首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The Oroscocha Quaternary volcano, in the Inner Arc Domain of the Andean Cordillera (southern Peru), emitted peraluminous rhyolites and trachydacites that entrained decimetric to millimetric lamprophyric blobs. These latter show kersantite modal compositions (equal proportion of groundmass plagioclase and K-feldspar) and potassic bulk-rock compositions (1<K2O/Na2O<2; 6.7–7.2 wt.% CaO). Kersantite blobs have shapes and microstructures consistent with an origin from a mixing process between mafic potassic melts and rhyolitic melts. Both melts did exchange their phenocrysts during the mixing process. In addition to index minerals of lamprophyres (Ba–Ti–phlogopite, F-rich apatite, andesine and Ca-rich sanidine), the groundmass of kersantite blobs displays essenite-rich diopside (up to 22 mol%), Ti-poor magnetite microlites, Ti-poor hematite microlites and a series of Ca–Ti–Zr- and REE-rich accessory minerals that have never been reported from lamprophyres. Titanite [up to 5.3 wt.% ZrO2 and 5.2 wt.% (Y2O3 + REE2O3)] and Zr- and Ca-rich perrierite (up to 7.2 wt.% ZrO2 and 10.8 wt.% CaO) predate LREE- and iron-rich zirconolite and Fe-, Ti-, Hf-, Nb- and Ce-rich baddeleyite (up to 5.3 wt.% Fe2O3, 3.2 wt.% TiO2, 1.5 wt.% HfO2, 1.2 wt.% Nb2O5, 0.25 wt.% CeO2) in the crystallization order of the groundmass. Isomorphic substitutions suggest iron to occur as Fe3+ in all the accessory phases. This feature, the essenitic substitution in the clinopyroxene and the occurrence of hematite microlites, all indicate a drastic increase of the oxygen fugacity (from FMQ − 1 to FMQ + 5 log units) well above the HM synthetic buffer within a narrow temperature range (1100–1000 °C). Such a late-magmatic oxidation is ascribed to assimilation of water from the felsic melts during magma mixing, followed by rapid degassing and water dissociation during eruption of host felsic lavas. Thus, magma mixing involving felsic melt end-members provides a mechanism for mafic potassic melts to be oxidized beyond the HM synthetic buffer curve.  相似文献   

2.
L.I. Panina  L.M. Usoltseva 《Lithos》2008,103(3-4):431-444
To find out the reasons responsible for the diversity of igneous rocks forming the alkaline-ultrabasic carbonatite Krestovskiy massif (the Maimecha–Kotui province, Russia) we have studied melt inclusions in clinopyroxene of trachydolerites, porphyric melanephelinites, and tholeiites. It was established that the homogenization temperatures of inclusions in these rocks are rather close: 1140–1180 °C, 1190–1230 °C, and 1150–1210 °C, respectively. Compositions of melt inclusions in clinopyroxenes from different rocks are significantly different. The chemical composition of clinopyroxene of trachydolerites corresponds to that of trachybasalts and their derivatives. The inclusions are enriched in Sr, Ba, P, and S and their total sum of alkalies (at K ≥ Na) is never less than 5–6 wt.%. Inclusions from the rims of clinopyroxene phenocrysts in porphyric melanephelinites are similar in composition also to inclusions in trachydolerites. But in the cores of clinopyroxene phenocrysts the composition of inclusions corresponds to nephelinite melt. The composition of some melt inclusions in the intermediate and cores zones of clinopyroxene from porphyric melanephelinite has high SiO2 (53–55 wt.%), MgO (8–9 wt.%) and a low (1–2 wt.%) total sum of alkalies (at Na ≥ K) and is depleted in Al2O3 (6–7 wt.%), which is similar to the composition of basaltic komatiites. The composition of inclusions in tholeiites is also basic, highly magnesian, and low-alkaline, Sr and Ba are rare to absent. Compared to the inclusions of basaltic komatiite composition, the inclusions in tholeiites are enriched in Al and depleted in Ca, Ti, and P. The melts trapped in clinopyroxenes from different rocks contain low (0.014–0.018 wt.%) water but they are enriched in F: from 0.37 wt.% in nephelinite melts to 0.1–0.06 wt.% in tholeiite and basaltic komatiite melts. Inclusions in all the rocks under study, host clinopyroxene, and the rocks themselves are significantly enriched in incompatible elements (1–2 orders of magnitude relative to the mantle norm). In tholeiites, the partitioning of these elements is rather uniform, while in trachydolerites and especially in melanephelinites it is contrasting with a drastic depletion in HREE relative to LREE, MREE, and HFSE. A conclusion is made that the Krestovskiy massif was formed by no less than three mantle-derived magmas: melanephelinite, tholeiite and basaltic komatiite. Magmas were generated in different magma sources at different depths with various degrees of enrichment in incompatible elements. These magmas were, most likely, dominated by melanephelinite magma. In intermediate chambers this magma differentiated to form derivative melts of nephelinite, trachydolerite–trachyandesite–trachyte compositions. Komatiite-basalt melts were, most likely, derivatives of primitive meimechite magmas.  相似文献   

