首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hafnium isotope and incompatible trace element data are presentedfor a suite of mid-ocean ridge basalts (MORB) from 13 to 47°Eon the Southwest Indian Ridge (SWIR), one of the slowest spreadingand most isotopically heterogeneous mid-ocean ridges. Variationsin Nd–Hf isotope compositions and Lu/Hf ratios clearlydistinguish an Atlantic–Pacific-type MORB source, presentwest of 26°E, characterized by relatively low Hf valuesfor a given Nd relative to the regression line through all Nd–Hfisotope data for oceanic basalts (termed the ‘Nd–Hfmantle array line’; the deviation from this line is termedHf) and low Lu/Hf ratios, from an Indian Ocean-type MORB signature,present east of 32°E, characterized by relatively high Hfvalues and Lu/Hf ratios. Additionally, two localized, isotopicallyanomalous areas, at 13–15°E and 39–41°E,are characterized by distinctly low negative and high positiveHf values, respectively. The low Hf MORB from 13 to 15°Eappear to reflect contamination by HIMU-type mantle from thenearby Bouvet mantle plume, whereas the trace element and isotopiccompositions of MORB from 39 to 41°E are most consistentwith contamination by metasomatized Archean continental lithosphericmantle. Relatively small source-melt fractionation of Lu/Hfrelative to Sm/Nd, compared with MORB from faster-spreadingridges, argues against a significant role for garnet pyroxenitein the generation of most central SWIR MORB. Correlations betweenHf and Sr and Pb isotopic and trace element ratios clearly delineatea high-Hf ‘Indian Ocean mantle component’ that canexplain the isotope composition of most Indian Ocean MORB asmixtures between this component and a heterogeneous Atlantic–Pacific-typeMORB source. The Hf, Nd and Sr isotope compositions of IndianOcean MORB appear to be most consistent with the hypothesisthat this component represents fragments of subduction-modifiedlithospheric mantle beneath Proterozoic orogenic belts thatfoundered into the nascent Indian Ocean upper mantle duringthe Mesozoic breakup of Gondwana. KEY WORDS: mid-ocean ridge basalt; isotopes; incompatible elements; Indian Ocean  相似文献   

2.
Marbles and metapelites from the Reynolds Range Group (centralAustralia) were regionally metamorphosed at low pressure duringM2 at 1.6 Ga, M2 ranged in grade from greenschist to granulitefacies along the length of the Reynolds Range, and overprinted1.78 Ga granites and their contact aureoles in the ReynoldsRange Group metasediments. At all M2 grades the marbles andmetapelites have highly variable oxygen isotope ratios [marbles:18O(carb) 14–20%; metapelites: 18O 6–14%). Similarly, 1.78 Ga granites have highly variable oxygen isotope ratios(18O 5–13%), with the lowest values occurring at thegranite margins. In all rock types, the lowest oxygen isotopevalues are consistent with the infiltration of channelled magmaticand/or meteoric fluids. The variable lowering of oxygen isotopevalues resulted from pre-M2 contact metamorphism and fluid—rockinteraction around the 1.78 Ga granites. In contrast, mineralassemblages in the marbles define a trend of increasing XCO2with increasing grade from <0.05 (greenschist facies) to0.7–1.0 (granulite facies). This, together with the lackof regionally systematic resetting of oxygen isotope ratios,implies that there was little fluid—rock interaction duringprograde regional metamorphism. KEY WORDS: low pressure; polymetamorphism; fluids; stable isotopes; petrology *Corresponding author Fax: 61–3–94791272. e-mail: geoisb{at}lure.latrobe.edu.au  相似文献   

