首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Pattern informatics (PI) algorithm, which was introduced at the beginning of past decade, uses instrumental earthquake catalogs to investigate the time-dependent rate of seismicity in the study area and, based on the information from past events, calculates the probabilities for the occurrence of future large earthquakes. The main measure in this method is the number of events above a specified magnitude threshold M c that is counted over a gridded area. PI has been applied in several regions of the world and different variants of the method have been developed over the past decade. Hence, the problem of formally evaluating and comparing the performances of the different PI variants needs to be addressed from an operational perspective, in order to identify the preferred application scheme and as well as to improve the performances of the method. In this study, PI is applied for the first time to the retrospective analysis of the earthquake catalogs of Iran and Italy, so as to check whether this method could forecast the past large events in these two regions with different level of data completeness and complex seismotectonic setting. The original PI algorithm and one of its modified variants, as well as the relative intensity (RI) model, are used to check the stability and statistical significance of the obtained results. In order to assess and compare the obtained results, the performances of the different PI variants are analyzed considering different evaluation strategies, which turn out to provide significantly different scores even for the same algorithm variant. We show that a critical point in the assessment of the obtained results is related with the definition and quantification of the space uncertainty of the issued forecasts, that is, with the extent of the territory where large earthquakes are to be expected. Accordingly, we emphasize the need for an appropriate definition of the evaluation strategies, clearly and unambiguously indicating the area where a large earthquake has to be expected. The study shows that, with respect to application in Iran and Italy, the performances of PI algorithm (both original and modified variants) are highly dependent on the selected evaluation strategy and do not provide better information than the simple RI model, which does not account for temporal properties of seismicity evolution. The overall performances can be improved by introducing specific thresholds that discard the less active cells; however, being based on some posterior optimization, a rigorous prospective testing is required to assess the forecasting capability of the method. In this paper, we aim to set up the rules for such testing, including advance definition of the evaluation strategy.  相似文献   

2.
The Pattern Informatics (PI) technique [Tiampo, K.F., Rundle, J.B., McGinnis, S., Gross, S., Klein, W., 2002. Mean-field threshold systems and phase dynamics: An application to earthquake fault systems, Europhys. Lett., 60, 481–487] is founded on the premise that changes in the seismicity rate are a proxy for changes in the underlying stress. This new approach to the study of seismicity quantifies its local and regional space–time patterns and identifies regions of local quiescence or activation. Here we use a modification of the PI method to quantify localized changes surrounding the epicenters of large earthquakes in California in an attempt to objectively quantify the rupture zones of these upcoming events. We show that this method can be used to forecast the size and magnitude of future earthquakes.  相似文献   

3.
Numerical models are starting to be used for determining the future behaviour of seismic faults and fault networks. Their final goal would be to forecast future large earthquakes. In order to use them for this task, it is necessary to synchronize each model with the current status of the actual fault or fault network it simulates (just as, for example, meteorologists synchronize their models with the atmosphere by incorporating current atmospheric data in them). However, lithospheric dynamics is largely unobservable: important parameters cannot (or can rarely) be measured in Nature. Earthquakes, though, provide indirect but measurable clues of the stress and strain status in the lithosphere, which should be helpful for the synchronization of the models.The rupture area is one of the measurable parameters of earthquakes. Here we explore how it can be used to at least synchronize fault models between themselves and forecast synthetic earthquakes. Our purpose here is to forecast synthetic earthquakes in a simple but stochastic (random) fault model. By imposing the rupture area of the synthetic earthquakes of this model on other models, the latter become partially synchronized with the first one. We use these partially synchronized models to successfully forecast most of the largest earthquakes generated by the first model. This forecasting strategy outperforms others that only take into account the earthquake series. Our results suggest that probably a good way to synchronize more detailed models with real faults is to force them to reproduce the sequence of previous earthquake ruptures on the faults. This hypothesis could be tested in the future with more detailed models and actual seismic data.  相似文献   

