheological softening/weakening that destabilized the lithospheric mantle of the Europe–Adria plate along the axial zone of extension. The presence of destabilized lithospheric mantle between the future continental margins played a determinant role in promoting the geodynamic evolution from pre-oceanic rifting to oceanic spreading.The active upwelling of hotter/deeper asthenosphere inside the destabilized axial zone promoted transition to active rifting, enhancing continent break-up. Asthenosphere underwent partial melting and formed aggregated MORB liquids that migrated inside high-porosity dunite channels. The MORB liquids formed olivine-gabbro intrusions and pillowed lava flows (the oceanic crustal rocks).This paper evidences the primary role of mantle destabilization by melt infiltration in the geodynamic evolution of the Ligurian Tethys rifting.  相似文献   

7.
This article reviews the electrical conductivity structures of the oceanic upper mantle, subduction zones, and the mantle transition zone beneath the northwestern Pacific, the Japanese Islands, and continental East Asia, which have particularly large potential of water circulation in the global upper mantle. The oceanic upper mantle consists of an electrically resistive lid and a conductive layer underlying the lid. The depth of the top of the conductive layer is related to lithospheric cooling in the older mantle, whereas it is attributable to the difference in water distribution beneath the vicinity of the seafloor spreading-axis. The location of a lower crustal conductor in a subduction zone changes according to the subduction type. The difference can be explained by the characteristic dehydration from the subducting slab in each subduction zone and by advection from the backarc spreading. The latest one-dimensional electrical conductivity model of the mantle transition zone beneath the Pacific Ocean predicts values of 0.1–1.0 S/m. These values support a considerably dry oceanic mantle transition zone. However, one-dimensional electrical profiles may not be representative of the mantle transition zone there, since there exists a three-dimensional structure caused by the stagnant slab. Three-dimensional electromagnetic modeling should be made in future studies.  相似文献   

8.
《Gondwana Research》2010,17(3-4):545-562
This article reviews the electrical conductivity structures of the oceanic upper mantle, subduction zones, and the mantle transition zone beneath the northwestern Pacific, the Japanese Islands, and continental East Asia, which have particularly large potential of water circulation in the global upper mantle. The oceanic upper mantle consists of an electrically resistive lid and a conductive layer underlying the lid. The depth of the top of the conductive layer is related to lithospheric cooling in the older mantle, whereas it is attributable to the difference in water distribution beneath the vicinity of the seafloor spreading-axis. The location of a lower crustal conductor in a subduction zone changes according to the subduction type. The difference can be explained by the characteristic dehydration from the subducting slab in each subduction zone and by advection from the backarc spreading. The latest one-dimensional electrical conductivity model of the mantle transition zone beneath the Pacific Ocean predicts values of 0.1–1.0 S/m. These values support a considerably dry oceanic mantle transition zone. However, one-dimensional electrical profiles may not be representative of the mantle transition zone there, since there exists a three-dimensional structure caused by the stagnant slab. Three-dimensional electromagnetic modeling should be made in future studies.  相似文献   

9.
Thermal and chemical gradients at the boundary of a subducting plate and suprasubduction mantle lead to a variety of poorly understood geologic processes. This paper reports the results of experiments simulating interaction between olivine (Ol, mantle analog) and carbonated glaucophane schist (Gls, analog of the upper layer of the subducted crust) under the P-t conditions of a ‘hot’ subduction zone. The experiments were carried out at a pressure of P = 25 kbar under temperature gradient conditions (t min Gls = 720°C and t max Ol = 1000°C) and at a constant temperature of t = 800°C corresponding to the boundary between the materials in the gradient experiment. A comparison of experimental data obtained using two different methods showed that the temperature gradient experiment reproduced the character of schist-olivine interaction under isothermal conditions and provided additional information on the effect of temperature on mineral reactions. Orthopyroxene occurs in the experimental products in different textural positions, forming a layer (with or without magnesite) at the base of the olivine zone or separate grains and intergrowths with magnesite at the boundary of olivine grains. The development of orthopyroxene and carbonate redeposition are described by reactions between olivine and aqueous fluid components, SiO2 and CO2, at $a_{SiO_2 } = 0.23$ and $a_{CO_2 } = 0.07$ . The calculated silica content in the fluid under such thermodynamic conditions is 0.39 mol/kg H2O. Given these parameters, the estimated SiO2 flux at a depth of ~80 km from the downgoing slab of the Cascadia subduction zone in the northwester United States is 180 t/yr at a very moderate (for the considered depth level) aqueous fluid flux of one million moles per year per kilometer. Modern concepts on convective flows initiated by a subducting slab in the mantle wedge allow us to suggest that orthopyroxene-enriched ultramafic rocks must occur both above the areas of the release of volatile components and silica from the slab and at deeper levels of subduction zones.  相似文献   