3.
Numerous dykes of ultramafic lamprophyre (aillikite, mela-aillikite,damtjernite) and subordinate dolomite-bearing carbonatite withU–Pb perovskite emplacement ages of 590–555 Ma occurin the vicinity of Aillik Bay, coastal Labrador. The ultramaficlamprophyres principally consist of olivine and phlogopite phenocrystsin a carbonate- or clinopyroxene-dominated groundmass. Ti-richprimary garnet (kimzeyite and Ti-andradite) typically occursat the aillikite type locality and is considered diagnosticfor ultramafic lamprophyre–carbonatite suites. Titanianaluminous phlogopite and clinopyroxene, as well as comparativelyAl-enriched but Cr–Mg-poor spinel (Cr-number < 0.85),are compositionally distinct from analogous minerals in kimberlites,orangeites and olivine lamproites, indicating different magmageneses. The Aillik Bay ultramafic lamprophyres and carbonatiteshave variable but overlapping 87Sr/86Sri ratios (0·70369–0·70662)and show a narrow range in initial Nd (+0·1 to +1·9)implying that they are related to a common type of parentalmagma with variable isotopic characteristics. Aillikite is closestto this primary magma composition in terms of MgO (15–20wt %) and Ni (200–574 ppm) content; the abundant groundmasscarbonate has 13CPDB between –5·7 and –5,similar to primary mantle-derived carbonates, and 18OSMOW from9·4 to 11·6. Extensive melting of a garnet peridotitesource region containing carbonate- and phlogopite-rich veinsat 4–7 GPa triggered by enhanced lithospheric extensioncan account for the volatile-bearing, potassic, incompatibleelement enriched and MgO-rich nature of the proto-aillikitemagma. It is argued that low-degree potassic silicate to carbonatiticmelts from upwelling asthenosphere infiltrated the cold baseof the stretched lithosphere and solidified as veins, therebycrystallizing calcite and phlogopite that were not in equilibriumwith peridotite. Continued Late Neoproterozoic lithosphericthinning, with progressive upwelling of the asthenosphere beneatha developing rift branch in this part of the North Atlanticcraton, caused further veining and successive remelting of veinsplus volatile-fluxed melting of the host fertile garnet peridotite,giving rise to long-lasting hybrid ultramafic lamprophyre magmaproduction in conjunction with the break-up of the Rodinia supercontinent.Proto-aillikite magma reached the surface only after coatingthe uppermost mantle conduits with glimmeritic material, whichcaused minor alkali loss. At intrusion level, carbonate separationfrom this aillikite magma resulted in fractionated dolomite-bearingcarbonatites (13CPDB –3·7 to –2·7)and carbonate-poor mela-aillikite residues. Damtjernites maybe explained by liquid exsolution from alkali-rich proto-aillikitemagma batches that moved through previously reaction-lined conduitsat uppermost mantle depths. KEY WORDS: liquid immiscibility; mantle-derived magmas; metasomatism, Sr–Nd isotopes; U–Pb geochronology  相似文献   

4.
Klauea historical summit lavas have a wide range in matrix 18OVSMOWvalues (4·9–5·6) with lower values in rockserupted following a major summit collapse or eruptive hiatus.In contrast, 18O values for olivines in most of these lavasare nearly constant (5·1 ± 0·1). The disequilibriumbetween matrix and olivine 18O values in many samples indicatesthat the lower matrix values were acquired by the magma afterolivine growth, probably just before or during eruption. BothMauna Loa and Klauea basement rocks are the likely sources ofthe contamination, based on O, Pb and Sr isotope data. However,the extent of crustal contamination of Klauea historical magmasis probably minor (< 12%, depending on the assumed contaminant)and it is superimposed on a longer-term, cyclic geochemicalvariation that reflects source heterogeneity. Klauea's heterogeneoussource, which is well represented by the historical summit lavas,probably has magma 18O values within the normal mid-ocean ridgebasalt mantle range (5·4–5·8) based on thenew olivine 18O values. KEY WORDS: Hawaii; Klauea; basalt; oxygen isotopes; crustal contamination  相似文献   

5.
The Jozini and Mbuluzi rhyolites and Oribi Beds of the southernLebombo Monocline, southeastern Africa, have geochemical characteristicsthat indicate they were derived by partial melting of a mixtureof high-Ti/Zr and low-Ti/Zr Sabie River Basalt Formation types.Compositional variations within the different rhyolite typescan largely be explained by subsequent fractional crystallization.The Sr- and Nd-isotope composition of the rhyolites is uniqueamongst Gondwana silicic large igneous provinces, having Ndvalues close to Bulk Earth (–0·94 to 0·35)and low, but more variable, initial 87Sr/86Sr ratios (0·7034–0·7080).Quartz phenocryst 18O values indicate that the rhyolite magmashad 18O values between 5·3 and 6·7, consistentwith derivation from a basaltic protolith with 18O values between4·8 and 6·2. The low-18O rhyolites (< 6·0)come from the same stratigraphic horizon and are overlain andunderlain by rhyolites with more ‘normal’ 18O magmavalues. These low-18O rhyolites cannot have been produced byfractional crystallization or partial melting of mantle-derivedbasaltic material. The rhyolites have low water contents, makingit unlikely that the low 18O values are the result of post-emplacementalteration. Modification of the source by fluid–rock interactionat elevated temperatures is the most plausible mechanism forlowering the 18O magma value. It is proposed that the low-18Orhyolites were derived by melting of earlier altered rhyolitein calderas situated to the east, which were not preserved afterGondwana break-up. KEY WORDS: rhyolite; Lebombo; stable and radiogenic isotopes; low-18O magmas; partial melting  相似文献   

