首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pelitic and calcareous rocks in the Whetstone Lake area havean unusually wide range of chemical composition. Metamorphicreactions have been deduced that represent the observed ‘discontinuities’in compatible mineral assemblages, and by plotting the reactantand the product assemblage of each reaction on a map, metamorphicisograds have been delincated ‘from both sides’.For the pelitic rocks, successively higher-grade isograds arebased on the following reactions: (1)chlorite+muscovite+garnetstaurolite+biotite+quartz+water; (2) chlorite+muscovite+staurolite+quartz kyanite+biotite+water; (3) kyanitesillimanite; (4)staurolite+museovite+quartzsillimanite+garnet+biotite+water. A fifth isograd, based on the reaction (5) biotite+calcite+quartzCa-amphibole+K-feldspar+carbon dioxide+water intersects the isograds based on reactions (2), (3), and (4)in such a manner as to indicate that the H2O/CO2 fugacity ratiowas significantly higher in the vicinity of a granite plutonthan in the metasedimentary rocks remote from the pluton. Chemicalanalyses of the coexisting minerals in reaction (5) indicatethat the real reaction may involve plagioclase, epidote, sphene,and Fe-Ti oxides as well.  相似文献   

2.
《Journal of Structural Geology》2002,24(6-7):1139-1156
In metapelitic rocks of western Maine, a pluton-related M3 metamorphic gradient ranging in grade from garnet to upper sillimanite zone was superposed on a fairly uniform M2 regional metamorphic terrain characterized by the assemblage andalusite+staurolite+biotite+/−garnet. As a result, M2 assemblages re-equilibrated to the P, T, and aH2O conditions of M3, and both prograde and retrograde pseudomorphism of M2 porphyroblasts occurred. The type of pseudomorph and degree of development is directly related to the rock's position within the M3 metamorphic gradient, a function of its proximity to the Mooselookmeguntic pluton. Several ‘hinge’ zones occur in which the M3 minerals that pseudomorphed a particular M2 phase change. For example, M2 garnet was replaced by M3 chlorite or biotite, depending on its position within the M3 gradient. Similarly, in a transition zone between M3 upper staurolite and lower sillimanite zones, M2 staurolite was stable and shows M3 growth rims. Downgrade from this transition zone, staurolite was pseudomorphed by chlorite and muscovite, whereas upgrade, the pseudomorphs contain muscovite and some biotite. M3 pseudomorphs commonly retain crystal shapes of the original M2 porphyroblasts, reflecting relatively low regional deviatoric stress during and after M3. Although evidence for textural disequilibrium is common, chemical equilibrium was closely approached during M3. This study demonstrates for M3 that: (1) the pseudomorphic replacement was a constant volume process, and (2) fabrics produced by tectonic events can be erased by subsequent deformation and/or sufficiently intense subsequent recrystallization.  相似文献   

3.
The second of two periods of regional metamorphism that affectedpelitic rocks near Snow Peak caused complete re-equilibrationof mineral assemblages and resulted in a consistent set of metamorphicisograds. Metamorphic chlorite and biotite occur in the lowestgrade rocks. With increasing grade, garnet, staurolite, andkyanite join the assemblage, resulting in a transition zonecontaining all the above phases. At higher grade, chlorite,and finally staurolite disappear. Mass balance relations at isograds and among minerals of low-varianceassemblages have been modelled by a non-linear least-squaresregression technique. The progressive sequence can be describedin terms of schematic T-XH2O relations among chlorite, biotite,garnet, staurolite, and kyanite at Ptotal above the KFMASH invariantpoint involving those phases. The first appearance of garnetwas the result of an Fe-Mg-Mn continuous reaction. As temperaturerose, the garnet zone assemblage encountered the stauroliteisograd reaction, approximated by the model reaction: 3?0 chlorite + 1?5 garnet + 3?3 muscovite + 05 ilmenite = 1?0staurolite + 3?1 biotite + 1?5 plagioclase + 3?3 quartz + 10?3H2O. The staurolite zone corresponds to buffering along this reactionto the intersection where chlorite, biotite, garnet, staurolite,and kyanite coexist. The transition zone assemblage formed byreaction at this T–X H2O intersection which migrates towardmore H2O-rich fluid composition with progressive reaction. Thenet reaction at the intersection is approximated by the transitionzone reaction: 1?0 chlorite +1?1 muscovite + 0?2 ilmenite = 2?7 kyanite + 1?0biotite + 0?4 albite + 4?2 H2O. Chlorite was commonly the first phase to have been exhaustedand the remaining assemblage was buffered along a staurolite-outreaction, represented by the model reaction: 1?0 staurolite + 3?4 quartz + 0?4 anorthite + 1?4 garnet + 0?1ilmenite + 7?9 kyanite + 2?0 H2O. Consumption of staurolite by this reaction resulted in the highestgrade assemblage, which contains kyanite, garnet, biotite, muscovite,quartz, plagioclase, ilmenite, and graphite.  相似文献   

