首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the relative and absolute timing of post-Variscan cooling and denudation processes in the Erzgebirge of the Mid-European Variscides, eight samples for apatite fission-track (AFT) analysis were collected from a ~1,300 m drill-core. The fission-track data reveal two stages of accelerated cooling through the apatite partial annealing zone (APAZ; i.e., 110±10–60 °C) in the Late Jurassic-Late Cretaceous and in the late Cenozoic, respectively. Late Jurassic-Late Cretaceous cooling corresponding to denudation of 1.5–5.9 km has been related to wrench tectonics along the Elbe Zone during Triassic-Jurassic Pangea breakup. Late Cenozoic exhumation of 2.1–5.6 km, and the increase of the geothermal gradient from 17±5 °C km–1 (Oligocene/Miocene) to 25–27 °C km–1 (recent) is likely connected to the formation of the Eger Graben starting from the Oligocene, as a result of the late Alpine orogenic phases.  相似文献   

2.
Garnets from different migmatites and granites from the Damara orogen (Namibia) were dated with the U-Pb technique after bulk dissolution of the material. Measured 206Pb/204Pb ratios are highly variable and range from ca. 21 to 613. Variations in isotope (208Pb/204Pb, 206Pb/204Pb) and trace element (Th/U, U/Nd, Sm/Nd) ratios of the different garnets show that some garnets contain significant amounts of monazite and zircon inclusions. Due to their very low 206Pb/204Pb ratios, garnets from pelitic migmatites from the Khan area yield Pb-Pb ages with large errors precluding a detailed evaluation. However, the 207Pb/206Pb ages (ca. 550–500 Ma) appear to be similar to or older than U-Pb monazite ages (530±1–517±1 Ma) and Sm-Nd garnet ages (523±4–512±3 Ma) from the same sample. It is reasonable to assume that the Pb-Pb garnet ages define growth ages because previous studies are consistent with a higher closure temperature for the U-Pb system in garnet relative to the U-Pb system in monazite and the Sm-Nd system in garnet. For igneous migmatites from Oetmoed, Pb-Pb garnet ages (483±15–492±16 Ma) and one Sm-Nd garnet whole rock age (487±8 Ma) are similar whereas the monazite from the same sample is ca. 30–40 Ma older (528±1 Ma). These monazite ages are, however, similar to monazite ages from nearby unmigmatized granite samples and constrain precisely the intrusion of the precursor granite in this area. Although there is a notable difference in closure temperature for the U-Pb and Sm-Nd system in garnet, the similarity of both ages indicate that both garnet ages record garnet growth in a migmatitic environment. Restitic garnet from an unmigmatized granite from Omaruru yields similar U-Pb (493±30–506±30 Ma) and Sm-Nd (493±6–488±7 Ma) garnet ages whereas the monazite from this rock is ca. 15–25 Ma older (516±1–514±1 Ma). Whereas the monazite ages define probably the peak of regional metamorphism in the source of the granite, the garnet ages may indicate the time of melt extraction. For igneous garnets from granites at Oetmoed, the similarity between Pb-Pb (483±34–474±17 Ma) and Sm-Nd (492±5–484±13 Ma) garnet ages is consistent with fast cooling rates of granitic dykes in the lower crust. Differences between garnet and monazite U-Pb ages can be explained by different reactions that produced these minerals at different times and by the empirical observation that monazite seems resistant to later thermal re-equilibration in the temperature range between 750 and 900 °C (e.g. Braun et al. 1998). For garnet analyses that have low 206Pb/204Pb ratios, the influence of high- inclusions is small. However, the relatively large errors preclude a detailed evaluation of the relationship between the different chronometers. For garnet with higher 206Pb/204Pb ratios, the overall similarity between the Pb-Pb and Sm-Nd garnet ages implies that the inclusions are not significantly older than the garnet and therefore do not induce a premetamorphic Pb signature upon the garnet. The results presented here show that garnet with low 238U/204Pb ratios together with Sm-Nd garnet data and U-Pb monazite ages from the same rock can be used to extract geologically meaningful ages that can help to better understand tectonometamorphic processes in high-grade terranes.Editorial responsibility: J. Hoefs  相似文献   