4.
Seismic shear‐wave splitting (SWS) monitors the low‐level deformation of fluid‐saturated microcracked rock. We report evidence of systematic SWS changes, recorded above small earthquakes, monitoring the accumulation of stress before earthquakes that allows the time and magnitude of impending large earthquakes to be stress‐forecast. The effects have been seen with hindsight before some 15 earthquakes ranging in magnitude from an M1.7 seismic swarm event in Iceland to the Ms7.7 Chi‐Chi Earthquake in Taiwan, including a successfully stress‐forecast of a M5.0 earthquake in SW Iceland. Characteristic increases in SWS time‐delays are observed before large earthquakes, which abruptly change to deceases shortly before the earthquake occurs. There is a linear relationship between magnitudes and logarithms of durations of both increases and decreases in SWS time‐delays before large impending earthquakes. However, suitably persistent swarms of small earthquakes are too scarce for routine stress‐forecasting. Reliable forecasting requires controlled‐source cross‐hole seismics between neighbouring boreholes in stress‐monitoring sites (SMS). It would be possible to stress‐forecast damaging earthquakes worldwide by a global network of SMS in real time.  相似文献   

5.
Y. Y. Kagan 《Tectonophysics》1997,270(3-4):207-219
This note discusses three interconnected statistical problems concerning the Parkfield sequence of moderate earthquakes and the Parkfield prediction experiment: (a) Is it possible that the quasi-periodic Parkfield sequence of characteristic earthquakes is no uncommon, specific phenomenon (the research hypothesis), but can be explained by a preferential selection from available earthquake catalogs? To this end we formulate the null hypothesis (earthquakes occur according to the Poisson process in time and their size follows the Gutenberg-Richter relation). We test whether the null hypothesis can be rejected as an explanation for the Parkfield sequence. (b) If the null hypothesis cannot be refuted, what is the probability of magnitude m ≥ 6 earthquake occurrence in the Parkfield region? (c) The direct goal of the Parkfield experiment is the registration of precursory phenomena prior to a m6 earthquake. However, in the absence of the characteristic earthquake, can the experiment resolve which of the two competing hypotheses is true in a reasonable time? Statistical analysis is hindered by an insufficiently rigorous definition of the research model and inadequate or ambiguous data. However, we show that the null hypothesis cannot be decisively rejected. The quasi-periodic pattern of intermediate size earthquakes in the Parkfield area is a statistical event likely to occur by chance if it has been preferentially selected from available earthquake catalogs. The observed magnitude-frequency curves for small and intermediate earthquakes in the Parkfield area agree with the theoretical distribution computed on the basis of a modified Gutenberg-Richter law (gamma distribution), using deformation rates for the San Andreas fault. We show that the size distribution of the Parkfield characteristic earthquakes can also be attributed to selection bias. According to the null hypothesis, the yearly probability of a m ≥ 6 earthquake originating in the Parkfield area is less than 1%, signifying that several more decades of observation may be needed before the expected event occurs. By its design, the Parkfield experiment cannot be expected to yield statistically significant conclusions on the validity of the research hypothesis for many decades.  相似文献   

6.
为研究太阳活动与全球大震的关系, 引入一个无量纲的"地震能量函数√G", 并分析研究了1681—2011故年间全球M≥7.0大震的能量释放的时间序列.由此发现全球大震在太阳活动周4个阶段的分布和活动度, 随震级的强度而异.提出地壳对太阳风暴加卸载响应模式, 用于解释此现象: 通过考察最近331 a, 得出全球共发生了10个M≥9.0超级巨震的时空分布特征, 特别是太阳活动峰年期间没有发生过超级巨震.该研究结果可为判断全球大震提供参考.   相似文献   