6.
BAKER  A. J. 《Journal of Petrology》1990,31(1):243-260
Stable isotope compositions of Ivrea Zone marbles and associatedlithologies are in general heterogeneous. The oxygen isotopecomposition of quartz in pelites ranges from 18O +9 to + 17(SMOW) and does not vary systematically with metamorphic grade.Peridotites retain oxygen isotope signatures close to mantlevalues. Marble calcites vary in isotopic composition from 13C + 2(PDB),180 +24(SMOW)to 13C –6(PDB), 18O + 13 (SMOW).Depletions in 18O and 13C may be explained dominantly by interactionwith fluids derived from within the observed metasedimentarysequence during prograde metamorphism. 18O and 13C show gradients of greater than 5/m across marblemargins and within marbles. The preservation of such isotopicgradients is not consistent with the long-term presence of grain-boundary-scaleinterconnected fluid films in and around marbles. There is ageneral lowering of 18O within individual marble bodies althoughlarge carbon and oxygen isotopic gradients are present. Calcitein marbles may attain oxygen isotope equilibrium, but rarelycarbon isotope equilibrium, with surrounding metapelites. Infiltrationof marbles must involve a component of channelized fluid flow. The general lack of isotopic equilibration within the sequencerequires channelized fluid flow and limited fluid-rock ratios.Large pervasive mantle to crust fluid fluxes are not consistentwith the observations. *Present address: Natural Environment Research Council, Polaris House, North Star Avenue, Swindon SN2 1EU, England  相似文献   

7.
Komatiites from the 2 Ga Jeesiörova area in Finnish Laplandhave subchondritic Al2O3/TiO2 ratios like those in Al-depletedkomatiites from Barberton, South Africa. They are distinct inthat their Al abundances are higher than those of the Al-depletedrocks and similar to levels in Al-undepleted komatiites. Moderatelyincompatible elements such as Ti, Zr, Eu, and Gd are enriched.Neither majorite fractionation nor hydrous melting in a supra-subductionzone setting could have produced these komatiites. Their highconcentrations of moderately incompatible elements may haveresulted from contamination of their parental melt through interactionwith metasomatic assemblages in the lithospheric mantle or enrichmentof their mantle source in basaltic melt components. Re–Osisotope data for chromite from the Jeesiörova rocks yieldan average initial 187Os/188Os of 0·1131 ± 0·0006(2), Os(I) = 0·1 ± 0·5. These data, coupledwith an initial Nd of +4, indicate that melt parental to thekomatiites interacted minimally with ancient lithospheric mantle.If their mantle source was enriched in a basaltic component,the combined Os–Nd isotopic data limit the enrichmentprocess to within 200 Myr prior to the formation of the komatiites.Their Os–Nd isotopic composition is consistent with derivationfrom the contemporaneous convecting upper mantle. KEY WORDS: Finnish Lapland; Jeesiörova; komatiites; mantle geochemistry; petrogenesis; redox state; Re/Os isotopes; Ti enrichment  相似文献   

8.
New 18O values for plagioclase, pyroxene and olivine, and limitedwhole-rock D values are presented for samples from the RustenburgLayered Suite of the Bushveld Complex, South Africa. In combinationwith existing data, these provide a much more complete compositeO-isotope stratigraphy for the intrusion. Throughout the layeredsuite, mineral 18O values indicate that the magmas from whichthey crystallized had 18O values that were about 7·1,that is, 1·4 higher than expected for mantle-derivedmagmas, suggesting extensive crustal contamination. More limitedH-isotope data suggest that the OH present within whole rocks,regardless of the degree of alteration, is of magmatic originand not an alteration phenomenon. There appears to be no systematicchange in 18O value with stratigraphic height and this requiresthe contamination to have taken place in a ‘staging chamber’before emplacement of the magma(s) into the present chamber.Large amounts (30–40%) of contamination by the lower tomiddle crust are needed to explain these 18O values, which isin general agreement with previous estimates based on Sr- andNd-isotope data. Alternatively, smaller amounts of contamination(20%) by sedimentary rocks, or their partial melts, representedby the country rock can explain the data, but it is not apparenthow such material could have been present at the depth of the‘staging chamber’ in the lower to middle crust. KEY WORDS: Bushveld Complex; Rustenburg Layered Suite; oxygen isotopes; hydrogen isotopes; crustal contamination  相似文献   

9.
Progress () of the infiltration-driven reaction, 4olivine +5CO2 + H2O = talc + 5magnesite, that occurred during Barrovianregional metamorphism, varies at the cm-scale by a factor of3·5 within an 3 m3 volume of rock. Mineral and stableisotope compositions record that XCO2, 18Ofluid, and 13Cfluidwere uniform within error of measurement in the same rock volume.The conventional interpretation of small-scale variations in in terms of channelized fluid flow cannot explain the uniformityin fluid composition. Small-scale variations in resulted insteadbecause (a) reactant olivine was a solid solution, (b) initiallythere were small-scale variations in the amount and compositionof olivine, and (c) fluid composition was completely homogenizedover the same scale by diffusion–dispersion during infiltrationand subsequent reaction. Assuming isochemical reaction, spatialvariations in image variations in the (Mg + Fe)/Si of the parentrock rather than the geometry of metamorphic fluid flow. Ifinfiltration-driven reactions involve minerals fixed in composition,on the other hand, spatial variations in do directly imagefluid flow paths. The geometry of fluid flow can never be determinedfrom geochemical tracers over a distance smaller than the oneover which fluid composition is completely homogenized by diffusion–dispersion. KEY WORDS: Alpine Barrovian metamorphism; diffusion; metamorphic fluid composition; metamorphic fluid flow; reaction progress  相似文献   