3.
A three-point Sm–Nd isotope isochron on fluorite from the very large Montroc fluorite vein deposit (southern Massif Central, France) defines an age of 111±13 Ma. Initial Nd of –8.6 and initial 87Sr/86Sr of ~0.71245 suggest an upper crustal source of the hydrothermal system, in agreement with earlier work on fluid inclusions which indicated a basinal brine origin. The mid-Cretaceous age of ~111 Ma suggests the Albian/Aptian transition as the most likely period for large-scale fluid circulation during a regional extensional tectonic event, related to the opening of the North Atlantic ocean.Editorial handling: B. Lehmann  相似文献   

4.
In France, the Devonian–Carboniferous Variscan orogeny developed at the expense of continental crust belonging to the northern margin of Gondwana. A Visean–Serpukhovian crustal melting has been recently documented in several massifs. However, in the Montagne Noire of the Variscan French Massif Central, which is the largest area involved in this partial melting episode, the age of migmatization was not clearly settled. Eleven U–Th–Pbtot. ages on monazite and three U–Pb ages on associated zircon are reported from migmatites (La Salvetat, Ourtigas), anatectic granitoids (Laouzas, Montalet) and post-migmatitic granites (Anglès, Vialais, Soulié) from the Montagne Noire Axial Zone are presented here for the first time. Migmatization and emplacement of anatectic granitoids took place around 333–326 Ma (Visean) and late granitoids emplaced around 325–318 Ma (Serpukhovian). Inherited zircons and monazite date the orthogneiss source rock of the Late Visean melts between 560 Ma and 480 Ma. In migmatites and anatectic granites, inherited crystals dominate the zircon populations. The migmatitization is the middle crust expression of a pervasive Visean crustal melting event also represented by the “Tufs anthracifères” volcanism in the northern Massif Central. This crustal melting is widespread in the French Variscan belt, though it is restricted to the upper plate of the collision belt. A mantle input appears as a likely mechanism to release the heat necessary to trigger the melting of the Variscan middle crust at a continental scale.  相似文献   

5.
The paleogeography during Early Cretaceous of the northern margin of the Ligurian Tethys is poorly constrained because of deformation and erosion during Pyrenean and Alpine orogenic phases. The present-day limit between Lower Cretaceous sediments in the South–East basin, located at the northwestern margin of the Ligurian Tethys, and basement rocks is the consequence of a protracted erosion history. Lower Cretaceous sediments observed today in the basin, even close to the present-day outcropping border, are characteristic of pelagic environments. A larger extent of a Lower Cretaceous cover on the basement must then be considered. This study focuses on the western part of this margin (the Causses basin), in the South of the Massif Central (France), using several thermochronometers and geothermometers to decipher the former extent of the sedimentary cover. Apatite fission track thermochronology on basement rocks surrounding the Causses basin suggests that these rocks cooled from temperatures higher than 110°C during the mid-Cretaceous. Average fluid inclusion homogenisation temperatures between 94°C and 108°C are recorded in calcite veins from outcropping Toarcian and Aalenian shales. In the shales, Tmax values, temperature obtained by Rock–Eval pyrolysis of organic matter, are in agreement with these elevated temperatures. Different explanations for these relatively high temperatures, which cannot be explained by the present-day sedimentary serie in the basin, have been tested using a 1D thermal modelling procedure (Genex). For a 95±10-mW/m2 paleoflux, thick sedimentary deposits (2.5±0.3 km) including 1.3±0.3 km of Lower Cretaceous sediments cover the South of the Massif Central; these formations have been subsequently eroded from mid-Cretaceous time onwards. This study confirms that the South of the Massif Central was a site of marine sedimentation during the Early Cretaceous where a thick sedimentary sequence was once deposited.  相似文献   