7.
This study presents the future seismic hazard map of Coimbatore city, India, by considering rupture phenomenon. Seismotectonic map for Coimbatore has been generated using past earthquakes and seismic sources within 300 km radius around the city. The region experienced a largest earthquake of moment magnitude 6.3 in 1900. Available earthquakes are divided into two categories: one includes events having moment magnitude of 5.0 and above, i.e., damaging earthquakes in the region and the other includes the remaining, i.e., minor earthquakes. Subsurface rupture character of the region has been established by considering the damaging earthquakes and total length of seismic source. Magnitudes of each source are estimated by assuming the subsurface rupture length in terms of percentage of total length of sources and matched with reported earthquake. Estimated magnitudes match well with the reported earthquakes for a RLD of 5.2% of the total length of source. Zone of influence circles is also marked in the seismotectonic map by considering subsurface rupture length of fault associated with these earthquakes. As earthquakes relive strain energy that builds up on faults, it is assumed that all the earthquakes close to damaging earthquake have released the entire strain energy and it would take some time for the rebuilding of strain energy to cause a similar earthquake in the same location/fault. Area free from influence circles has potential for future earthquake, if there is seismogenic source and minor earthquake in the last 20 years. Based on this rupture phenomenon, eight probable locations have been identified and these locations might have the potential for the future earthquakes. Characteristic earthquake moment magnitude (M w ) of 6.4 is estimated for the seismic study area considering seismic sources close to probable zones and 15% increased regional rupture character. The city is divided into several grid points at spacing of 0.01° and the peak ground acceleration (PGA) due to each probable earthquake is calculated at every grid point in city by using the regional attenuation model. The maximum of all these eight PGAs is taken for each grid point and the final PGA map is arrived. This map is compared to the PGA map developed based on the conventional deterministic seismic hazard analysis (DSHA) approach. The probable future rupture earthquakes gave less PGA than that of DSHA approach. The occurrence of any earthquake may be expected in near future in these eight zones, as these eight places have been experiencing minor earthquakes and are located in well-defined seismogenic sources.  相似文献   

8.
大地震发生的网络性质——兼论有关地震预测的争论   总被引:22,自引:0,他引:22  
徐道一 《地学前缘》2001,8(2):211-216
现有地震形成机制的假说大多是仅考虑震源及其邻近地区的事实依据。文中提出 :大地震的形成机制具有网络特性 ,把大地震看成是多层次网络的节点。一个地震的发生是多种动力 (包括天文因素 )作用的结果。地震形成机制的网络假说能较好地综合已有概念 ,解释地震预测研究中发现许多新现象。从网络假说看近年来“地震能否预测”的争论可有许多新启示。如果应用网络假说 ,至少一部分地震应是可以预测的。  相似文献   

9.
由于受到台站分布不理想、速度结构研究不准确以及震相拾取误差等因素的影响,常规地震定位结果精度较低。因此,研究收集了辽宁省地震台网的地震目录及震相数据,采用双差地震定位方法,对海城及其附近地区(39°N-43°N,120°E-126°E)20 a的1 400多次地震进行重新定位。与原始定位结果相比,双差定位结果表明:1)震中更加呈条带状集中,尤其在40.5°N-41.0°N,122.0°E-123.0°E区间,与该地区的海城河-大洋河断裂带走向相一致;2)该地区地震多发生于地下5~20 km,与该区中地壳存在的低速高导层相对应;3)深度剖面图显示,大部分地震沿垂直向下柱状分布,原因是该处有粉碎性破裂带,从地下25 km处延伸到近地表。双差定位算法使得定位后均方根残差的平均值由0.74 s下降到0.26 s。辽宁地区的地震震级与发生地震数量有关,地震数量陡然增多,大地震发生概率增大。  相似文献   

10.
Kolkata, capital of West Bengal, India, presently congested with moderate to high rise buildings, has undergone low to moderate damages due to past earthquakes. The city is situated on the world’s largest delta island with soft thick alluvial soil layer. In this study, an attempt has been made to study ground response due to a number of past earthquakes, 1897 Shillong earthquake, 1964 Calcutta earthquake and 2011 Sikkim earthquake, for the purpose of preliminary microzonation of the Kolkata city. For this, synthetic ground motions have been generated at bedrock level by stochastic method. By using 1D wave propagation technique, the synthetic ground motion has been computed at surface level for 144 borehole locations in the city. Contours of PGA, PGV and PGD parameters in the city have been drawn for these three earthquakes. Response spectra for these three earthquakes have also been computed and an optimum response spectrum has been determined. A good correlation has been obtained with predicted ground motion at surface level of the city with the reported intensity and damages occurred in buildings of Kolkata during past earthquakes. The scenario of simulated ground motion for the past three earthquakes depicts that Kolkata city is very much prone to damages even due to moderate far and near source earthquakes.  相似文献   