3.
We present velocity models determined by inverting refracted and reflected arrivals along two active source lines in the Changbaishan volcanic region, NE China. We resolve a prominent low-velocity zone (LVZ) in the crust, with velocities as low as 5.4 km/s. Away from the LVZ, the velocity gradients in the crust are relatively smooth, with average P-wave velocities of about 6.0–6.5 km/s. The Moho is at about 35 km depth, thickening to about 40 km under the Tianchi volcano, and thinning to about 30 km under the LVZ. The LVZ is located about 30–60 km to the north of the summit of the Tianchi volcano (the most recently active volcano in the region), is about 30–75 km in north–south extent, is at most 35 km in east–west extent, and is in the depth range of about 10–25 km below the surface. We use these results to constrain receiver function inversions, and show that the receiver functions in the region are compatible with our findings. With these data alone, the significance of the LVZ in non-unique, although we do not see any evidence to support the presence of partial melt in the crust, and favor the interpretation that the LVZ indicates a residual crustal magma chamber.  相似文献   

4.
Recent discoveries over the last decade of new gemfields, exploitation of new and existing deposits, and application of relatively new techniques have greatly increased our knowledge of the basalt-derived gem sapphire–ruby–zircon deposits. In this paper we focus on the Late Mesozoic to Cenozoic intraplate basaltic fields of the West Pacific continental margins. We review advances made in understanding the genesis of these deposits, based on the application of newer techniques. We also critically review existing data on the gem corundum deposits, in order to further refine a model for their origin.In some of the intraplate basaltic fields, corundum-bearing xenoliths have been found showing a range of PT formation conditions from 790 °C at 0.85 GPa to as much as 1100 to 1200 °C at 1.0 to 2.5 GPa. Although most magmatic sapphires contain syngenetic inclusions of columbite-group phases, zircon, spinel and rutile, some contain additional nepheline and K-feldspar, suggesting crystallization from more undersaturated alkaline magma while the Weldborough field of NE Tasmania also contains molybdenite and beryl, suggesting at least some interaction with more fractionated ‘granitic-type’ magmas. There is a large range in PT conditions calculated for the metamorphic rubies (from 780 to 940 °C, through 800 to 1150 °C up to 1000 to 1300 °C). Fluid/melt inclusion studies on magmatic corundums generally suggest that they formed in a CO2-rich environment from a ‘syenitic’ melt under a range of T conditions from 720 to 880 °C up to 1000 to 1200 °C. Oxygen isotope studies reveal that typical magmatic corundums have values of + 4.4 to 6.9‰, whereas metamorphic corundums from the same basaltic host have lower values of + 1.3 to 4.2‰.Geochronological studies have shown that some fields produced a simple eruptive and zircon/corundum crystallization event while others had multiple eruptive events but only one or two zircon crystallization events. For a few fields, some corundums/zircons crystallized in storage regions and then remained relatively inert for periods of 200 to 400 Ma without significant change before transport to the surface in the Cenozoic. Tectonic studies of the Australian region suggest that many of the corundums crystallized from magmas related to episodic basaltic volcanism in a tectonic regime of extension, associated with the opening of the Tasman and Coral Seas. For the Asian region, the magmatic–polygenetic corundums within the basaltic fields largely crystallized in a tectonic regime of distributed E–W extension, whereas the metamorphic-metasomatic corundums crystallised in a transpressional regime associated with the collision of the Indian Plate with the Eurasian Plate (e.g., [Garnier, V., Giuliani, G., Maluski, H., Ohnenstetter, D., Deloule, E., 2003. Ar–Ar and U–Pb ages of marble-hosted ruby deposits from Central and South-east Asia. Geophysical Research Abstracts 5, 03751; Garnier, V., Giuliani, G., Ohnenstetter, D., and Schwarz, D., 2004. Les gisements de corindon: classification et genese. Les placers a corindon gemme. Le Regne Mineral 55, 7-47; Garnier, V., Ohnenstetter, D., Giuliani, G., Maluski, H., Deloule, E., Phan Trong, T., Pham Van, L., Hoang Quang, V., 2005a. Age and significance of ruby-bearing marble from the Red River Shear Zone, Northern Vietnam. Canadian Mineralogist 43, 1315–1329]).  相似文献   