6.
The French Massif Central constitutes an exceptional study area due to the diversity of its metallic deposits, its internal position in the Variscan belt, and the abundance of available geological, geophysical and metallogenic data obtained within the GeoFrance 3D programme. The deposits, formed towards the end of the orogenic evolution, represent the economic products of two distinct mineralizing systems, a Au ± Sb hydrothermal system and a W ± Sn and rare-metals magmatic–hydrothermal system, which were simultaneously active during a short time span between ca. 310 and 300 Ma.Two types of gold deposit can be distinguished on the basis of their depth of emplacement: “deep-seated” gold deposits developed under lithostatic to hydrostatic pressure during rapid exhumation, and “shallow” gold deposits emplaced under hydrostatic pressure with no significant uplift.Deposits of W ± Sn and rare-metals were emplaced in the upper crust during final crystallization of specialized magmas after their rapid ascent, perhaps enhanced by simultaneous regional uplift. The gold-bearing systems are associated with a complex network of re-activated crustal-scale faults initially active during the period between 335 and 315 Ma. Normal motion along the faults, coeval with 335 to 315 Ma granite–migmatite domes, played a major role in the 3D distribution of the hydrothermal plumbing system. Gold and related metals were carried within huge hydrothermal cells, which reached ca. 100 km by 10 km in area, and 30 km in depth. In contrast, granites rich in magmatophile elements (W, Sn, rare-metals) generated smaller hydrothermal cells (10 km by 10 km in area, and < 6 km deep). Extraction of metals, by both deep-seated fluids and specialized magmas, occurred during granulitization of the lower crust at 300 ± 15 Ma. In the French Massif Central, the genesis of the two late Carboniferous mineralizing systems coincided with the end of syn-collisional extension and ended just before post-collisional extension.  相似文献   

7.
The Menderes Massif is a major polymetamorphic complex in Western Turkey. The late Neoproterozoic basement consists of partially migmatized paragneisses and metapelites in association with orthogneiss intrusions. Pelitic granulite, paragneiss and orthopyroxene-bearing orthogneiss (charnockite) of the basement series form the main granulite-facies lithologies. Charnockitic metagranodiorite and metatonalite are magnesian in composition and show calc-alkalic to alkali-calcic affinities. Nd and Sr isotope systematics indicate homogeneous crustal contamination. The zircons in charnockites contain featureless overgrowth and rim textures representing metamorphic growth on magmatic cores and inherited grains. Charnockites yield crytallization age of ~590 Ma for protoliths and they record granulite-facies overprint at ~ 580 Ma. These data indicate that the Menderes Massif records late Neoproterozoic magmatic and granulite-facies metamorphic events. Furthermore, the basement rocks have been overprinted by Eocene Barrovian-type Alpine metamorphism at ~42 Ma. The geochronological data and inferred latest Neoproterozoic–early Cambrian palaeogeographic setting for the Menderes Massif to the north of present-day Arabia indicate that the granulite-facies metamorphism in the Menderes Massif can be attributed to the Kuunga Orogen (600–500 Ma) causing the final amalgamation processes for northern part of the Gondwana.  相似文献   

8.
Apatite fission-track analyses were carried out on outcrop and core samples from the Rhenish massif and the Carboniferous Ruhr Basin/Germany in order to study the late- and post-Variscan thermal and exhumation history. Apatite fission-track ages range from 291±15 Ma (lower Permian) to 136±7 Ma (lower Cretaceous) and mean track lengths vary between 11.6 m and 13.9 m, mostly displaying unimodal distributions with narrow standard deviations. All apatite fission-track ages are younger than the corresponding sample stratigraphic age, indicating substantial post-depositional annealing of the apatite fission-tracks. This agrees with results from maturity modelling, which indicates 3500–7000 m eroded Devonian and Carboniferous sedimentary cover. Numerical modelling of apatite fission-track data predicts onset of exhumation and cooling not earlier than 320 Ma in the Rhenish massif and 300 Ma in the Ruhr Basin, generally followed by late Carboniferous–Triassic cooling to below 50–60°C. Rapid late Variscan cooling was followed by moderate Mesozoic cooling rates of 0.1–0.2°C/Ma, converting into denudation rates of <1 mm/a (assuming a stable geothermal gradient of 30°C/km). Modelling results also give evidence for some late Triassic and early Jurassic heating and/or burial, which is supported by sedimentary rocks of the same age preserved at the rim of the lower Rhine Basin and in the subsurface of the Central and Northern Ruhr Basin. Cenozoic exhumation and cooling of the Rhenish massif is interpreted as an isostatic response to former erosion and major base-level fall caused by the subsidence in the lower Rhine Basin.  相似文献   