11.
《Gondwana Research》2014,25(1):204-213
Bounded by the western and eastern syntaxes, the Himalayan region has experienced at least five M ~ 8 earthquakes during a seismically very active phase from 1897 through 1952. However, there has been a paucity of M ~ 8 earthquakes since 1952. Examining of various catalogues and seismograms from the Gottingen Observatory, it is established that this quiescence of M ~ 8 earthquakes is real. While it has not been possible to forecast earthquakes, there has been a success in making a medium term forecast of an M 7.3 earthquake in the adjoining Indo-Burmese arc. Similarly we find that in the central Himalayan region, earthquakes of M > 6.5 have been preceded by seismic swarms and quiescences. In the recent past, based on GPS data, estimates have been made of the accumulated strains and it is postulated that a number of M ~ 8 earthquakes are imminent in the Himalayan region. We examine these estimates and find that while earthquakes of M ~ 8 may occur in the region, however, the available GPS data and their interpretation do not necessarily suggest their size and time of occurrence and whether an earthquake in a particular segment will occur sooner in comparison to that in the neighboring segment. We also comment on the inference of occurrence of M ~ 8 earthquakes based on M8 algorithm for the region. We conclude that while an M ~ 8 earthquake could occur any time anywhere in the Himalayan region, there is no indication as of now as to where and when it would occur. We impress on the need for preparedness to mitigate the pending earthquake disaster in the region.  相似文献   

12.
Recent studies have shown that real-valued principal component analysis can be applied to earthquake fault systems for forecasting and prediction. In addition, theoretical analysis indicates that earthquake stresses may obey a wave-like equation, having solutions with inverse frequencies for a given fault similar to those that characterize the time intervals between the largest events on the fault. It is therefore desirable to apply complex principal component analysis to develop earthquake forecast algorithms. In this paper we modify the Pattern Informatics method of earthquake forecasting to take advantage of the wave-like properties of seismic stresses and utilize the Hilbert transform to create complex eigenvectors out of measured time series. We show that Pattern Informatics analyses using complex eigenvectors create short-term forecast hot-spot maps that differ from hot-spot maps created using only real-valued data and suggest methods of analyzing the differences and calculating the information gain.  相似文献   

13.
14.
青藏高原东南缘活动断层相互作用、应力触发与差别响应   总被引:2,自引:0,他引:2  
岩石圈、地壳由众多板块、地块及层圈组合而成,是开放性复杂巨系统,活断层在地壳中犹如神经网络也是复杂的开放体系。因此活断层之间存在复杂的相互作用,例如地震断层破裂产生应力扰动,可能触发其他断层破裂,不仅在近处,也会在远处发生。不同的活断层构造产状、活动方式及应变阶段不同,对同一次触发响应不同。触发与差别响应二者的叠加效应在地震活动性上有重要表现。表现之一是区域大震后,余震区外地震活动显著增强处发生继发性大震的概率最大,也即率先出现"远余震、诱发前震、响应震"的地方地震危险性增大,对预测未来地震位置有效。对本区1950—2013年地震统计表明,预测成功率W=1-漏报率-虚报率=80%。同时,对当前地震危险区作了预测。  相似文献   

15.
Whether the earthquake occurrences follow a Poisson process model is a widely debated issue. The Poisson process model has great conceptual appeal and those who rejected it under pressure of empirical evidence have tried to restore it by trying to identify main events and suppressing foreshocks and aftershocks. The approach here is to estimate the density functions for the waiting times of the future earthquakes. For this purpose, the notion of Gram-Charlier series which is a standard method for the estimation of density functions has been extended based on the orthogonality properties of certain polynomials such as Laguerre and Legendre. It is argued that it is best to estimate density functions in the context of a particular null hypothesis. Using the results of estimation a simple test has been designed to establish that earthquakes do not occur as independent events, thus violating one of the postulates of a Poisson process model. Both methodological and utilitarian aspects are dealt with.  相似文献   

16.
用线性预测理论研究地震中长期预报   总被引:1,自引:0,他引:1       下载免费PDF全文
引言长期以来,人们十分注重对地震的时间、空间序列进行研究,以探索地震发生的规律和进行预报。过去相当多的工作讨论了地震的周期性,地震在空间分布上的填空性及迁移规律问题。引入现代统计方法研究地震的时空序列,就有可能在更一般的条件下对原因和过程都尚未清楚的地震事件进行统计分析,概括出某些数学模型进行外推预测。  相似文献   