5.
A geochemical and isotopic study was carried out for the Mesozoic Yangxin, Tieshan and Echeng granitoid batholiths in the southeastern Hubei Province, eastern China, in order to constrain their petrogenesis and tectonic setting. These granitoids dominantly consist of quartz diorite, monzonite and granite. They are characterized by SiO2 and Na2O compositions of between 54.6 and 76.6 wt.%, and 2.9 to 5.6 wt.%, respectively, enrichment in light rare earth elements (LREE) and large ion lithophile elements (LILE), and relative depletion in Y (concentrations ranging from 5.17 to 29.3 ppm) and Yb (0.34–2.83 ppm), with the majority of the granitoids being geochemically similar to high-SiO2 adakites (HSA). Their initial Nd (εNd = − 12.5 to − 6.1) and Sr ((87Sr/86Sr)i = 0.7054–0.7085) isotopic compositions, however, distinguish them from adakites produced by partial melting of subducted slab and those produced by partial melting of the lower crust of the Yangtze Craton in the Late Mesozoic. The granitoid batholiths in the southeastern Hubei Province exhibit very low MgO ranging from 0.09 to 2.19 wt.% with an average of 0.96 wt.%, and large variations in negative to positive Eu anomalies (Eu/Eu = 0.22–1.4), especially the Tieshan granites and Yangxin granite porphyry (Eu/Eu = 0.22–0.73). Geochemical and Nd–Sr isotopic data demonstrate that these granitoids originated as partial melts of an enriched mantle source that experienced significant contamination of lower crust materials and fractional crystallization during magma ascent. Late Mesozoic granitoids in the southeastern Hubei Province of the Middle–Lower Yangtze River belt were dominantly emplaced in an extensional tectonic regime, in response to basaltic underplating, which was followed by lithospheric thinning during the early Cretaceous.  相似文献   

6.
Circa 1.78 Ga mafic dyke swarms and some coeval volcanic associations constitute a Large Igneous Province in the central North China craton. The 1st generation of dykes intruded at ca. 1780 Ma and is chemically delineated into 3 groups: the LT Group is gabbroic and has low-Fe–Ti contents, acting as parental magma; the NW Group is high in Fe–Ti-contents and doleritic with an iron-enriched trend; whereas the EW Group is doleritic to andesitic and crystallized from relict siliceous liquids with a silica-enriched trend. They have an EM-I type source and record integral magmatic processes. These include contamination of lithospheric material and assimilation of crustal melts with in-situ crystallization in a magma chamber (the LT Group) and fractional crystallization in magma channels (the NW Group) and even with additional alteration (the EW Group). The 2nd generation is slightly younger (ca. 1760 Ma) and scarcely distributed. It has high-Fe–Ti contents, originated from a mixing source of DM and EM-I types. The dykes could be associated with a palaeo-plume: the 1st generation represents lower mantle melts generated from the plume head, whereas the 2nd generation records extra melts from asthenosphere entrained by the plume tail.  相似文献   

7.
Deposits of the 22.6 ka Okareka Eruption Episode from Tarawera Volcanic Complex record the sequential and simultaneous eruption of three discrete rhyolite magmas following a silicic recharge event related to basaltic intrusion. The episode started with basaltic eruption ( 0.01 km3 magma), and rapidly changed to a plinian eruption involving a moderate temperature (750 °C), cummingtonite-bearing rhyolite magma (T1) with a volume of  0.3 km3. Hybrid basalt/rhyolite clasts demonstrate direct basaltic intrusion that helped trigger the eruption. Crystals, shards and lapilli of two other rhyolite magmas then joined the eruption sequence. They comprise a cooler (720 °C) crystal-rich biotite–hornblende rhyolite magma (T2) ( 0.3 km3), and a hotter (780 °C), crystal-poor, pyroxene–hornblende rhyolite magma (T3) ( 4.5 km3). All mid to late-stage ash units contain various mixtures of T1, T2 and T3 components with a general increase in abundance of T3 and rapid decline of T1 with time. About 4 km3 of T3 magma was extruded as lavas at the end of the episode. Contrasts in melt composition, crystal and volatile contents, and temperatures influenced viscosity and miscibility, and thus limited pre-eruption mixing of the rhyolite magmas. The eruption sequence and the restricted direct basaltic intrusion into only one magma (T1) is consistent with the rhyolites occupying separate melt pods within a large crystal-mush zone. Melt–crystal equilibria and volatile contents in melt inclusions indicate temporary magma storage depths of < 8 km. Each of the magmas display quartz crystals containing melt inclusions that are compositionally highly evolved relative to the accompanying matrix glass, and thus point to a stage of more complete crystallisation. The matrix glass, enriched in Sr and Ti, represents a re-melting event of underlying the crystal pile induced by basaltic intrusion, presumably part of the same event that erupted scoria at the start of the eruption. This recharge rhyolite melt percolated upward and hybridised with the resident melts in each of the three magma pods. The Okareka episode rhyolites contrast with other well-documented rhyolites that are either continuously or discontinuously zoned, or have been homogenised during re-activation to a uniform composition. Rapid basalt dike intrusion to shallow levels appears to have (prematurely?) triggered the Okareka rhyolites into eruption, so that their early ponding in separate melt pods has been recorded before it could be masked by mixing or stratification had amalgamation into a larger body occurred.  相似文献   