9.
Summary Geochronological data (U–Pb, Rb–Sr and 40Ar/39Ar) are used to unravel the Late Alpine high-grade metamorphism, migmatisation and exhumation of Variscan granitoids within the core of the Central Rhodopean dome, Bulgaria. The age of the granitoid protolith is 300±11Ma, as determined by U–Pb analyses on single zircons selected from the core of the dome structure.Rb–Sr whole rock data define an errorchron with a large scatter of the data points due to the Late Alpine metamorphic overprint. The slope of the reference line indicates a Variscan magmatic event. Strontium characteristics are used to discriminate the samples most influenced by metamorphism from those, which reflect possible differences in the protolith age of the granitoids.Petrological-geochemical data, the initial strontium ratio of 0.708±0.001, and Hf zircon values ranging from –2.58 to –3.82 point to a mixed, but crust-dominated origin of the Variscan magmas; young crustal material and mantle fragments were sources for the I-type metagranitoids.The exhumation of the granitoids from depths greater than 20–25km to about 5km below the surface was a rapid geological process. It started with the formation of granitic eutectic minimum melts at the temperature peak of metamorphism. Monazite crystallisation at about 650°C continued during isothermal decompression to possible depths of about 10–12km. An age of 35.83±0.40Ma was determined using conventional U–Pb isotope methods on four multigrain monazite fractions. A maximum average age of 36.6–37.5Ma (assuming same error uncertainties) for crystallisation of the metamorphic monazites was calculated assuming 10 to 20% monazite resetting during the subsequent Oligocene volcanism and hydrothermal activity in the region of the Central Rhodopean Dome. The rocks were then cooled to about 350–300°C at 35.35±0.22Ma according to 40Ar/39Ar ages of biotites and below 300°C at 35.31±0.25Ma (Rb–Sr data), as indicated by crystallisation of adularia in an open vein subsequent to pegmatite intrusion. A minimum exhumation rate of 3–5km per 1 million years can therefore be calculated for the exhumation of the metagranitoids during the period from 38–35Ma.  相似文献   

10.
The evolution of the European Cenozoic Rift System (ECRIS) and the Alpine orogen is discussed on the base of a set of palaeotectonic maps and two retro-deformed lithospheric transects which extend across the Western and Central Alps and the Massif Central and the Rhenish Massif, respectively.During the Paleocene, compressional stresses exerted on continental Europe by the evolving Alps and Pyrenees caused lithospheric buckling and basin inversion up to 1700 km to the north of the Alpine and Pyrenean deformation fronts. This deformation was accompanied by the injection of melilite dykes, reflecting a plume-related increase in the temperature of the asthenosphere beneath the European foreland. At the Paleocene–Eocene transition, compressional stresses relaxed in the Alpine foreland, whereas collisional interaction of the Pyrenees with their foreland persisted. In the Alps, major Eocene north-directed lithospheric shortening was followed by mid-Eocene slab- and thrust-loaded subsidence of the Dauphinois and Helvetic shelves. During the late Eocene, north-directed compressional intraplate stresses originating in the Alpine and Pyrenean collision zones built up and activated ECRIS.At the Eocene–Oligocene transition, the subducted Central Alpine slab was detached, whereas the West-Alpine slab remained attached to the lithosphere. Subsequently, the Alpine orogenic wedge converged northwestward with its foreland. The Oligocene main rifting phase of ECRIS was controlled by north-directed compressional stresses originating in the Pyrenean and Alpine collision zones.Following early Miocene termination of crustal shortening in the Pyrenees and opening of the oceanic Provençal Basin, the evolution of ECRIS was exclusively controlled by west- and northwest-directed compressional stresses emanating from the Alps during imbrication of their external massifs. Whereas the grabens of the Massif Central and the Rhône Valley became inactive during the early Miocene, the Rhine Rift System remained active until the present. Lithospheric folding controlled mid-Miocene and Pliocene uplift of the Vosges-Black Forest Arch. Progressive uplift of the Rhenish Massif and Massif Central is mainly attributed to plume-related thermal thinning of the mantle-lithosphere.ECRIS evolved by passive rifting in response to the build-up of Pyrenean and Alpine collision-related compressional intraplate stresses. Mantle-plume-type upwelling of the asthenosphere caused thermal weakening of the foreland lithosphere, rendering it prone to deformation.  相似文献   

