首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Flare-associated soft X-ray bursts (8–12 Å) are examined for 283 events observed by OSO-III. These bursts are shown to be predominantly thermal in nature. Their time-profiles are roughly similar to those of the associated H flares, although the X-ray burst begins about two minutes earlier, on the average. The strength of the soft X-ray burst is directly related to the area and brilliance of the flare, the age and flare-richness of the associated plage, and the general level of solar activity at the time of the burst. The peak enhancements in the soft X-ray and H emission rates during flares are of the same order of magnitude, as are the total flare energies radiated at these wavelengths. We estimate that soft X-radiation accounts for up to 10% of a flare's total electromagnetic emission.NRC/NAS Resident Research Associate.  相似文献   

2.
The angular distribution of solar flare associated hard X-rays ( 10 keV) is calculated on the assumption that they originate as bremsstrahlung emission of energetic electrons with a power law spectrum. For the cross section the relativistic Sauter formula was used. Supposing the electrons to move in a fixed direction, the X-radiation is considerably anisotropic, especially at high photon energies. Taking into account a magnetic field, the anisotropy decreases with increasing pitch angles of the electrons. The anisotropic angular distribution of solar X-radiation seems to be connected with the centre-to-limb variation of hard X-ray bursts and with the correlation of shortwave fadeouts and geomagnetic crochets to H flares.  相似文献   

3.
Peter A. Sturrock 《Solar physics》1989,121(1-2):387-397
This article focuses on two problems involved in the development of models of solar flares. The first concerns the mechanism responsible for eruptions, such as erupting filaments or coronal mass ejections, that are sometimes involved in the flare process. The concept of loss of equilibrium is considered and it is argued that the concept typically arises in thought-experiments that do not represent acceptable physical behavior of the solar atmosphere. It is proposed instead that such eruptions are probably caused by an instability of a plasma configuration. The instability may be purely MHD, or it may combine both MHD and resistive processes. The second problem concerns the mechanism of energy release of the impulsive (or gradual) phase. It is proposed that this phase of flares may be due to current interruption, as was originally proposed by Alfvén and Carlqvist. However, in order for this process to be viable, it seems necessary to change one's ideas about the heating and structure of the corona in ways that are outlined briefly.  相似文献   

4.
We attempt to study the origin of coronal shocks by comparing several flare characteristics for two groups of flares: those with associated metric type II bursts and coronal mass ejections (CMEs) and those with associated metric type II bursts but no CMEs. CMEs accompany about 60% of all flares with type II bursts for solar longitudes greater than 30°, where CMEs are well observed with the NRL Solwind coronagraph. H flare areas, 1–8 Å X-ray fluxes, and impulsive 3 cm fluxes are all statistically smaller for events with no CMEs than for events with CMEs. It appears that both compact and large mass ejection flares are associated with type II bursts. The events with no CMEs imply that at least many type II shocks are not piston-driven, but the large number of events of both groups with small 3 cm bursts does not support the usual assumption that type II shocks are produced by large energy releases in flare impulsive phases. The poor correlation between 3 cm burst fluxes and the occurrence of type II bursts may be due to large variations in the coronal Alfvén velocity.Sachs/Freeman Associates, Inc., Bowie, MD 20715, U.S.A.  相似文献   

5.
On the assumption that solar flares are due to instabilities which occur in current sheets in the Sun's atmosphere, one may classify magnetic-field configurations associated with flares into two types. One is characterized by closed current sheets, magnetic-field lines adjacent to these sheets beginning and ending at the Sun's surface. The other is characterized by open current sheets, magnetic-field lines adjacent to these sheets beginning at the Sun's surface but extending out into interplanetary space. Flares associated with open current sheets can produce Type III radio bursts and high-energy-particle events, but flares associated with closed current sheets cannot. The flare of July 6, 1966 apparently consisted of one flare of each type.  相似文献   

6.
An attempt has been made in the present work to reveal the directivity of solar non-thermal X-ray emission using the data obtained from the Prognoz and Explorer satellites. The frequency of occurrence of X-ray bursts and the mean intensities of the emission are studied as a function of distance from the central meridian. The most complete statistics have been obtained for the 4–24 keV X-ray bursts for the period 1970–1973. The X-ray burst frequency of occurrence normalized to the corresponding H flare frequency increases towards the solar limb. During the studied period this trend is more pronounced to the east than to the west. Distributions of the mean intensities of X-ray bursts are very similar to those of the frequency of occurrence of X-ray bursts; the effect is more noticeable for the low intensity bursts. The effect of the east-west asymmetry for H flares has been found to vary in magnitude and direction during the 20th solar activity cycle.  相似文献   