8.
Detrital zircon provides a powerful archive of continental growth and recycling processes. We have tested this by a combined laser ablation ICP-MS U–Pb and Lu–Hf analysis of homogeneous growth domains in detrital zircon from late Paleozoic coastal accretionary systems in central Chile and the collisional Guarguaráz Complex in W Argentina. Because detritus from a large part of W Gondwana is present here, the data delineate the crustal evolution of southern South America at its Paleopacific margin, consistent with known data in the source regions.Zircon in the Guarguaráz Complex mainly displays an U–Pb age cluster at 0.93–1.46 Ga, similar to zircon in sediments of the adjacent allochthonous Cuyania Terrane. By contrast, zircon from the coastal accretionary systems shows a mixed provenance: Age clusters at 363–722 Ma are typical for zircon grown during the Braziliano, Pampean, Famatinian and post-Famatinian orogenic episodes east of Cuyania. An age spectrum at 1.00–1.39 Ga is interpreted as a mixture of zircon from Cuyania and several sources further east. Minor age clusters between 1.46 and 3.20 Ga suggest recycling of material from cratons within W Gondwana.The youngest age cluster (294–346 Ma) in the coastal accretionary prisms reflects a so far unknown local magmatic event, also represented by rhyolite and leucogranite pebbles. It sets time marks for the accretion history: Maximum depositional ages of most accreted metasediments are Middle to Upper Carboniferous. A change of the accretion mode occurred before 308 Ma, when also a concomitant retrowedge basin formed.Initial Hf-isotope compositions reveal at least three juvenile crust-forming periods in southern South America characterised by three major periods of juvenile magma production at 2.7–3.4 Ga, 1.9–2.3 Ga and 0.8–1.5 Ga. The 176Hf/177Hf of Mesoproterozoic zircon from the coastal accretionary systems is consistent with extensive crustal recycling and addition of some juvenile, mantle-derived magma, while that of zircon from the Guarguaráz Complex has a largely juvenile crustal signature. Zircon with Pampean, Famatinian and Braziliano ages (< 660 Ma) originated from recycled crust of variable age, which is, however, mainly Mesoproterozoic. By contrast, the Carboniferous magmatic event shows less variable and more radiogenic 176Hf/177Hf, pointing to a mean early Neoproterozoic crustal residence. This zircon is unlikely to have crystallized from melts of metasediments of the accretionary systems, but probably derived from a more juvenile crust in their backstop system.  相似文献   

9.
During its 1800-year-long persistent activity the Stromboli volcano has erupted a highly porphyritic (HP) volatile-poor scoriaceous magma and a low porphyritic (LP) volatile-rich pumiceous magma. The HP magma is erupted during normal Strombolian explosions and lava effusions, while the LP one is related to more energetic paroxysms. During the March–April 2003 explosive activity, Stromboli ejected two typologies of juvenile glassy ashes, namely highly vesicular LP shards and volatile-poor HP shards. Their textural and in situ chemical characteristics are used to unravel mutual relationships between HP and LP magmas, as well as magma dynamics within the shallow plumbing system. The mantle-normalized trace element patterns of both ash types show the typical arc-lava pattern; however, HP glasses possess incompatible element concentrations higher than LP glasses, along with Sr and Eu negative anomalies. HP shards are generally characterized by higher Li contents (to ~20 ppm) and lower δ7Li values (+1.2 to −3.8‰) with respect to LP shards (Li contents of 7–14 ppm and δ7Li ranging between +4.6 and +0.9‰). Fractional crystallization models based on major and trace element compositions, combined with a degassing model based on open-system Rayleigh distillation and on the assumption that melt/fluidDLi > 1, show that abundant (~30%) plagioclase precipitation and variable degrees of degassing can lead the more primitive LP magma to evolve toward a differentiated (isotopically lighter) HP magma ponding in the upper conduit and undergoing slow continuous degassing-induced crystallization. This study also evidences that in March 2003 Stromboli volcano poured out a small early volume of LP magma that traveled slower within the conduit with respect to later and larger volumes of fast ascending LP magma erupted during the April 5 paroxysm. The different ascent rates and cooling rates of the two LP magma batches (i.e., pre- and post-paroxysm) resulted in small, but detectable, differences in their chemical signatures. Finally, this study highlights the high potential of in situ investigations of juvenile glassy ashes in petrologic and geochemical monitoring the volcanic activity and of Li isotopes as tracers of degassing processes within the shallow plumbing system.  相似文献   