11.
Eocene to late Miocene magmatism in the central Peruvian high-plain (approx. between Cerro de Pasco and Huancayo; Lats. 10.2–12°S) and east of the Cordillera Occidental is represented by scattered shallow-level intrusions as well as subaerial domes and volcanic deposits. These igneous rocks are calc-alkalic and range from basalt to rhyolite in composition, and many of them are spatially, temporally and, by inference, genetically associated with varied styles of major polymetallic mineralization. Forty-four new 40Ar–39Ar and three U/Pb zircon dates are presented, many for previously undated intrusions. Our new time constraints together with data from the literature now cover most of the Cenozoic igneous rocks of this Andean segment and provide foundation for geodynamic and metallogenetic research.The oldest Cenozoic bodies are of Eocene age and include dacitic domes to the west of Cerro de Pasco with ages ranging from 38.5 to 33.5 Ma. South of the Domo de Yauli structural dome, Eocene igneous rocks occur some 15 km east of the Cordillera Occidental and include a 39.34 ± 0.28 Ma granodioritic intrusion and a 40.14 ± 0.61 Ma rhyolite sill, whereas several diorite stocks were emplaced between 36 and 33 Ma. Eocene mineralization is restricted to the Quicay high-sulfidation epithermal deposit some 10 km to the west of Cerro de Pasco.Igneous activity in the earliest Oligocene was concentrated up to 70 km east of the Cordillera Occidental and is represented by a number of granodioritic intrusions in the Milpo–Atacocha area. Relatively voluminous early Oligocene dacitic to andesitic volcanism gave rise to the Astabamba Formation to the southeast of Domo de Yauli. Some stocks at Milpo and Atacocha generated important Zn–Pb (–Ag) skarn mineralization. After about 29.3 Ma, magmatism ceased throughout the study region. Late Oligocene igneous activity was restricted to andesitic and dacitic volcanic deposits and intrusions around Uchucchacua (approx. 25 Ma) and felsic rocks west of Tarma (21–20 Ma). A relationship between the Oligocene intrusions and polymetallic mineralization at Uchucchacua is possible, but evidence remains inconclusive.Widespread magmatism resumed in the middle Miocene and includes large igneous complexes in the Cordillera Occidental to the south of Domo de Yauli, and smaller scattered intrusive centers to the north thereof. Ore deposits of modest size are widely associated with middle Miocene intrusions along the Cordillera Occidental, north of Domo de Yauli. However, small volcanic centers were also active up to 50 km east of the continental divide and include dacitic dikes and domes, spatially associated with major base and precious metal mineralization at Cerro de Pasco and Colquijirca. Basaltic volcanism (14.54 ± 0.49 Ma) is locally observed in the back-arc domain south of Domo de Yauli approximately 30 km east of the Cordillera Occidental.After about 10 Ma intrusive activity decreased throughout Central Perú and ceased between 6 and 5 Ma. Late Miocene magmatism was locally related to important mineralization including San Cristobal (Domo de Yauli), Huarón and Yauricocha.Overall, there is no evidence for a systematic eastward migration of the magmatic arc through time. The arc broadened in the late Eocene to early Oligocene, and thereafter ceased over wide areas until the early Miocene, when magmatism resumed in a narrow arc. A renewed widening and subsequent cessation of the arc occurred in the late middle and late Miocene. The pattern of magmatism probably reflects two cycles of flattening of the subduction in the Oligocene and late Miocene. Contrasting crustal architecture between areas south and north of Domo de Yauli probably account for the differences in the temporal and aerial distribution of magmatism in these areas.Ore deposits are most abundant between Domo de Yauli and Cerro de Pasco and were generally emplaced in the middle and late Miocene during the transition to flat subduction and prior to cessation of the arc. Eocene to early Oligocene mineralization also occurred, but was restricted to a broad east–west corridor from Uchucchacua to Milpo–Atacocha, indicating a major upper-plate metallogenetic control.  相似文献   