7.
Using a one-dimensional electrostatic particle code, we examine processes associated with current interruption in a collisionless plasma when a density depression is present along the current channel. Current interruption due to double layers was suggested by Alfvén and Carlqvist (1967) as a cause of solar flares. At a local density depression, plasma instabilities caused by an electron current flow are accentuated, leading to current disruption. Our simulation study encompasses a wide range of the parameters in such a way that under appropriate conditions, both the Alfvén and Carlqvist (1967) regime and the Smith and Priest (1972) regime take place. In the latter regime the density depression decays into a stationary structure (ion-acoustic layer) which spawns a series of ion-acoustic solitons and ion phase space holes travelling upstream. A large inductance of the current circuit tends to enhance the plasma instabilities.  相似文献   

8.
We have studied a series of flares in McMath 11482, 1972 August 19–22, with particular reference to the basis for the flares and comparison with dekameter radio data. We find that the flares were produced by rapid ( 1000 km h–1) westward motion of a large new p spot. Many flares occur just in front of the spot, and they cease when the motion stops. All flares occurring in front of the spot produce type III bursts, while even strong flares elsewhere in the region produce little or no type III. The time of type III emission agrees perfectly with the start of the H flare. Thus type III bursts are only produced in favorable configurations.Simultaneous K-line movies are compared with H films and show little difference in flare appearance.  相似文献   

9.
Behind-the-limb flares provide a unique opportunity for the study of vertical source structures of microwave bursts and dynamic flare processes. Based on complex observational data related to the outstanding solar proton event on 16 February, 1984, the development of burst emission at a height z 200000 km above the photosphere has been investigated. A comparison with the associated X-ray emission measured aboard various spacecraft yields a time lag of about 1 min between the onset of the unocculted impulsive HXR-emission and the onsets of the X-ray and microwave emissions occulted by the solar limb. The lag corresponds to a range of speeds of the propagation of the flare volume of about 3000–5000 km s–1. Considering competing transport agents that could account for such expansion of the source volume, a qualitative model of shock-wave activation of loops successively reaching into larger coronal heights is proposed.From a discussion of the possible emission processes involved, conclusions about the magnetic field, electron density, and particle energies have been obtained.  相似文献   

10.
Klassen  A.  Karlický  M.  Aurass  H.  Jiřička  K. 《Solar physics》1999,188(1):141-154
Due to the emission of shock-accelerated electrons, broadband radio observations display propagating super Alfvénic shock waves in the low corona ('type II bursts'). We study the 9 July 1996 flare (AR NOAA 7978) focusing on the aspect of shock generation. This event's radio spectrogram shows two different type II bursts in sequence. Radio imaging data (Paris, Meudon Observatory) reveal that both bursts appear at different sites above the H flare. The driver of the first type II burst seems to propagate with twice the speed of the second one. The projected source site of the first type II burst (seen earlier and at higher frequencies) is spatially situated further away from the H flare site than the source of the second type II burst. We try to understand this by comparing with Yohkoh soft X-ray images. The first shock source occurs near the top of high soft X-ray loop structures. Its driver can be a guided fast mode magnetic disturbance. The second type II source appears in-between two high soft X-ray loop systems. This might be a piston-driven disturbance powered by an evaporation front. We get a consistent picture only by assuming a very inhomogeneous Alfvén speed in the active region's atmosphere.  相似文献   

11.
The vast majority of solar flares are not associated with metric Type II radio bursts. For example, for the period February 1980–July 1982, corresponding to the first two and one-half years of the Solar Maximum Mission, 95% of the 2500 flares with peak >25 keV count rates >100 c s–1lacked associated Type II emission. Even the 360 largest flares, i.e., those having >25 keV peak count rates >1000 c s–1, had a Type II association rate of only 24%. The lack of a close correlation between flare size and Type II occurrence implies the need for a 'special condition' that distinguishes flares that are accompanied by metric Type II radio bursts from those of comparable size that are not. The leading candidates for this special condition are: (1) an unusually low Alfvén speed in the flaring region; and (2) fast material motion. We present evidence based on SMM and GOES X-ray data and Solwind coronagraph data that argues against the first of these hypotheses and supports the second. Type II bursts linked to flares within 30° of the solar limb are well associated (64%; 49/76) with fast (>400 km s–1) coronal mass ejections (CMEs); for Type II flares within 15° of the limb, the association rate is 79% (30/38). An examination of the characteristics of 'non-CME' flares associated with Type IIs does not support the flare-initiated blast wave picture that has been proposed for these events and suggests instead that CMEs may have escaped detection. While the degree of Type II–CME association increases with flare size, there are notable cases of small Type II flares whose outstanding attribute is a fast CME. Thus we argue that metric Type II bursts (as well as the Moreton waves and kilometric Type II bursts that may accompany them) have their root cause in fast coronal mass ejections.  相似文献   