4.
Microprobe analyses of the minerals from an unusual chloritoid-staurolite-garnet (+ muscovite + quartz + ilmenite) assemblage from the sillimanite (fibrolite) zone of Sini, India are presented and the petrological significance of the paragenesis is discussed. The X Mg in the different minerals from the chloritoid-staurolite-bearing rock varies in the order, muscovite > chlorite > chloritoid > staurolite > garnet > ilmenite, and from the associated sillimanite-bearing schists: muscovite > biotite > staurolite > garnet rim > garnet core > ilmenite. A graphical representation of the mineral compositions in an AFM projection displays a consistent topology if the effects of non-AFM components such as Zn in the staurolite and Mn in the garnet are taken into account. Petrographic and mineralogical data are consistent with a prograde formation of the chloritoid-staurolite-garnet assemblage. It is suggested that the paragenesis has been formed at similar PT conditions to the associated sillimanite (fibrolite)-staurolite-garnet-mica schists. These conditions are estimated to be 600–625°C/6±0.5 Kb.  相似文献   

5.
Aluminous parageneses containing gedrite, cordierite, garnet, staurolite, biotite, sillimanite, kyanite, quartz or spinel plus corundum are found as dark colored lenses in the polymetamorphic, multideformed Archean complex at Ajitpura in northwest peninsular India. Staurolite, like kyanite, is a relict phase of earlier metamorphism and is excluded as a paragenetic mineral in view of its incompatibility with quartz and gedrite and its lower X Mg values than for garnet of the assemblage. Its stability here is attributed to zinc content of up to 3 wt%. The XMg in other ferromagnesian minerals decreases in the order: cordierite, biotite, gedrite, garnet, as found elsewhere in high grade rocks.The textural criteria and systematic partitioning of Fe and Mg in the ferromagnesian phases, excluding staurolite, indicate attainment of equilibrium during the second metamorphism. From tie line configurations in the phase diagrams, X Mg ratios in the constituent minerals, and other petrographic criteria, it is suggested that gedrite — cordierite-garnet — sillimanite — biotite assemblage has been produced by the reactions: Biotite+Sillimanite+Quartz = Cordierite+Garnet+K-feldspar+Vapor (1) and Biotite+Sillimanite+Quartz = Cordierite +Gedrite+K-feldspar+Vapor (2) which occurred during partial melting of the rocks at fixed P and T conditions.By isothermal P-X(Fe-Mg) sections it has been demonstrated that release of FeO, SiO2 and other components modified the composition of the reactant biotite presumably by the substitution FeSi2 Al, whereby reaction 1 was replaced by reaction 2. Cordierite with higher X Mg was produced with gedrite instead of with garnet, whose X Mg is less than X Mg of gedrite. Reaction 2 has been tentatively located in T-P space from the intersection of some continuous loops in the P-X(Fe-Mg) diagram at 700°C and also by other constraints. The discontinuous reaction 2 is located about 1–2 kilobars higher than reaction 1, which implies that it is difficult to distinguish between effects of pressure and those of melting on the X Mg ratios of the reaction phases.The P-T calibrations of garnet — cordierite, garnet — biotite and garnet — plagioclase equilibria and the calibrations from other dehydration curves give temperatures near 700°C and pressure (assuming ) about 6 kilobars.  相似文献   