10.
《Gondwana Research》2014,25(2):494-508
Large segments of the continental crust are known to have formed through the amalgamation of oceanic plateaus and continental fragments. However, mechanisms responsible for terrane accretion remain poorly understood. We have therefore analysed the interactions of oceanic plateaus with the leading edge of the continental margin using a thermomechanical–petrological model of an oceanic-continental subduction zone with spontaneously moving plates. This model includes partial melting of crustal and mantle lithologies and accounts for complex rheological behaviour including viscous creep and plastic yielding. Our results indicate that oceanic plateaus may either be lost by subduction or accreted onto continental margins. Complete subduction of oceanic plateaus is common in models with old (> 40 Ma) oceanic lithosphere whereas models with younger lithosphere often result in terrane accretion. Three distinct modes of terrane accretion were identified depending on the rheological structure of the lower crust and oceanic cooling age: frontal plateau accretion, basal plateau accretion and underplating plateaus.Complete plateau subduction is associated with a sharp uplift of the forearc region and the formation of a basin further landward, followed by topographic relaxation. All crustal material is lost by subduction and crustal growth is solely attributed to partial melting of the mantle.Frontal plateau accretion leads to crustal thickening and the formation of thrust and fold belts, since oceanic plateaus are docked onto the continental margin. Strong deformation leads to slab break off, which eventually terminates subduction, shortly after the collisional stage has been reached. Crustal parts that have been sheared off during detachment melt at depth and modify the composition of the overlying continental crust.Basal plateau accretion scrapes oceanic plateaus off the downgoing slab, enabling the outward migration of the subduction zone. New incoming oceanic crust underthrusts the fractured terrane and forms a new subduction zone behind the accreted terrane. Subsequently, hot asthenosphere rises into the newly formed subduction zone and allows for extensive partial melting of crustal rocks, located at the slab interface, and only minor parts of the former oceanic plateau remain unmodified.Oceanic plateaus may also underplate the continental crust after being subducted to mantle depth. (U)HP terranes are formed with peak metamorphic temperatures of 400–700 °C prior to slab break off and subsequent exhumation. Rapid and coherent exhumation through the mantle along the former subduction zone at rates comparable to plate tectonic velocities is followed by somewhat slower rates at crustal levels, accompanied by crustal flow, structural reworking and syndeformational partial melting. Exhumation of these large crustal volumes leads to a sharp surface uplift.  相似文献   

11.
Indian Ocean subduction zone is one of the most active plate margins of the globe as evident from its vast record of great magnitude earthquake and tsunami events. We use Bouguer admittance (Morlet isostatic response function) in Sumatra-Java subduction zones comprising both the subduction and over-riding plates to determine the lithospheric mechanical strength variations. We determine effective elastic thickness (T e ) for five oceanic windows (size 990 × 990 km2) by analyzing the admittance using Bouguer gravity and bathymetry data. The results show bimodal T e values < 20 km for Sumatra and 20−40 km for Java. The lower bimodal values obtained for Sumatra appears to correlate well with the zones of historical seismicity. This is in sharp contrast with Java subduction zone, which shows higher T e values (20–40 km) and apparently associated with low magnitude earthquakes. We suggest a strong and wide interseismic coupling for Sumatra between the subducting and over-riding plates, and deeper mantle contributing to low strength, shallow focus — high magnitude seismicity and vice versa for Java, leading to their seismogenic zonation.  相似文献   