17.
Earthquakes cause massive road damage which in turn causes adverse effects on the society. Previous studies have quantified the damage caused to residential and commercial buildings; however, not many studies have been conducted to quantify road damage caused by earthquakes. In this study, an attempt has been made to propose a new scale to classify and quantify the road damage due to earthquakes based on the data collected from major earthquakes in the past. The proposed classification for road damage due to earthquake is called as road damage scale (RDS). Earthquake details such as magnitude, distance of road damage from the epicenter, focal depth, and photographs of damaged roads have been collected from various sources with reported modified Mercalli intensity (MMI). The widely used MMI scale is found to be inadequate to clearly define the road damage. The proposed RDS is applied to various reported road damage and reclassified as per RDS. The correlation between RDS and earthquake parameters of magnitude, epicenter distance, hypocenter distance, and combination of magnitude with epicenter and hypocenter distance has been studied using available data. It is observed that the proposed RDS correlates well with the available earthquake data when compared with the MMI scale. Among several correlations, correlation between RDS and combination of magnitude and epicenter distance is appropriate. Summary of these correlations, their limitations, and the applicability of the proposed scale to forecast road damages and to carry out vulnerability analysis in urban areas is presented in the paper.  相似文献   

18.
Great earthquakes in the past (e.g. 1869 Cachar earthquake, 1897 great Assam earthquake) have caused large scale damage and ground liquefaction in the Guwahati city. Moreover, seismologists are of opinion that a great earthquake might occur in the unruptured segment of the North-East Himalaya that is near to Guwahati city. In this paper, the liquefaction hazard due to these events have been simulated. The obtained results are in general agreement with the reported damages due to the past earthquakes. The central part of the city (i.e. Dispur, GS road), that has large thickness of soft soil deposit and shallow ground water table, is highly vulnerable to liquefaction.  相似文献   

19.
Evaluating the hazard potential of the Makran subduction zone requires understanding the previous records of the large earthquakes and tsunamis. We address this problem by searching for earthquake and tectonic proxies along the Makran Coast and linking those observations with the available constraints on historical seismicity and the tell-tale characteristics of sea floor morphology. The earthquake of Mw 8.1 of 1945 and the consequent tsunami that originated on the eastern part of the Makran are the only historically known hazardous events in this region. The seismic status of the western part of the subduction zone outside the rupture area of the 1945 earthquake remains an enigma. The near-shore shallow stratigraphy of the central part of Makran near Chabahar shows evidence of seismically induced liquefaction that we attribute to the distant effects of the 1945 earthquake. The coastal sites further westward around Jask are remarkable for the absence of liquefaction features, at least at the shallow level. Although a negative evidence, this possibly implies that the western part of Makran Coast region may not have been impacted by near-field large earthquakes in the recent past??a fact also supported by the analysis of historical data. On the other hand, the elevated marine terraces on the western Makran and their uplift rates are indicative of comparable degree of long-term tectonic activity, at least around Chabahar. The offshore data suggest occurrences of recently active submarine slumps on the eastern part of the Makran, reflective of shaking events, owing to the great 1945 earthquake. The ocean floor morphologic features on the western segment, on the contrary, are much subdued and the prograding delta lobes on the shelf edge also remain intact. The coast on the western Makran, in general, shows indications of progradation and uplift. The various lines of evidence thus suggest that although the western segment is potentially seismogenic, large earthquakes have not occurred there in the recent past, at least during the last 600?years. The recurrence period of earthquakes may range up to 1,000?years or more, an assessment based on the age of the youngest dated coastal ridge. The long elapsed time points to the fact that the western segment may have accumulated sufficient slip to produce a major earthquake.  相似文献   

20.
汶川地震和科学钻探   总被引:36,自引:2,他引:34  
许志琴  李海兵  吴忠良 《地质学报》2008,82(12):1613-1622
2008年5月12日,在我国四川省发生了震撼世界的汶川特大地震,给人民的生命财产造成了巨大的损失。在汶川特大地震发生及其余震尚在继续的特殊时期,快速实施汶川地震断裂带的科学钻探(WFSD),是认识地震发生的机制、继续对余震进行有效监控以及提高地震监视和预警的能力的极佳机遇。2008年11月6日,汶川地震断裂带科学钻探工程开工典礼在四川省都江堰市虹口乡举行,标志着地震机制的研究跨上了新的台阶。通过对科学钻孔的直接取样,多学科观测和测试,揭示地震断裂带的深部组分、结构和构造属性,重塑地震断裂带的物理和化学过程,为提高未来地震的监测、预报或预警能力提供重要信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号