12.
Rb-Sr and K-Ar ages have been obtained on six biotites, two muscovites and one hornblende from samples of micaschist, gneiss and amphibolite of Lower Paleozoic to Precambrian age at a depth exceeding 2,000 m in basement rocks of the Larderello-Travale geothermal region. Most of the data cluster in the range 2.5–3.7 Ma, revealing the existence of a Pliocene thermal event to which the origin of the field may be attributed. The resulting duration of the Larderello geothermal field is unexpectedly long. In the basement levels of the two wells examined, unstabilized minimum temperatures of 290° and 380° C were measured. All the biotites show almost complete 40Ar and 87Sr retention at the measured well temperatures. Petrologic evidence (stilpnomelane stability) and experimental data (activation energies and diffusion coefficients) also favour a closure temperature above 400° C for Rb-Sr and K-Ar in biotites, in agreement with recent direct experimental determinations.For the last 3 Ma mean geothermal gradients of 120°–150° C/km have been evaluated in the first 2–3 km, and 60°–65° C/km in the underlying 2 km. A rough estimate of total cooling in the last 3 Ma gives a value of 120° C at 2,500 m depth and 50° C at 4,000 m depth in Sasso 22 well. A mean uplift rate of about 0.2 mm/year is calculated independently.Research conducted under a collaboration agreement between the Italian National Research Council (CNR) and the Italian National Electricity Board (ENEL)  相似文献   

13.
Penang Island represents the northwestern extension of the western magmatic belt of Peninsular Malaysia. Thirty-one samples of highly evolved biotite-and biotite-muscovite granites were used in an integrated study to unravel the complex magmatic, tectonic and cooling histories of these rocks. Highly distorted Rb–Sr whole-rock age patterns are evident. These are attributed to the partial post-magmatic Sr homogenization within the granite batholith which led to the rotation of isochrons towards younger ages and higher (87/86)Sr intercepts. The recognition of this mechanism allowed the establishment of a new Rb–Sr interpretation model. The intrusion ages of the granites can be extrapolated based on the evolutionary trend of the initial (87/86)Sr. Including the data of Bignell and Snelling, three episodes of granite emplacement at 307±8 Ma, 251±7 Ma and 211±2 Ma are suggested for Penang and the NW Main Range. The late-Triassic intrusive induced a hydrothermal conductive convection system which affected all the granites. It is considered to be responsible for the Rb–Sr whole-rock age distortion, the Rb–Sr and K–Ar biotite age resetting and the textural and mineralogical changes in the granites. The duration of the hydrothermal convections, deduced from the Rb–Sr whole rock ages, is about 6 Ma and 20 Ma in the northern and southern parts of Penang respectively. Fast regional cooling to 350±50°C within a time span of 1–3 Ma is recognized for the late-Triassic Feringgi intrusive from the mica ages, followed by a generally slow cooling rate of about 1°C/Ma. Fission track ages, in addition, indicate blockwise uplift along the N-S and NW-SE tending faults, thus resulting in the exposure of deeper crustal levels in southern and eastern Penang. A change in the tensional regime since Oligocene/Miocene, accompanied by a southwest tilting of the island, is indicated by the fission track apatite ages. Variable sometimes younger K–Ar, respectively Rb–Sr biotite ages mainly depend on the degree of hydrothermal overprint at different crustal levels. An increase of the reaction surface by grain size reduction influences Rb–Sr and K–Ar mica ages in similar ways, as has been demonstrated by experimental data.  相似文献   

14.
The Pillara Zn–Pb deposit is the largest of several known Mississippi Valley-type (MVT) deposits in the Lennard Shelf of the Canning Basin. Paleomagnetic and rock magnetic measurements are reported for 294 specimens from 23 sites in mineralization and its carbonate host rocks from the deposit as well as on 15 artificial specimens of zinc and lead concentrate and of tailings. Pyrrhotite carries the characteristic remanent magnetization (ChRM) in nearly all specimens. The ChRM postdates most faulting as shown by breccia tests and most minor regional tilting as shown by the degraded fit on tilt correction. The mean ChRM direction for all sites is D=20.6°, I=–27.5° (N=23, 95=5.3°, k=34.1), yielding an age of 358±5 Ma (2) that is similar to the comparable age of 354±8 Ma (2) for the Kapok MVT deposit. Host rock diagenesis with attendant secondary remagnetization yields an age of 361±5 Ma (1) and the MVT mineralization with a primary chemical remanent magnetization gives an age of 356±3 Ma (1), co-eval with a published Rb–Sr sphalerite age of 357±3 Ma. Interpretation of this temporal data suggests that the MVT deposits of the southeastern Lennard Shelf originated during extension, probably in response to rift-related topography-driven fluid flow.Editorial handling: C. Brauhart  相似文献   