12.
《地学前缘(英文版)》2020,11(4):1219-1229
We investigate the effect of the westerly rotation of the lithosphere on the active margins that surround the Americas and find good correlations between the inferred easterly-directed mantle counterflow and the main structural grain and kinematics of the Andes and Sandwich arc slabs.In the Andes,the subduction zone is shallow and with low dip,because the mantle flow sustains the slab;the subduction hinge converges relative to the upper plate and generates an uplifting doubly verging orogen.The Sandwich Arc is generated by a westerly-directed SAM(South American) plate subduction where the eastward mantle flow is steepening and retreating the subduction zone.In this context,the slab hinge is retreating relative to the upper plate,generating the backarc basin and a low bathymetry single-verging accretionary prism.In Central America,the Caribbean plate presents a more complex scenario:(a) To the East,the Antilles Arc is generated by westerly directed subduction of the SAM plate,where the eastward mantle flow is steepening and retreating the subduction zone.(b) To the West,the Middle America Trench and Arc are generated by the easterly-directed subduction of the Cocos plate,where the shallow subduction caused by eastward mantle flow in its northern segment gradually steepens to the southern segment as it is infered by the preexisting westerly-directed subduction of the Caribbean Plateau.In the frame of the westerly lithospheric flow,the subduction of a divergent active ridge plays the role of introducing a change in the oceanic/continental plate's convergence angle,such as in NAM(North American)plate with the collision with the Pacific/Farallon active ridge in the Neogene(Cordilleran orogenic type scenario).The easterly mantle drift sustains strong plate coupling along NAM,showing at Juan de Fuca easterly subducting microplate that the subduction hinge advances relative to the upper plate.This lower/upper plate convergence coupling also applies along strike to the neighbor continental strike slip fault systems where subduction was terminated(San Andreas and Queen Charlotte).The lower/upper plate convergence coupling enables the capture of the continental plate ribbons of Baja California and Yakutat terrane by the Pacific oceanic plate,transporting them along the strike slip fault systems as para-autochthonous terranes.This Cordilleran orogenic type scenario,is also recorded in SAM following the collision with the Aluk/Farallon active ridge in the Paleogene,segmenting SAM margin into the eastwardly subducting Tupac Amaru microplate intercalated between the proto-LiquineOfqui and Atacama strike slip fault systems,where subduction was terminated and para-autochthonous terranes transported.In the Neogene,the convergence of Nazca plate with respect to SAM reinstalls subduction and the present Andean orogenic type scenario.  相似文献   

13.
In this paper, we constrain the input and output fluxes of H2O, Cl and S into the southern-central Chilean subduction zone (31°S–46°S). We determine the input flux by calculating the amounts of water, chlorine and sulfur that are carried into the subduction zone in subducted sediments, igneous crust and hydrated lithospheric mantle. The applied models take into account that latitudinal variations in the subducting Nazca plate impact the crustal porosity and the degree of upper mantle serpentinization and thus water storage in the crust and mantle. In another step, we constrain the output fluxes of the subduction zone both to the subcontinental lithospheric mantle and to the atmosphere–geosphere–ocean by the combined use of gas flux determinations at the volcanic arc, volume calculations of volcanic rocks and the combination of mineralogical and geothermal models of the subduction zone. The calculations indicate that about 68 Tg/m/Ma of water enters the subduction zone, as averaged over its total length of 1,480 km. The volcanic output on the other hand accounts for 2 Tg/m/Ma or 3 % of that input. We presume that a large fraction of the volatiles that are captured within the subducting sediments (which accounts for roughly one-third of the input) are cycled back into the ocean through the forearc. This assumption is however questioned by the present lack of evidence for major venting systems of the submarine forearc. The largest part of the water that is carried into the subduction zone in the crust and hydrated mantle (accounting for two-thirds of the input) appears to be transported beyond the volcanic arc.  相似文献   

14.
Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas in the world due to intensive, strong seismicity and volcanism. We review global geophysical data in order to illustrate the effects of the plate tectonic processes at convergent margins on the crustal and upper mantle structure, seismicity, and geometry of subducting slab. We present global maps of free-air and Bouguer gravity anomalies, heat flow, seismicity, seismic Vs anomalies in the upper mantle, and plate convergence rate, as well as 20 profiles across different convergent margins. A global analysis of these data for three types of convergent margins, formed by ocean–ocean, ocean–continent, and continent–continent collisions, allows us to recognize the following patterns. (1) Plate convergence rate depends on the type of convergent margins and it is significantly larger when, at least, one of the plates is oceanic. However, the oldest oceanic plate in the Pacific ocean has the smallest convergence rate. (2) The presence of an oceanic plate is, in general, required for generation of high-magnitude (M > 8.0) earthquakes and for generating intermediate and deep seismicity along the convergent margins. When oceanic slabs subduct beneath a continent, a gap in the seismogenic zone exists at depths between ca. 250 km and 500 km. Given that the seismogenic zone terminates at ca. 200 km depth in case of continent–continent collision, we propose oceanic origin of subducting slabs beneath the Zagros, the Pamir, and the Vrancea zone. (3) Dip angle of the subducting slab in continent–ocean collision does not correlate neither with the age of subducting oceanic slab, nor with the convergence rate. For ocean–ocean subduction, clear trends are recognized: steeply dipping slabs are characteristic of young subducting plates and of oceanic plates with high convergence rate, with slab rotation towards a near-vertical dip angle at depths below ca. 500 km at very high convergence rate. (4) Local isostasy is not satisfied at the convergent margins as evidenced by strong free air gravity anomalies of positive and negative signs. However, near-isostatic equilibrium may exist in broad zones of distributed deformation such as Tibet. (5) No systematic patterns are recognized in heat flow data due to strong heterogeneity of measured values which are strongly affected by hydrothermal circulation, magmatic activity, crustal faulting, horizontal heat transfer, and also due to low number of heat flow measurements across many margins. (6) Low upper mantle Vs seismic velocities beneath the convergent margins are restricted to the upper 150 km and may be related to mantle wedge melting which is confined to shallow mantle levels.  相似文献   