10.
Ca. 825–720 Ma global continental intraplate magmatism is generally linked to mantle plumes or a mantle superplume that caused rifting and fragmentation of the supercontinent Rodinia. Widespread Neoproterozoic igneous rocks in South China are dated at ca. 825–760 Ma. There is a hot debate on their petrogenesis and tectonic affiliations, i.e., mantle plume/rift settings or collision/arc settings. Such competing interpretations have contrasting implications to the position of South China in the supercontinent Rodinia and in Rodinia reconstruction models.Variations in the bulk-rock compositions of primary basaltic melts can provide first order constraints on the mantle thermal–chemical structure, and thus distinguish between the plume/rift and arc/collision models. Whole-rock geochemical data of 14 mid-Neoproterozoic (825–760 Ma) basaltic successions are reviewed here in order to (1) estimate the primary melts compositions; (2) calculate the melting conditions and mantle potential temperature; and (3) identify the contributions of subcontinental lithosphere mantle (SCLM) and asenthospheric mantles to the generation of these basaltic rocks.In order to quantify the mantle potential temperatures and percentages of decompression melting, the primary MgO, FeO, and SiO2 contents of basalts are calculated through carefully selecting less-evolved samples using a melting model based on the partitioning of FeO and MgO in olivine. The mid-Neoproterozoic (825–760 Ma) potential temperatures predicted from the primary melts range from 1390 °C to 1630 °C (mostly > 1480 °C), suggesting that most 825–760 Ma basaltic rocks in South China were generated by melting of anomalously hot mantle sources with potential temperatures 80–200 °C higher than the ambient Middle Ocean Ridge Basalt (MORB)-source mantle.The mantle source regions of these Neoproterozoic basaltic rocks have complex histories and heterogeneous compositions. Enriched mantle sources (e.g., pyroxenite and eclogite) are recognized as an important source for the Bikou and Suxiong basalts, suggesting that their generations may have involved recycled components. Trace elements variations show that interactions between asthenospheric mantle (OIB-type mantle) and SCLM played a very important role in generation of the 825–760 Ma basalts. Our results indicate that the SCLM metasomatized by subduction-induced melts/fluids during the 1.0–0.9 Ga orogenesis as a distinct geochemical reservoir that contributed significantly to the trace-elements and isotope inventory of these basalts.The continental intraplate geochemical signatures (e.g., OIB-type), high mantle potential temperatures and recycled components suggest the presence of a mantle plume beneath the Neoproterozoic South China block. We use the available data to develop an integrated plume-lithosphere interaction model for the ca. 825–760 Ma basalts. The early phases of basaltic rocks (825–810 Ma) were most likely formed by melting within the metasomatized SCLM heated by the rising mantle plume. The subsequent continental rift allowed adiabatic decompression partial melting of an upwelling mantle plumes at relatively shallow depth to form the widespread syn-rifting basaltic rocks at ca. 810–800 Ma and 790–760 Ma.  相似文献   

11.
The Cretaceous Kusandong Tuff, Korea, is a thin (1–5 m thick) but laterally extensive (~ 200 km) silicic ignimbrite emplaced in a fluviolacustrine basin adjacent to a continental volcanic arc. The tuff has been used as an excellent key bed because of its great lateral continuity and unique lithology, characterized by the virtual absence of juvenile clasts and an abundance of quartz and feldspar crystals (up to 55–73 vol.%). The tuff is mostly massive and ungraded and locally shows crude internal layering, basal inverse grading and near-top normal grading of crystals, either erosional or non-erosional lower surfaces, and flat-lying to imbricated grain fabrics. Fragile intraformational clasts of mudstone and tuff are also included. These features provide only ambiguous information on the properties of the responsible pyroclastic density currents: i.e. whether they were dense and laminar or dilute and turbulent. The overall lateral continuity and sheet-like geometry of the tuff suggests, however, that the transport system of the currents was highly expanded, dilute, and turbulent. A plug-flow or slab-flow model cannot explain the origin of crude internal layering, imbricated grain fabrics, and the high crystal content, which is most likely the result of vigorous sorting processes within a dilute and turbulent current. Features indicative of deposition from a dense and laminar transporting medium are locally present, suggesting that a dense and laminar depositional system could develop locally at the base of the dilute and turbulent transport system. The virtual absence of juvenile clasts in the tuff is interpreted to be due to rapid ascent, sudden decompression, and full fragmentation of silicic magma into fine glass shards and crystals. Scarcity of basement-derived accidental components together with the absence of pumiceous fallout deposits beneath the tuff is interpreted to be due to shallow-level fragmentation of magma followed by immediate generation of pyroclastic density currents from shallow-level blasts at the onset of eruption. The eruption occurred through multiple vent sites in a short period of time, producing a seemingly single but actually composite ignimbrite unit. Such an eruption was probably possible because of a regional tectonic event within the basin or in its vicinity. It is proposed that a composite ignimbrite with the characteristics of the Kusandong Tuff can be an exemplary product of syntectonic volcanism that can provide an insight into the interpretation of structural and stratigraphic evolution of a sedimentary basin.  相似文献   