10.
Tourmaline in the Martinamor antiform occurs in tourmalinites(rocks with >15–20% tourmaline by volume), clasticmetasedimentary rocks of the Upper Proterozoic Monterrubio formation,quartz veins, pre-Variscan orthogneisses and Variscan graniticrocks. Petrographic observations, back-scattered electron (BSE)images, and microprobe data document a multistaged developmentof tourmaline. Overall, variations in the Mg/(Mg + Fe) ratiosdecrease from tourmalinites (0·36–0·75),through veins (0·38–0·66) to granitic rocks(0·23–0·46), whereas Al increases in thesame order from 5·84–6·65 to 6·22–6·88apfu. The incorporation of Al into tourmaline is consistentwith combinations of xAl(NaR)–1 and AlO(R(OH))–1exchange vectors, where x represents X-site vacancy and R is(Mg + Fe2+ + Mn). Variations in x/(x + Na) ratios are similarin all the types of tourmaline occurrences, from 0·10to 0·53, with low Ca-contents (mostly <0·10apfu). Based on field and textural criteria, two groups of tourmaline-richrocks are distinguished: (1) pre-Variscan tourmalinites (probablyCadomian), affected by both deformation and regional metamorphismduring the Variscan orogeny; (2) tourmalinites related to thesynkinematic granitic complex of Martinamor. Textural and geochemicaldata are consistent with a psammopelitic parentage for the protolithof the tourmalinites. Boron isotope analyses of tourmaline havea total range of 11B values from –15·6 to 6·8;the lowest corresponding to granitic tourmalines (–15·6to –11·7) and the highest to veins (1·9to 6·8). Tourmalines from tourmalinites have intermediate11B values of –8·0 to +2·0. The observedvariations in 11B support an important crustal recycling ofboron in the Martinamor area, in which pre-Variscan tourmaliniteswere remobilized by a combination of mechanical and chemicalprocesses during Variscan deformation, metamorphism and anatexis,leading to the formation of multiple tourmaline-bearing veinsand a new stage of boron metasomatism. KEY WORDS: tourmalinites; metamorphic and granitic rocks; mineral chemistry; whole-rock chemistry; boron isotopes  相似文献   

11.
The Grønnedal-Ika complex is dominated by layered nephelinesyenites which were intruded by a xenolithic syenite and a centralplug of calcite to calcite–siderite carbonatite. Aegirine–augite,alkali feldspar and nepheline are the major mineral phases inthe syenites, along with rare calcite. Temperatures of 680–910°Cand silica activities of 0·28–0·43 weredetermined for the crystallization of the syenites on the basisof mineral equilibria. Oxygen fugacities, estimated using titanomagnetitecompositions, were between 2 and 5 log units above the fayalite–magnetite–quartzbuffer during the magmatic stage. Chondrite-normalized REE patternsof magmatic calcite in both carbonatites and syenites are characterizedby REE enrichment (LaCN–YbCN = 10–70). Calcite fromthe carbonatites has higher Ba (5490 ppm) and lower HREE concentrationsthan calcite from the syenites (54–106 ppm Ba). This isconsistent with the behavior of these elements during separationof immiscible silicate–carbonate liquid pairs. Nd(T =1·30 Ga) values of clinopyroxenes from the syenites varybetween +1·8 and +2·8, and Nd(T) values of whole-rockcarbonatites range from +2·4 to +2·8. Calcitefrom the carbonatites has 18O values of 7·8 to 8·6and 13C values of –3·9 to –4·6. 18Ovalues of clinopyroxene separates from the nepheline syenitesrange between 4·2 and 4·9. The average oxygenisotopic composition of the nepheline syenitic melt was calculatedbased on known rock–water and mineral–water isotopefractionation to be 5·7 ± 0·4. Nd and C–Oisotope compositions are typical for mantle-derived rocks anddo not indicate significant crustal assimilation for eithersyenite or carbonatite magmas. The difference in 18O betweencalculated syenitic melts and carbonatites, and the overlapin Nd values between carbonatites and syenites, are consistentwith derivation of the carbonatites from the syenites via liquidimmiscibility. KEY WORDS: alkaline magmatism; carbonatite; Gardar Province; liquid immiscibility; nepheline syenite  相似文献   