15.
Chemical Th–U–total Pb (CHIME) dating of monazite by electron probe microanalyzer (EPMA) and proton microprobe (PIXE) was carried out on felsic granulites from Stary Gierałtów, Poland, which represent part of the Orlica-Śnieżnik Dome in the NE Bohemian Massif. Analyzed monazite is characterized by mosaic zoning rather than simple core-to-rim growth, and strontium contents of up to 750ppm. An isochron age of 347 ± 13Ma represents timing of amphibolite-facies metamorphism, in agreement with previously published estimates.  相似文献   

16.
Augen gneisses, mica schists, and marbles of the Menderes Massif and its sedimentary cover rocks are exposed south of the Gediz graben. The augen gneisses form the structurally lowest part of the studied lithological sequence, and are overlain by a schist complex. The structurally highest part is formed by a series of marbles. The ages of this lithological sequence range from Precambrian to Early Paleocene. Furthermore, this sequence records the tectonic evolution since the Precambrian. The sedimentary cover of the Menderes Massif consists of two groups of sediments from Early Miocene to Quaternary. The lower group, the Alayehir group, consists of Early- to mid-Miocene-aged fluvial and limnic sediments which form the lower and the upper parts, respectively. The Alayehir group is overlain by mainly fluvial sediments of the Gediz group. Both the Alayehir and the Gediz groups are separated by an angular unconformity. Six deformational phases could be distinguished within the metamorphic rocks of the Menderes Massif and its Tertiary cover. The structures which were interpreted to belong to deformational events predating the Paleocene are summarized as deformational phase D1. D1 structures were nearly completely overprinted by the subsequent deformation events. The second deformational phase D2 occurred between Early Eocene and Early Oligocene. D2 occurred contemporaneously with a Barrovian-type regional metamorphism. The third deformational phase D3 is characterized by folding of the axial planes which formed at the end of Early Oligocene. The deformational event D4 occurred during the Late Oligocene and is related to an extensional period. The deposition of the sedimentary rocks which belong to the Tertiary cover of the Menderes Massif that started in the Early Miocene was interrupted by a compressional phase (D5) during the Late Miocene. Sediments which were deposited since the Early Pliocene record structures which were related to a young extensional phase (D6). This extensional phase has continued to the Present.  相似文献   

17.
Southwestern Turkey experienced a transition from crustal shortening to extension during Late Cenozoic, and evidence of this was recorded in four distinct basin types in the Mu?la–Gökova Gulf region. During the Oligocene–Early Miocene, the upper slices of the southerly moving Lycian Nappes turned into north-dipping normal faults due to the acceleration of gravity. The Kale–Tavas Basin developed as a piggyback basin along the fault plane on hanging wall blocks of these normal faults. During Middle Miocene, a shift had occurred from local extension to N–S compression/transpression, during which sediments in the Eskihisar–T?naz Basins were deposited in pull-apart regions of the Menderes Massif cover units, where nappe slices were already eroded. During the Late Miocene–Pliocene, a hiatus occurred from previous compressional/transpressional tectonism along intermountain basins and Yata?an Basin fills were deposited on Menderes Massif, Lycian Nappes, and on top of Oligo–Miocene sediments. Plio-Quaternary marked the activation of N–S extension and the development of the E–W-trending Mu?la–Gökova Grabens, co-genetic equivalents of which are common throughout western Anatolia. Thus, the tectonic evolution of the western Anotolia during late Cenozoic was shifting from compressional to extensional with a relaxation period, suggesting a non-uniform evolution.  相似文献   

18.
Hot collisional orogens are characterized by abundant syn-kinematic granitic magmatism that profoundly affects their tectono-thermal evolutions. Voluminous granitic magmas, emplaced between 360 and 270 Ma, played a visibly important role in the evolution of the Variscan Orogen. In the Limousin region (western Massif Central, France), syntectonic granite plutons are spatially associated with major strike–slip shear zones that merge to the northwest with the South Armorican Shear Zone. This region allowed us to assess the role of magmatism in a hot transpressional orogen. Microstructural data and U/Pb zircon and monazite ages from a mylonitic leucogranite indicate synkinematic emplacement in a dextral transpressional shear zone at 313 ± 4 Ma. Leucogranites are coeval with cordierite-bearing migmatitic gneisses and vertical lenses of leucosome in strike–slip shear zones. We interpret U/Pb monazite ages of 315 ± 4 Ma for the gneisses and 316 ± 2 Ma for the leucosomes as the minimum age of high-grade metamorphism and migmatization respectively. These data suggest a spatial and temporal relationship between transpression, crustal melting, rapid exhumation and magma ascent, and cooling of high-grade metamorphic rocks.Some granites emplaced in the strike–slip shear zone are bounded at their roof by low dip normal faults that strike N–S, perpendicular to the E–W trend of the belt. The abundant crustal magmatism provided a low-viscosity zone that enhanced Variscan orogenic collapse during continued transpression, inducing the development of normal faults in the transpression zone and thrust faults at the front of the collapsed orogen.  相似文献   