12.
W.G. Ernst   《Gondwana Research》2007,11(1-2):38
In the early Earth, accretionary impact heating, including collision with a large, Mars-sized object, decay of short-lived radioisotopes, and (after an initial thermal run-up) continuous segregation of the liquid Fe–Ni core resulted in extensive the melting of the silicate mantle and in the formation of a near-surface magma mush ocean. Progressive, continuous degassing and chemical–gravitational differentiation of the crust–mantle system accompanied this Hadean stage, and has gradually lessened during the subsequent cooling of the planet. Mantle and core overturn was vigorous in the Hadean Earth, reflecting deep-seated chemical heterogeneities and concentrations of primordial heat. Hot, bottom-up mantle convection, including voluminous plume ascent, efficiently rid the planet of much thermal energy, but gradually decreased in importance with the passage of time. Formation of lithospheric scum began when planetary surface temperatures fell below those of basalt and peridotite solidi. Thickening and broadening of lithospheric plates are inferred from the post-Hadean rock record. Developmental stages of mantle circulation included: (a) 4.5–4.4 Ga, early, chaotic magma ocean circulation involving an incipient or pre-plate regime; (b) 4.4–2.7 Ga, growth of small micro-oceanic and microcontinental platelets, all returned to the mantle prior to 4.0 Ga, but increasing in size and progressively suturing sialic crust-capped lithospheric amalgams at and near the surface over time; (c) 2.7–1.0 Ga, assembly of cratons surmounting larger, supercontinental plates; and (d) 1.0 Ga–present, modern, laminar-flowing asthenospheric cells capped by gigantic, Wilson-cycle lithospheric plates. Restriction of komatiitic lavas to the Archean, and of ophiolite complexes ± alkaline igneous rocks, high-pressure and ultrahigh-pressure metamorphic terranes to progressively younger Proterozoic–Phanerozoic orogenic belts supports the idea that planetary thermal relaxation promoted the increasingly negative buoyancy of cooler oceanic lithosphere. The Thickening of oceanic plates enhanced the gravitational instability and the consequent overturn of the outer Earth as cold, top-down oceanic mantle convection. The scales and dynamics of deep-seated asthenospheric circulation, and of lithospheric foundering + shallow asthenospheric return flow evidently have evolved gradually over geologic time in response to the progressive cooling of the Earth.  相似文献   

13.
The effect of compression on noble gas solubility in silicate melts is still badly understood due to a lack of theoretical guidance. In the experimental literature, noble gases dissolving in liquid silicates are found to concentrate almost linearly with increasing pressure up to several tens of kbar, suggesting that Henry’s law could be valid up to very high pressures, although this law stipulates that the gaseous phase in contact with the liquid must be ideal. Recently, new experiments dealing with the dissolution of argon in synthetic and natural silicate melts have pointed out that the evolution of concentration with pressure exhibits a departure from linearity in the 50-100 kbar range, leading either to a levelling off or to a sudden collapse of the argon concentration above 50 kbar. Here, we investigate by means of liquid state physics how volatile species dissolve into silicate melts under pressure. We use a hard sphere model (the reference fluid in liquid state physics) to describe silicate melts and gas at high pressures. One of our main results is that, when pressure increases, the concurrent compaction of gas and melt explains the almost-linear behaviour of the noble gas concentration up to several tens of kbars, before melt compaction dominates and concentration either levels off or decreases gradually in the 50-100 kbar range. In spite of the existence of a quasi-linear regime over a large pressure range, our work disqualifies the use of the Henry law when dealing with high pressures. The implication of these findings to provide an understanding of degassing at mid-ocean ridges is next investigated. Applying our model to the scenario where CO2 vesicle generation occurs in the magma at mantle depths during its ascent from melting regions, we evaluate magma vesicularity as well as noble gas concentrations in the basalt melt and in vesicles as a function of pressure at depth. It is stressed that the variable and usually strong noble gas elemental fractionation observed in mid-ocean ridge basalts can be explained by assuming a sequence of several vesiculation stages interrupted by vesicle loss during magma ascent.  相似文献   

14.
The Central African Belt in the Nkambe area, northwestern Cameroon represents a collisional zone between the Saharan metacraton and the Congo craton during the Pan-African orogeny, and exposes a variety of granitoids including foliated and massive biotite monzogranites in syn- and post-kinematic settings. Foliated and massive biotite monzogranites have almost identical high-K calc-alkaline compositions, with 73–67 wt.% SiO2, 17–13 wt.% Al2O3, 2.1–0.9 wt.% CaO, 4.4–2.7 wt.% Na2O and 6.3–4.4 wt.% K2O. High concentrations of Rb (264–96 ppm), Sr (976–117 ppm), Ba (3680–490 ppm) and Zr (494–99 ppm), with low concentrations of Y (mostly< 20 ppm with a range 54–6) and Nb (up to 24 ppm) suggest that the monzogranites intruded in collisional and post-collisional settings. The Sr/Y ratio ranges from 25 to 89. K, Rb and Ba resided in a single major phase such as K-feldspar in the source. Garnet was present in the source and remained as restite at the site of magma generation. This high K2O and Sr/Y granitic magma was generated by partial melting of a granitic protolith under high-pressure and H2O undersaturated conditions where garnet coexists with K-feldspar, albitic plagioclase. CHIME (chemical Th–U-total Pb isochron method) dating of zircon yields ages of 569 ± 12–558 ± 24 Ma for the foliated biotite monzogranite and 533 ± 12–524 ± 28 Ma for the massive biotite monzogranite indicating that the collision forming the Central African Belt continued in to Ediacaran (ca 560 Ma).  相似文献   