12.
This study reports oxygen isotope ratios determined by laserfluorination of mineral separates (mainly plagioclase) frombasaltic andesitic to rhyolitic composition volcanic rocks eruptedfrom the Lassen Volcanic Center (LVC), northern California.Plagioclase separates from nearly all rocks have 18O values(6·1–8·4) higher than expected for productionof the magmas by partial melting of little evolved basalticlavas erupted in the arc front and back-arc regions of the southernmostCascades during the late Cenozoic. Most LVC magmas must thereforecontain high 18O crustal material. In this regard, the 18O valuesof the volcanic rocks show strong spatial patterns, particularlyfor young rhyodacitic rocks that best represent unmodified partialmelts of the continental crust. Rhyodacitic magmas erupted fromvents located within 3·5 km of the inferred center ofthe LVC have consistently lower 18O values (average 6·3± 0·1) at given SiO2 contents relative to rockserupted from distal vents (>7·0 km; average 7·1± 0.1). Further, magmas erupted from vents situated attransitional distances have intermediate values and span a largerrange (average 6·8 ± 0·2). Basaltic andesiticto andesitic composition rocks show similar spatial variations,although as a group the 18O values of these rocks are more variableand extend to higher values than the rhyodacitic rocks. Thesefeatures are interpreted to reflect assimilation of heterogeneouslower continental crust by mafic magmas, followed by mixingor mingling with silicic magmas formed by partial melting ofinitially high 18O continental crust (9·0) increasinglyhybridized by lower 18O (6·0) mantle-derived basalticmagmas toward the center of the system. Mixing calculationsusing estimated endmember source 18O values imply that LVC magmascontain on a molar oxygen basis approximately 42 to 4% isotopicallyheavy continental crust, with proportions declining in a broadlyregular fashion toward the center of the LVC. Conversely, the18O values of the rhyodacitic rocks suggest that the continentalcrust in the melt generation zones beneath the LVC has beensubstantially modified by intrusion of mantle-derived basalticmagmas, with the degree of hybridization ranging on a molaroxygen basis from approximately 60% at distances up to 12 kmfrom the center of the system to 97% directly beneath the focusregion. These results demonstrate on a relatively small scalethe strong influence that intrusion of mantle-derived maficmagmas can have on modifying the composition of pre-existingcontinental crust in regions of melt production. Given thisresult, similar, but larger-scale, regional trends in magmacompositions may reflect an analogous but more extensive processwherein the continental crust becomes progressively hybridizedbeneath frontal arc localities as a result of protracted intrusionof subduction-related basaltic magmas. KEY WORDS: oxygen isotopes; phenocrysts; continental arc magmatism; Cascades; Lassen  相似文献   

13.
An oxygen and hydrogen isotopic study of minerals and wholerocks from the granites of the Mourne Mountains Tertiary complex,and related rocks, shows that whereas a significant circulationof meteoric water was associated with the complex, it had onlyminor and localized effects on the granites themselves. TheSilurian slate and greywacke country rocks, which would havehad 18O(SMOW) values of +10 to +20 before the Tertiary igneousevents, have been depicted 18O to values of –40 to –05Tertiary acid minor intrusions outside the main granite massesare also 18O depleted. l8O whole-rock data on the granites showa range of +6.0 to +9.5, and include values significantly higherthan most of those obtained for the granites of the Tertiarycentral complexes of Skye, Mull, and Ardnamurchan. Many of thelowest whole-rock 18O values are found in samples where theminerals are not in isotopic equilibrium. The mineral oxygenisotopic data can be explained in terms of localized interactionwith meteoric water, resulting in preferential 18O depletionin feldspar(s) and biotite, with quartz being much less affected.The granites all show low values of D(SMOW) for biotite andamphibole separates (–137 to –104). The lowest valuesoccur close to the margins of the plutons, near internal contactsor near greisen localities, and these probably reflect limitedinteraction with meteoric water. The higher D values are fromsamples which show evidence of chloritization. This processappears to have occurred both during interaction with meteoricwater, and also during autometasomatism by an exsolved magmaticfluid in other parts of the plutons, including central locationswhere there is little or no evidence for the penetration ofmeteoric water. Granite samples which exhibit near-equilibriumoxygen isotope fractionations for constituent minerals are characterizedby magmatic O-isotopic compositions. The G2 granite, the largestpluton of the eastern centre, has a magmatic 18O(SMOW) valueof {small tilde}+95; intrusions G3 (eastern centre) and G4(western centre) both have 18O(SMOW) values of {small tilde}+90.The other two main intrusive phases have distinctly lower 18O(SMOW)values: {small tilde}+75 for Gl (the least fractionated graniteof the Mourne Mountains central complex), and from +75 to +85for G5. The oxygen isotopic data rule out simple partial meltingof the country rocks as the origin of the granites and alsopreclude an origin by closed-system fractional crystallizationof basaltic magma typical of that represented by Tertiary basicigneous rocks of the region. * Present address: NERC Isotope Geosciences Laboratory, Keyworth, Nottingham BG12 5GG, UK Present address: School of Engineering Technology, Georgian College, Barrie, Ontario, L4M 3X9, Canada  相似文献   