12.
An extensive analysis is made of the theory of flare stars based on the fast electron hypothesis, in the light of the latest observational evidence. It is shown that an adequate agreement of theory with the observations obtains regarding the internal regular features in the flare amplitude data inUBV rays, as well as the changes of the colour characteristics of stars during the flares; in the latter case the analysis is made not only in respect of the UV Cet-type stars, but flare stars as well, forming a part of the Orion association. Problems bearing on the negative flare and the screening effect are dealt with. New properties of the light curves of flares are revealed, based on the above theory.Particular emphasis is laid on the X-ray radiation from flare stars. It is shown that the observed spectrum of X-ray radiation of flare stars differs sharply from that of X-ray radiation both of the stellar corona and solar X-ray flares. At the same time, the observed X-ray spectrum of flares is in complete harmony with the previously calculated theoretical spectrum corresponding to nonthermal bremsstrahlung with the energy of monoenergetic fast electrons 1.5 MeV. The durations of X-ray flares should be essentially shorter than that of the optical flares. The very high momentary intensities of the X-ray brightness with the exceedingly small duration at the curve maximum is predicted. It is shown that the gamma-ray bursts recorded so far have no relation whatever to flare stars.  相似文献   

13.
We consider potential sources of infrared (1 to 1 mm) continuum in solar flares. Several mechanisms should produce detectable fluxes: in the 350 window for ground-based observations, impulsive emission will arise in synchrotron radiation from 1–10 MeV electrons, and possibly thermal (free-free) continuum from the source of the white-light flare; the hot flare plasma responsible for soft X-ray emission will also emit detectable fluxes of free-free continuum in the largest flares. At shorter wavelengths the dominant infrared emission will come from the H flare itself. Observations in the infrared wavelengths will help to complete our picture of flare structure in both the impulsive and gradual phases.  相似文献   

14.
E. W. Cliver 《Solar physics》1995,157(1-2):285-293
The evolution of solar flare nomenclature is reviewed in the context of the paradigm shift, in progress, from flares to coronal mass ejections (CMEs) in solar-terrestrial physics. Emphasis is placed on: the distinction between eruptive (Class II) flares and confined (Class I) flares; and the underlying similarity of eruptive flares inside (two-ribbon flares) and outside (flare-like brightenings accompanying disappearing filaments) of active regions. A list of research questions/problems raised, or brought into focus, by the new paradigm is suggested; in general, these questions bear on the interrelationships and associations of the two classes (or phases) of flares. Terms such as eruptive flare and eruption (defined to encompass both the CME and its associated eruptive flare) may be useful as nominal links between opposing viewpoints in the flares vs CMEs controversy.  相似文献   

15.
The amount of circular polarization of the total solar radio emission at 7 GHz present permanent changes after the occurrence of certain radio bursts associated with larger flares. For isolated S-components, associated with such flares the changes of the polarization degree sranges between 0.004 to 0.1, and appears to be a function of the flare importance. A semi-qualitative interpretation associates swith magnetic field reductions at the S-component, agreeing fairly well with a flare mechanism based on collisionless dissipation of magnetic energy, corresponding to energies in the range of 1030 to 1032 ergs, assuming an average model for the coronal condensations.  相似文献   

16.
P. R. Wilson 《Solar physics》1975,42(2):333-340
Parker's explanation of the sunspot phenomenon in terms of the enhanced emission of Alfvén waves (solar vulcanology) is shown to be compatible with observation only if 90% of the waves propagate downwards. Further difficulties arise if the region of cooling by Alfvén wave generation is restricted to a depth of 2 Mm. However, it is shown that, if Alfvén wave generation is included in a recent model proposed by Meyer, Schmidt, Weiss and Wilson, these difficulties may be resolved. The problem of the sharp umbra and penumbra boundaries is discussed and it is shown that features of this combined model are relevant to the flare phenomenon.  相似文献   