15.
The integration of new and published geochronologic data with structural, magmatic/anatectic and pressure–temperature (P–T) process information allow the recognition of high-grade polymetamorphic granulites and associated high-grade shear zones in the Central Zone (CZ) of the Limpopo high-grade terrain in South Africa. Together, these two important features reflect a major high-grade D3/M3 event at ~ 2.02 Ga that overprinted the > 2.63 Ga high-grade Neoarchaean D2/M2 event, characterized by SW-plunging sheath folds. These major D2/M2 folds developed before ~ 2.63 Ga based on U–Pb zircon age data for precursors to leucocratic anatectic gneisses that cut the high-grade gneissic fabric. The D3/M3 shear event is accurately dated by U–Pb monazite (2017.1 ± 2.8 Ma) and PbSL garnet (2023 ± 11 Ma) age data obtained from syntectonic anatectic material, and from sheared metapelitic gneisses that were completely reworked during the high-grade shear event. The shear event was preceded by isobaric heating (P = ~ 6 kbar and T = ~ 670–780 °C), which resulted in the widespread formation of polymetamorphic granulites. Many efforts to date high-grade gneisses from the CZ using PbSL garnet dating resulted in a large spread of ages (~ 2.0–2.6 Ga) that reflect the polymetamorphic nature of these complexly deformed high-grade rocks.  相似文献   

16.
Adakitic intrusive rocks of  430–450 Ma were discovered in the North Qilian orogenic belt, the western section of the Central Orogenic System (COS) in China. These adakitic rocks were lower crust melts rather than slab melts as indicated by their crustal Ce/Pb, Nb/U, Ti/Eu, and Nd/Sm ratios and radiogenically enriched (87Sr/86Sr)i of 0.7053–0.7066 and εNd(t) of − 0.9 to − 1.7. While they are all characterized by low Yb (< 1.1 ppm) and Y (< 11.5 ppm) abundances with high Sr/Y (> 65) and (La/Yb)N (> 13.7) ratios, these adakitic rocks are classified into the low-MgO–Ni–Cr and high-MgO–Ni–Cr groups. The low-MgO samples were derived from partial melting of thickened lower crust, whereas the high-MgO samples were melts from delaminated lower crust, which subsequently interacted with mantle peridotite upon ascent. Adakitic rocks from the adjacent North Qinling orogenic belt also originated from thickened lower crust at  430 Ma. In addition, the North Qilian and North Qinling orogenic belts both consist of lithological assemblages varying from subduction-accretionary complexes at south to central arc assemblages, which include adakitic rocks, then to backarc phases at north. Such a sequence reflects northward subduction of the Qilian and Qinling oceans. In these two orogenic belts, the occurrence of adakitic rocks of common origin and ages together with the similarities in tectonic configurations and lithological assemblages are considered to be the evidence for the continuity between eastern Qilian and western Qinling, forming a > 1000 km Early Paleozoic orogenic belt. In such a tectonic configuration, the Qilian and Qinling oceans that subducted from south possibly represent parts of the large “Proto-Tethyan Ocean”. This inference is supported by the coexistence of Early Paleozoic coral and trilobite specimens from Asia, America and Australia in the North Qilian orogenic belt. Post-400 Ma volcanic rocks occur in the North Qinling orogenic belt but are absent in the North Qilian orogenic belt, indicating that these two orogenic belts underwent distinct evolution history after the closure of the Proto-Tethyan Ocean ( 420 Ma).  相似文献   

17.
The Permian–Jurassic Mahanadi and Pranhita–Godavari Rifts are part of a drainage system that radiated from the Gamburtsev Subglacial Mountains in central Antarctica. From 12 samples we analysed detrital zircons for U–Pb ages, Hf-isotopes, and trace elements to determine the age, rock type and source of the host magma, and TDM model age. Clusters, in decreasing order of abundance, are (1) 820–1000 Ma, host magmas felsic granitoids with alkaline rock, (2) 1500–1700 Ma felsic granitoids, (3) 500 to 700 Ma mafic granitoids with alkaline rock, (4) 2400–2550 Ma granitoids, and (5) 1000–1200 Ma felsic and mafic granitoids, mafic rock, and alkaline rock. TDM ranges from 1.5 to 3.5 Ga. Joint paleoslope measurements and zircon ages indicate that the Eastern Ghats Mobile Belt (EGMB) and lateral belts and conjugate Antarctica are potential provenances. Zircons from the Gondwana Rifts differ from those in other Gondwanaland sandstones in their predominant 820–1000 Ma and 1500–1700 Ma ages (from the EGMB and conjugate Rayner–MacRobertson Belt) that dilute the 500–700 Ma (Pan-Gondwanaland) ages. The 1000–1200 Ma zircons reflect the assembly of Rodinia, the 500–700 Ma ones that of Gondwanaland; the other ages reflect collisions in the region.  相似文献   