14.
Glass inclusions in plagioclase and orthopyroxene from daciticpumice of the Cabrits Dome, Plat Pays Volcanic Complex in southernDominica reveal a complexity of element behavior and Li–Bisotope variations in a single volcanic center that would gounnoticed in a whole-rock study. Inclusions and matrix glassesare high-silica rhyolite with compositions consistent with about50% fractional crystallization of the observed phenocrysts.Estimated crystallization conditions are 760–880°C,200 MPa and oxygen fugacity of FMQ + 1 to +2 log units (whereFMQ is the fayalite–magnetite–quartz buffer). Manyinclusion glasses are volatile-rich (up to 6 wt % H2O and 2900ppm Cl), but contents range down to 1 wt % H2O and 2000 ppmCl as a result of shallow-level degassing. Sulfur contents arelow throughout, with <350 ppm S. The trace element compositionof inclusion glasses shows enrichment in light rare earth elements(LREE; (La/Sm)n = 2·5–6·6) and elevatedBa, Th and K contents compared with whole rocks and similaror lower Nb and heavy REE (HREE; (Gd/Yb)n = 0·5–1·0).Lithium and boron concentrations and isotope ratios in meltinclusions are highly variable (20–60 ppm Li with 7Li= +4 to +15 ± 2; 60–100 ppm B with 11B = +6 to+13 ± 2) and imply trapping of isotopically heterogeneous,hybrid melts. Multiple sources and processes are required toexplain these features. The mid-ocean ridge basalt (MORB)-likeHREE, Nb and Y signature reflects the parental magma(s) derivedfrom the mantle wedge. Positive Ba/Nb, B/Nb and Th/Nb correlationsin inclusion glasses indicate coupled enrichment in stronglyfluid-mobile (Ba, B) and less-mobile (Th, Nb) trace elements,which can be explained by fractional crystallization of plagioclase,orthopyroxene and Fe–Ti oxides. The 7Li and 11B valuesare at the high end of known ranges for other island arc magmas.We attribute the high values to a 11B and 7Li-enriched slabcomponent derived from sea-floor-altered oceanic crust and possiblyfurther enriched in heavy isotopes by dehydration fractionation.The heterogeneity of isotope ratios in the evolved, trappedmelts is attributed to shallow-level assimilation of older volcanicrocks of the Plat Pays Volcanic Complex. KEY WORDS: subduction; volcanic arcs; igneous processes; melt inclusions; SIMS; trace elements; lithium and boron isotopes; diffusion  相似文献   

15.
A new method has been suggested for evaluating the overall basicityof minerals and rocks by using ionization reactions involvingone proton: (sum of cations) + H2O = mineral + H+, (sum of cations) + H2O = (sum of normative minerals of a rock)+ H+. The basicity indicators are expressed as standard free energychanges of these reactions (). At standard water pressure (logPH2O = 0) and chemical activity of the metal ions ( log Mn+= 0), the relationship between and alkalinity of solutions(pH) becomes: = –2.303 RTlog H+ = 2.303 RT pH. The overall basicities of rock-forming oxides, minerals andmajor rocks were calculated from the thermodynamic data on ionsin water solutions and solid compounds.  相似文献   

16.
We present trace element and Sr–Nd–Hf–Pb isotopecompositions for clinopyroxenes from anhydrous spinel peridotiteand garnet ± spinel pyroxenite xenoliths of Pan-Africanlithospheric mantle from Jordan, including the first high-precisiondouble-spike Pb isotope measurements of mantle clinopyroxene.Clinopyroxenes from the peridotites are variably Th–U–LILE–LREEenriched and display prominent negative Nb, Zr and Ti anomalies.MREE–HREE abundances can generally be modelled as partialmelting residues of spinel lherzolite with primitive-mantle-likecomposition after extraction of 5–10% melt, whereas theenrichments in Th–U–LILE–LREE require a Pan-Africanor later metasomatic event. The large range of Nd, Sr, Pb andHf isotope ratios in both peridotites and pyroxenites (e.g.Nd 1·4–17·5; 206Pb/204Pb 17·2–20·4;Hf 0·6–164·6) encompasses compositionsmore radiogenic than mid-ocean ridge basalt (MORB), and Pb isotopescover almost the entire range of oceanic basalt values. Hf valuesare some of the highest ever recorded in mantle samples andare decoupled from Nd in the same samples. Marked correlationsbetween Sr–Nd–Pb isotopes, LILE–LREE enrichmentsand HFSE depletion suggest that the metasomatizing agent wasa carbonatitic-rich melt and isotopic data suggest that metasomatismmay have been related to Pan-African subduction. The metasomaticmelt permeated depleted upper mantle (<16 kbar) during Pan-Africansubduction at 600–900 Ma, and the variably metasomatizedmaterial was then incorporated into the Arabian lithosphericmantle. There is no evidence for recent metasomatism (<30Ma) related to the Afar plume like that postulated to have affectedsouthern Arabian lithospheric mantle. Hf isotopes in the mantleclinopyroxenes are unaffected by metasomatism, and even somestrongly overprinted lithologies record ancient (>1·2Ga) pre-metasomatic Lu–Hf signatures of the depleted uppermantle that was the protolith of the Arabian lithospheric mantle.The ‘resistance’ of the Lu–Hf isotopic systemto later metasomatic events resulted in the development of extremelyheterogeneous Hf isotopic signatures over time that are decoupledfrom other isotopic systems. No mantle sample in this studyexactly matches the chemical and isotopic signature of the sourceof Jordanian intraplate basalts. However, the xenolith compositionsare broadly similar to those of the source of Arabian intraplatebasalts, suggesting that the numerous Cenozoic intraplate volcanicfields throughout Arabia may be the product of melting uppermantle wedge material fertilized during Pan-African subductionand incorporated into the Arabian lithospheric mantle. We proposea model whereby the proto-Arabian lithospheric mantle underwenta major melting event in early Proterozoic–late Archeantimes (at the earliest at 1·2 Ga). Island-arc volcanismand major crust formation occurred during the Pan-African orogeny,which liberated fluids and possibly small-degree melts thatmigrated through the mantle creating zones of enrichment forcertain elements depending upon their compatibility. Immobileelements, such as Nb, were concentrated near the base of themantle wedge providing the source of the Nb-rich Jordanian volcanicrocks. More mobile elements, such as LILE and LREE, were transportedup through the mantle and fertilized the shallow mantle sourceof the Jordanian xenoliths. Following subduction, the mantlewedge became fossilized and preserved distinct enriched anddepleted zones. Lithospheric rifting in the Miocene triggeredpartial melting of spinel-facies mantle in the lower lithosphere,which mixed with deeper asthenospheric garnet-facies melts asrifting evolved. These melts entrained segments of variablycarbonatite-metasomatized shallow lithospheric mantle en routeto the surface. KEY WORDS: Arabian lithospheric mantle; Jordan; mantle xenoliths; Sr–Nd–Hf–Pb isotopes  相似文献   