15.
Wencai Yang 《Tectonophysics》2009,475(2):226-234
All results from integrated geophysical investigations in the Sulu region are summarized in this paper, trying to reconstruct the Sulu UHPM processes. New seismic S-wave tomographic results suggest a velocity-abnormal zone occurs beneath the Sulu crust, revealing detailed upper mantle structures that high-velocity lumps within the abnormal zone are sequentially distributed beneath the bottom of the asthenosphere. These high-velocity lumps might represent delaminated eclogites or residuals of the subducted oceanic plate. Based on integrated interpretation of the geophysical data, we propose a working model for tectonic reconstruction of the Sulu UHPM processes, which can explain the crust and upper mantle structures of the area. The involved tectonic processes are related to north-eastward escaping of the Sulu terrane, subduction and delamination cycles of the Dabie-Sulu oceanic plate, and post-orogenic lithospheric thinning and magma underplating. The UHPM rocks are believed to have syn-subduction delaminated down to the bottom of the asthenosphere during 245-180 Ma, and the delamination process seemed smooth and nearly continuous without extensive violence.  相似文献   

16.
The lower plate is the dominant agent in modern convergent margins characterized by active subduction,as negatively buoyant oceanic lithosphere sinks into the asthenosphere under its own weight.This is a strong plate-driving force because the slab-pull force is transmitted through the stiff sub-oceanic lithospheric mantle.As geological and geochemical data seem inconsistent with the existence of modernstyle ridges and arcs in the Archaean,a periodically-destabilized stagnant-lid crust system is proposed instead.Stagnant-lid intervals may correspond to periods of layered mantle convection where efficient cooling was restricted to the upper mantle,perturbing Earth's heat generation/loss balance,eventually triggering mantle overturns.Archaean basalts were derived from fertile mantle in overturn upwelling zones(OUZOs),which were larger and longer-lived than post-Archaean plumes.Early cratons/continents probably formed above OUZOs as large volumes of basalt and komatiite were delivered for protracted periods,allowing basal crustal cannibalism,garnetiferous crustal restite delamination,and coupled development of continental crust and sub-continental lithospheric mantle.Periodic mixing and rehomogenization during overturns retarded development of isotopically depleted MORB(mid-ocean ridge basalt)mantle.Only after the start of true subduction did sequestration of subducted slabs at the coremantle boundary lead to the development of the depleted MORB mantle source.During Archaean mantle overturns,pre-existing continents located above OUZOs would be strongly reworked;whereas OUZOdistal continents would drift in response to mantle currents.The leading edge of drifting Archaean continents would be convergent margins characterized by terrane accretion,imbrication,subcretion and anatexis of unsubductable oceanic lithosphere.As Earth cooled and the background oceanic lithosphere became denser and stiffer,there would be an increasing probability that oceanic crustal segments could founder in an organized way,producing a gradual evolution of pre-subduction convergent margins into modern-style active subduction systems around 2.5 Ga.Plate tectonics today is constituted of:(1)a continental drift system that started in the Early Archaean,driven by deep mantle currents pressing against the Archaean-age sub-continental lithospheric mantle keels that underlie Archaean cratons;(2)a subduction-driven system that started near the end of the Archaean.  相似文献   

17.
Subduction-zone magmatism became extensive along the west coast of South America during the Ordovician, soon after Gondwana was assembled. During the remainder of the Paleozoic and the early Mesozoic, eastward subduction of the Farallon plate led to emplacement of a succession of granitic and volcanic rocks. During the Cretaceous, when South America broke away from Africa and began moving independently toward the Pacific Basin, the resulting opposite motions of the South American and Farallon plates toward the subduction zone caused vigorous tectonic mountain building. But by the Oligocene, South America had advanced more than 2000 km beyond the position of the Cretaceous subduction zone's root in the lower mantle. The South American plate, moving westward over the subducting plate, pushed down and flattened the curved top of the subducting slab, as indicated by today's flattened earthquake zone under South America. I hypothesize that this flattening increased the subducting slab's resistance with the underlying lower mantle. Crustal deformation slowed, and the mountains built during the Cretaceous and later were eroded to a peneplane.