18.
We report analyses of noble gases and Nd–Sr isotopes in mineral separates and whole rocks of late Pleistocene (< 0.2 Ma) monzonites from Ulleungdo, South Korea, a volcanic island within the back arc basin of the Japan island arc. A Rb–Sr mineral isochron age for the monzonites is 0.12 ± 0.01 Ma. K–Ar biotite ages from the same samples gave relatively concordant ages of 0.19 ± 0.01and 0.22 ± 0.01 Ma. 40Ar/39Ar yields a similar age of 0.29 ± 0.09 Ma. Geochemical characteristics of the felsic plutonic rocks, which are silica oversaturated alkali felsic rocks (av., 12.5 wt% in K2O + Na2O), are similar to those of 30 alkali volcanics from Ulleungdo in terms of concentrations of major, trace and REE elements. The initial Nd–Sr isotopic ratios of the monzonites (87Sr/86Sr = 0.70454–0.71264, 143Nd/144Nd = 0.512528–0.512577) are comparable with those of the alkali volcanics (87Sr/86Sr = 0.70466–0.70892, 143Nd/144Nd = 0.512521–0.512615) erupted in Stage 3 of Ulleungdo volcanism (0.24–0.47 Ma). The high initial 87Sr/86Sr values of the monzonites imply that seawater and crustally contaminated pre-existing trachytes may have been melted or assimilated during differentiation of the alkali basaltic magma.A mantle helium component (3He/4He ratio of up to 6.5 RA) associated with excess argon was found in the monzonites. Feldspar and biotite have preferentially lost helium during slow cooling at depth and/or during their transportation to the surface in a hot host magma. The source magma noble gas isotopic features are well preserved in fluid inclusions in hornblende, and indicate that the magma may be directly derived from subcontinental lithospheric mantle metasomatized by an ancient subduction process, or may have formed as a mixture of MORB-like mantle and crustal components. The radiometric ages, geochemical and Nd–Sr isotopic signatures of the Ulleungdo monzonites as well as the presence of mantle-derived helium and argon, suggests that these felsic plutonic rocks evolved from alkali basaltic magma that formed by partial melting of subcontinental lithospheric mantle beneath the back arc basin located along the active continental margin of the southeastern part of the Eurasian plate.  相似文献   

19.
The two-liquid field between alkali-carbonate liquids and phonolite or nephelinite magmas from the Oldoinyo Lengai volcano has been determined between 0.7 and 7.6 kb and 900°–1,250° C. The miscibility gap expands with increase in and decrease in temperature. Concomitantly there is a rotation of tie-lines so that the carbonate liquids become richer in CaO. The element distribution between the melts indicates that a carbonate liquid equivalent in composition to Oldoinyo Lengai natrocarbonatite lava would have separated from a phonolitic rather than a nephelinitic magma. CO2-saturated nephelinites coexist with carbonate liquids much richer in CaO than the Lengai carbonatites, but even so these liquids have high alkali concentrations. If the sövites of hypabyssal and plutonic ijolite-carbonatite complexes originated by liquid immiscibility, then large quantities of alkalis have been lost, as is suggested by fenitization and related phenomena. The miscibility gap closes away from Na2O-rich compositions, so that the tendency to exsolve a carbonatite melt is greater in salic than in mafic silicate magmas. The two-liquid field does not approach kimberlitic compositions over the range of pressures studied, suggesting that the globular textures observed in many kimberlite sills and dykes may be the result of processes other than liquid immiscibility at crustal pressures.  相似文献   

20.
Summary ¶Fine- to coarse-grained plutonic nodules within the Petrazza pyroclastics (Paleo-Stromboli I period) consist of gabbroic rocks with variable amounts of interstitial material. They are characterised by cumulate textures and low pressure modal mineralogy formed by plagioclase (An96–87)+clinopyroxene (Mg-v 82–94)+olivine (Fo83–74)±amphibole±opaque minerals; the interstitial material consists of newly crystallised microlites (quenching) of plagioclase (An73–55)+amphibole+clinopyroxene±olivine±biotite±opaques and highly variable amounts of residual glasses that range in composition from shoshonite and high-K basaltic andesite to high-K andesite and latite. The interstitial material has a relatively high but variable degree of vesicularity. The whole rock incompatible element abundances are lower than – but the patterns are typical of – in subduction related magmas and the incompatible trace-elements are well correlated with the amount of the interstitial material. The Sr, Pb and Nd isotopic ratios resemble those of the extrusive rocks of Stromboli older series and the mineral chemistry of the gabbros is similar to that of the HKCA Paleo-Stromboli lavas. Modal mineralogy, mineral chemistry and chemical-isotopic whole rock compositions suggest that the cumulus portions of the gabbroic nodules crystallised from basaltic magmas compositionally compatible with those erupted by Stromboli volcano. The interstitial material does not represent the residual liquid after in situ crystallisation of the gabbros; it is also distinct from the juvenile host andesite magma. Textural evidence, Fe–Mg mineral/liquid partioning and mass balance calculations indicate that the interstitial material (quench crystals and vesicular glass) derived from infiltrated hydrous basaltic liquid undercooling and vesiculation of which occurred during the eruption of the Petrazza pyroclastics.Received April 17, 2002; revised version accepted November 14, 2002 Published online June 2, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号