17.
We present the results of an analysis of the east-west asymmetry in the solar flare distribution, observed during the years from 1976 to 1985. We conclude that flare events, all type of H flares, are not uniformly spread in heliolongitude over the solar disc when considering events with heliolongitudes greater than 60°, or even closer to central meridian for certain periods. This lack of homogeneity, however, does not have an influence on the definition of east-west asymmetries. Simple random distribution of flares over the solar disc can not account for the asymmetries found, but they can be explained in terms of the transit of active regions in front of the observer's position. Nonetheless, this is not the case for the distribution of flares equal or more intense than importance 1F observed during 1979.  相似文献   

18.
The probable connection between cosmic rays and the electromagnetic state of the interplanetary medium was recognized by Hannes Alfvén as early as 1949 (Alfvén, 1949, 1950); he pointed out that the properties of cosmic rays necessitate a mechanism, external to Earth but within the solar system, capable of accelerating particles to extremely high energies. In advocating the view of local origin for part of the cosmic-ray spectrum, Alfvén and his colleagues developed a very general type of acceleration mechanism called magnetic pumping. The unique data set of the two Voyagers extends over an entire decade (1977–1987) and is most suitable to explore the problem of acceleration of charged particles in the heliosphere. The energy coverage of the Low Energy Charged Particle (LECP) experiment covers the range 30 keV to several hundred MeV for ions and 22 keV to several MeV for electrons. Selected observations of interplanetary acceleration events from 1 to 25 AU are presented and reviewed. These show frequent acceleration of ions to several tens of MeV in association with shocks; highest energies (220 MeV oxygen) were measured in the near-perpendicular ( Bn 87.5°) shock of January 5, 1978 at 1.9 AU, where electron acceleration was also observed. Examples of ion acceleration in association with corotating interaction regions are presented and discussed. It is shown that shock structures have profound effects on high-energy (70 MeV) cosmic rays, especially during solar minimum, when a negative latitudinal gradient was observed after early 1985 at all energies from 70 MeV down to 30 keV. By early 1987, most shock acceleration activity in the outer heliosphere (25 to 30 AU) had ceased both in the ecliptic (Voyager-2) and at higher (30°) ecliptic latitudes (Voyager-1). The totality of observations demonstrate that local acceleration to a few hundred MeV, and as high as a few GeV is continually present throughout the heliosphere. It should be noted that in 1954 when Alfvén suggested local acceleration and containment of cosmic rays within the solar system, no one treated his suggestion seriously, at any energy. The observations reviewed in this paper illustrate once more Alfvén's remarkable prescience and demonstrate how unwise it is to dismiss his ideas.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

19.
R. P. Lin 《Solar physics》1970,12(2):266-303
Observations of prompt 40 keV solar flare electron events by the IMP series of satellites in the period August, 1966 to December, 1967 are tabulated along with prompt energetic solar proton events in the period 1964–1967. The interrelationship of the various types of energetic particle emission by the sun, including relativistic energy electrons reported by Cline and McDonald (1968) are investigated. Relativistic energy electron emission is found to occur only during proton events. The solar optical, radio and X-ray emission associated with these various energetic particle emissions as well as the propagation characteristics of each particle species are examined in order to study the particle acceleration and emission mechanisms in a solar flare. Evidence is presented for two separate particle acceleration and/or emission mechanisms, one of which produces 40 keV electrons and the other of which produces solar proton and possibly relativistic energy electrons. It is found that solar flares can be divided into three categories depending on their energetic particle emission: (1) small flares with no accompanying energetic phenomena either in particles, radio or X-ray emission; (2) small flares which produce low energy electrons and which are accompanied by type III and microwave radio bursts and energetic ( 20 keV) X-ray bursts; and (3) major solar flare eruptions characterized by energetic solar proton production and type II and IV radio bursts and accompanied by intense microwave and X-ray emission and relativistic energy electrons.  相似文献   

20.
Shear flow instability is studied in the planar magnetopause boundary layer region by treating the plasma as compressible. A necessary criterion for instability near the cusp resonance is obtained analytically. The criterion depends on plasma, Alfvén Mach numberM A and the ratio of the scale lengths of the gradients in the flow and Alfvén velocities. The instability at the cusp resonance layer can be excited rather easily for the low plasma and for shear flow scale length smaller than the typical scale length over which Alfvén velocity varies. The growth rate for instability is obtained for any from a cubic equation. The unstable modes may contribute to the ULF wave activity at the magnetopause.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号