19.
96 new fission track (FT) apatite and zircon, K/Ar and Rb/Sr biotite and muscovite ages are presented for 19 samples (mainly acid gneisses) from a 40 km traverse through the Lepontine Alps in the Maggia Valley, South Central Switzerland. Plotting measured mineral ages against assumed system closure temperatures yields cooling rates for each sample. The entire profile shows a fairly uniform Late Neogene-Recent mean uplift rate of 0.5 mm/a, confirmed by a gradient of FT apatite age with elevation. Cooling from higher temperatures occurred earlier in the south, where uplift rates of 2.2 mm/a in the Steep Belt (root zone) indicate >9 km Early Miocene uplift of the northern Pennine block. This uplift started before 23 Ma and is interpreted as resulting from a major phase of backthrusting along the Insubric Line, and as dating the formation of the mylonite belt. Estimated cooling rates constrain the timing of Lepontine Mid-Tertiary metamorphism: 3 schematic models are proposed which also consider published Rb/Sr, K/Ar mica and hornblende and U/Pb monazite ages. Slow cooling, differential initial heating and subsequent cooling of different parts of the Central Alps and post-38 Ma cooling with syntectonic metamorphism at 27 Ma are postulated as alternative interpretations of isotopic data and geologic evidence. From extrapolation between K/Ar and Rb/Sr mica ages and apatite FT ages, 240±50° C is proposed as the closure temperature for the retention of fission tracks in zircon.  相似文献   

20.
U-Pb geochronology of igneous zircon from rhyolitic host rocks to the Archean Kidd Creek, Geco and Winston Lake massive sulfide deposits, in the Superior Province of Ontario, shows that volcanism, which accompanied mineralization, occupied a narrow time span (2717±2 Ma, 2720±2 Ma and 2723±2 Ma, respectively). Precise ages of hydrothermal monazite, allanite and rutile from alteration zones surrounding the above deposits indicate that these minerals crystallized 40–70 million years after volcanism. Monazite from Kidd Creek mine is 2659±3 Ma old, in agreement with spatially associated 2664±25 Ma old rutile. Monazite from a biotite schist at Geoco mine gives a similar age of 2661±1 Ma. However, monazite from a sericite schist, which hosts the ore at Geco mine, is 2675±2 Ma old. Abraded large monazite grains from three units in the Winston Lake deposit are coeval with biotite crystallization and record an age of 2677±2 Ma, approximately the same as monazite in the sericite schist at Geco. Data points from allanite fractions from both the Winston Lake and Geco deposits fall on a Pb-Pb isochron that gives an age of 2672±5 Ma. Rutile from Winston Lake gives a younger age of 2651±6/-2 Ma and may date retrograde alteration of biotite to chlorite. The ca. 2676 Ma age of monazite from Winston Lake and in the sericite schist at Geco mine probably dates a regional metamorphic event that affected most of the southern Superior Province. The ca. 2660 Ma old monazite in the biotite schist at Geco mine and in the chlorite-sericite alteration at Kidd Creek may date later K-metasomatism caused by metamorphically derived fluids that were focussed along old fault structures. Such fluids were also responsible for local sulfide remobilization. Monazite and rutile are spatially associated with chlorite and sericite alterations at Kidd Creek. Their young ages indicate that these originally syngenetic mineral assemblages may have been significantly affected by regional metamorphism. Formation of monazite at all three deposits studied was a result of significant REE remobilization during metamorphism. The discrete character of syn-metamorphic hydrothermal activity in different units of the same deposit, as well as its synchroneity among different, widely separated deposits, requires a mechanism for episodic injection of heat and fluid into the crust on a regional scale. These activities are broadly coeval with, and probably related to, plutonism within adjacent metasedimentary subprovinces and middle to lower crustal metamorphism in the Superior Province.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号