17.
The Ni-S System and Related Minerals   总被引:1,自引:0,他引:1  
The system Ni-S has been studied systematically from 200? to1, 030? C by means of evacuated, sealed silica-glass tube experimentsand differential thermal analyses. Compounds in the system areNi3S2 (and a high temperature, non-quenchable Ni3?S2 phase),Ni7S6, Ni1–S4 Ni3S4, and NiS2. The geologic occurrenceof the minerals heazlewoodite (Ni2S2), millerite (ßSNi1-2S),polydymite (Ni3S4), and vaesite (NiS2) can now be describedin terms of the stability ranges of their synthetic equivalents. Hexagonal heazlewoodite, which is stoichiometric within thelimit of error of the experiments, inverts on heating to a tetragonalor pseudotetragonal phase at 556? C. This high-temperature phase(Ni3 has a wide field of stability, from 23.5 to 30.5 wt percent sulfur at 600? C, and melts incongruently at 806??3? C.The ßNi7S6 phase inverts to Ni78 at 397? C6 when inequilibrium with Ni3S2, and at 400? C when in equilibrium withNiS. Crystals of Ni7S6 break down to Ni3-S2+NiS at 573??3?C.The low-temperature form of Ni1-S1 corresponding to the mineralmillerite, is rhombohedral, and the high-temperature form hasthe hexagonal NiAs structure. Stoichiometric NiS inverts at379??3?C, whereas Ni1-S with the maximum nickel deficiency invertsat 282??5OC. The Ni1-alphS-NiS2 solvus was determined to 985??3?C,the eutectic temperature of these phases. Stoichiometric NiSis stable at 600?C but breaks down to Ni2-S2 and Ni1-S below797?C, whereas Ni1-S with 38.2 wt per cent sulfur melts congruentlyat 992??3?C. Vaesite does not vary measurably from stoichiometricNiS2 composition, and melts congruently at 1.007?5?C. Polydymitebreaks down to aNi-S? vaesite at 356??3?C. Differential thermalanalyses showed the existence of a two-liquid field in the sulfur-richportion of the system above 991?C and over a wide compositionalrange.  相似文献   

18.
High-pressure (HP) metamorphic blocks enclosed in a mafic toultramafic matrix from a mélange on the island of Syrosare rimmed by tourmaline-bearing reaction zones (blackwalls).The B isotopic composition of dravitic tourmaline within theseblackwalls was investigated in situ by secondary ion mass spectrometry.Boron in these tourmalines is unusually heavy, with 11B valuesexceeding +18 in all investigated samples and reaching an extremevalue of +28·4 in one sample. Blackwalls formed duringexhumation of the HP mélange at a depth of 20–25km at temperatures of 400–430°C, by influx of externalhydrous fluids. The compositions of the fluids are estimatedto be in the range of 100–300 µg/g B with 11B valuesof +18 to +28. The high 11B values cannot be explained by tourmalineformation from unmodified slab-derived fluids. However, suchfluids could interact with the material in the exhumation channelon their way from the dehydrating slab to the site of tourmalineformation in the blackwalls. This could produce exceptionallyhigh 11B values in the fluids, a case that is modelled in thisstudy. The model demonstrates that subduction fluids may beeffectively modified in both trace element and isotopic compositionduring their migration through the material overlying the subductingslab. Blackwall tourmaline from Syros has a large grain size(several centimetres), high abundance, and an exceptionallyhigh 11B value. The formation of tourmaline at the contact betweenmafic or felsic HP blocks and their ultramafic matrix involvedfluids released during dehydration reactions in the subductingslab. It forms a heavy-boron reservoir in hybrid rocks overlyingthe subducting slab, and may, thus, have a significant impacton the geochemical cycle of B and its isotopes in subductionzones. KEY WORDS: boron isotopes; tourmaline; subduction zone; fluid, high pressure  相似文献   