During the Oligocene, about 25 Ma, the Farallon plate broke into the Cocos and Nazca plates, and I suggest that along the west coast of South America a shear at a slope of about 30° cut through the subducting slab. The oceanic (Nazca) part of the slab then entered the lower mantle below the Andes with a steeper dip than before. As the newly sheared obtuse upper corner of the Nazca plate pushed eastward and downward, it buckled the rigid edge of the continent and began the folding and thrusting of the Andean (Quechua) orogeny. The orogeny continues, but earthquake foci indicate that as South America continues to move westward, the subduction zone once again is flattening; in the future we can expect the Nazca slab to shear once more and its new wedge-shaped end to enter the lower mantle again.  相似文献   

18.
The geochemistry and mineralogy of lamproites from south‐western Anatolia can be used as a snapshot of the lithospheric composition beneath the Menderes Massif. High and near‐constant K2O contents, the presence of mantle xenocrystic phlogopite and olivine, highly magnesian olivine phenocrysts and Cr‐rich spinel inclusions all indicate that the lithospheric mantle was phlogopite‐bearing ultradepleted harzburgite at the time of lamproite eruption (20–4 Ma). This mantle assemblage most probably originated in a complex multistage process, including (intra‐oceanic) supra‐subduction zone depletion during the final stages of southern Neotethyan ocean closure, and accretion of the forearc oceanic lithosphere as shallowly subducted material to the already assembled Anatolia. The data presented here support shallow subduction of the oceanic lithosphere as a cause of the uplift of the Menderes Massif, in contrast to the traditional core‐complex model. Terra Nova, 00, 000–000, 2010  相似文献   

19.
《Gondwana Research》2014,25(3-4):936-945
Body wave seismic tomography is a successful technique for mapping lithospheric material sinking into the mantle. Focusing on the India/Asia collision zone, we postulate the existence of several Asian continental slabs, based on seismic global tomography. We observe a lower mantle positive anomaly between 1100 and 900 km depths, that we interpret as the signature of a past subduction process of Asian lithosphere, based on the anomaly position relative to positive anomalies related to Indian continental slab. We propose that this anomaly provides evidence for south dipping subduction of North Tibet lithospheric mantle, occurring along 3000 km parallel to the Southern Asian margin, and beginning soon after the 45 Ma break-off that detached the Tethys oceanic slab from the Indian continent. We estimate the maximum length of the slab related to the anomaly to be 400 km. Adding 200 km of presently Asian subducting slab beneath Central Tibet, the amount of Asian lithospheric mantle absorbed by continental subduction during the collision is at most 600 km. Using global seismic tomography to resolve the geometry of Asian continent at the onset of collision, we estimate that the convergence absorbed by Asia during the indentation process is ~ 1300 km. We conclude that Asian continental subduction could accommodate at most 45% of the Asian convergence. The rest of the convergence could have been accommodated by a combination of extrusion and shallow subduction/underthrusting processes. Continental subduction is therefore a major lithospheric process involved in intraplate tectonics of a supercontinent like Eurasia.  相似文献   

20.
The North China Craton (NCC) provides one of the classic examples of craton destruction, although the mechanisms and processes of its decratonization are yet to be fully understood. Here we integrate petrological, geochemical, geochronological and geophysical information from the NCC and conclude that the destruction of the craton involved multiple events of circum-craton subduction, which provided the driving force that destabilized mantle convection and tectonically eroded the lithospheric mantle beneath the craton. Furthermore, subducted-slab-derived fluids/melts weakened the subcontinental lithospheric mantle and facilitated thermo-mechanical and chemical erosion of the lithosphere. The more intense destruction beneath the eastern part of the NCC reflects the crucial contribution of Pacific plate subduction from the east that overprinted the mantle lithosphere modified during the early subduction processes. Our study further establishes the close relationship between lithospheric modification via peridotite–melt reactions induced by oceanic plate subduction and cratonic destruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号