19.
Major- and trace-element and Sr–Nd–Hf isotopic compositionsof garnet and clinopyroxene in kimberlite-borne eclogite andpyroxenite xenoliths were used to establish their origins andevolution in the subcontinental lithospheric mantle beneaththe central Slave Craton, Canada. The majority of eclogitescan be assigned to three groups (high-Mg, high-Ca or low-Mgeclogites) that have distinct trace-element patterns. Althoughpost-formation metasomatism involving high field strength element(HFSE) and light rare earth element (LREE) addition has partiallyobscured the primary compositional features of the high-Mg andhigh-Ca eclogites, trace-element features, such as unfractionatedmiddle REE (MREE) to heavy REE (HREE) patterns suggestive ofgarnet-free residues and low Zr/Sm consistent with plagioclaseaccumulation, could indicate a subduction origin from a broadlygabbroic protolith. In this scenario, the low REE and smallpositive Eu anomalies of the high-Mg eclogites suggest moreprimitive, plagioclase-rich protoliths, whereas the high-Caeclogites are proposed to have more evolved protoliths withhigher (normative) clinopyroxene/plagioclase ratios plus trappedmelt, consistent with their lower Mg-numbers, higher REE andabsence of Eu anomalies. In contrast, the subchondritic Zr/Hfand positive slope in the HREE of the low-Mg eclogites are similarto Archaean second-stage melts and point to a previously depletedsource for their precursors. Low ratios of fluid-mobile to lessfluid-mobile elements and of LREE to HREE are consistent withdehydration and partial melt loss for some eclogites. The trace-elementcharacteristics of the different eclogite types translate intolower Nd for high-Mg eclogites than for low-Mg eclogites. Withinthe low-Mg group, samples that show evidence for metasomaticenrichment in LREE and HFSE have lower Nd and Hf than a samplethat was apparently not enriched, pointing to long-term evolutionat their respective parent–daughter ratios. Garnet andclinopyroxene in pyroxenites show different major-element relationshipsfrom those in eclogites, such as an opposite CaO–Na2Otrend and the presence of a CaO–Cr2O3 trend, independentof whether or not opx is part of the assemblage. Therefore,these two rock types are probably not related by fractionationprocesses. The presence of opx in about half of the samplesprecludes direct crystallization from eclogite-derived melts.They probably formed from hybridized melts that reacted withthe peridotitic mantle. KEY WORDS: eclogites; pyroxenite xenoliths; mantle xenoliths; eclogite trace elements; eclogite Sr isotopes; eclogite Hf isotopes; eclogite Nd isotopes  相似文献   

20.
Xenoliths hosted by Quaternary basanites and alkali basaltsfrom Marsabit (northern Kenya) represent fragments of Proterozoiclithospheric mantle thinned and chemically modified during riftingin the Mesozoic (Anza Graben) and in the Tertiary–Quaternary(Kenya rift). Four types of peridotite xenoliths were investigatedto constrain the thermal and chemical evolution of the lithosphericmantle. Group I, III and IV peridotites provide evidence ofa cold, highly deformed and heterogeneous upper mantle. Textures,thermobarometry and trace element characteristics of mineralsindicate that low temperatures in the spinel stability field(750–800°C at <1·5 GPa) were attained bydecompression and cooling from initially high pressures andtemperatures in the garnet stability field (970–1080°Cat 2·3–2·9 GPa). Cooling, decompressionand penetrative deformation are consistent with lithosphericthinning, probably related to the development of the Mesozoicto Paleogene Anza Graben. Re-equilibrated and recrystallizedperidotite xenoliths (Group II) record heating (from 800°Cto 1100°C). Mineral trace element signatures indicate enrichmentby mafic silicate melts, parental to the Quaternary host basanitesand alkali basalts. Relationships between mineral textures,P–T conditions of equilibration, and geochemistry canbe explained by metasomatism and heating of the lithosphererelated to the formation of the Kenya rift, above a zone ofhot upwelling mantle. KEY WORDS: East African Rift System; Anza Graben; in situ LA-ICPMS; peridotite xenoliths; thermobarometry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号