6.
Meta-graywacke and meta-argillite of Archean age near Yellowknife contain biotite, cordierite, gedrite and sillimanite isograds towards the Sparrow Lake granite pluton. The chemistry of biotite, cordierite, gedrite and garnet in rocks that up-grade from the cordierite isograd indicate a small range of chemical composition, particularly with reference to Mg, Fe and Mn. The analyses show further that among the coexisting ferromagnesian minerals Fe/Fe+ Mg ratio decreases in the sequence: garnet, gedrite, biotite, cordierite while Mn/Fe+Mg+Mn ratio decreases in the sequence garnet, gedrite, cordierite, biotite. The same order is also observed in the distribution diagrams. The regular distribution of Mg, Fe and Mn among the coexisting phases demonstrate that chemical equilibrium was attained and preserved in these Archean rocks. Mg-Fe distribution between cordierite and biotite appears to be dependent on the temperature of crystallization or metamorphic grade.  相似文献   

7.
ABSTRACT The Darjeeling-Sikkim region provides a classic example of inverted Himalayan metamorphism. The different parageneses of pelitic rocks containing chlorite, biotite, garnet, staurolite, kyanite, sillimanite, plagioclase and K-feldspar are documented by a variety of textures resulting from continuous and discontinuous reactions in the different zones. Microprobe data of coexisting minerals show that XMg varies in the order: garnet < staurolite < biotite < chlorite. White mica is a solid solution between muscovite and phengite. Garnet is mostly almandine-rich and shows normal growth zoning in the lower part of the Main Central Thrust (MCT) zone, and reverse zoning in the upper part of the zone. Chemographical relations and inferred reactions for different zones are portrayed in AFM space. In the low-grade zones oriented chlorites and micas and rolled garnets grew syntectonically, and were succeeded by cross-cutting chlorites and micas and garnet rims. In the upper zones sillimanite, kyanite and staurolite crystallized during a static inter-kinematic phase. P-T contitions of metamorphism, estimated through different models of geothermobarometry, are estimated to have been 580°c for the garnet zone to a maximum of 770°c for the sillimanite zone. The preferred values of pressure range from 5.0 kbar to 7.7 kbar. Models to explain the inverted metamorphism include overthrusting of a hot high Himalayan slab along a c. 5 km wide ductile MCT zone and the syn- or post-metamorphic folding of isograds.  相似文献   

8.
The prograde evolution of minerals in metapelites of a Barrovian sequence from the tri-state area (Massachusetts, Connecticut, New York) of the Taconic Range involves assemblages with garnet (Ga), chlorite (Ch), chloritoid (Ct), biotite (Bi) and staurolite (St). Detailed petrologic observations, mineral compositions and chemical zoning in garnet show: (1) garnet high in Mn and Fe but low in Mg is stable with chlorite at grades below those where chloritoid+biotite is found; (2) early formed garnet reacted partially to form Ct+Bi at intermediate grades; (3) at higher grades garnet (with low Mn)+chlorite is again produced, at the expense of chloritoid+biotite, suggesting a reversal in the continuous reaction involving the phases Ga, Ch, Ct and Bi. Thermodynamic modeling of the assemblage Ga+Ch+Ct+Bi±St in the MnKFMASH system reveals: (1) in the MnKFASH system the prograde reaction is Ga+Ch=Ct+Bi whereas in the KFMASH system the prograde reaction is the opposite: Ct+Bi=Ga+Ch; (2) the Ga–Ch–Ct–Bi–St invariant point in the KFMASH system occurs twice, at approximately 6.5 kbar, 545° C and 14.8 kbar, 580° C (although one of them may be metastable in a complex phase system); the appearance of the petrogenetic grid is markedly different from that of Albee, but similar to that of Spear and Cheney; (3) as a consequence, in the KFMASH system, chloritoid+biotite are stable over a wide range of P-T conditions whereas garnet+chlorite assemblages are restricted to a narrow band of P-T conditions; (4) MnO increases the stability field of Ga+Ch relative to both Ct+Bi at low temperatures, and St+Bi at high temperatures; (5) in natural samples the occurrence of Ct+Bi is controlled more by bulk Mg–Fe(-Mn) composition than P-T conditions. Specifically, Ct+Bi is restricted to bulk compositions with Fe/(Mg+Fe+Mn)>0.6. Rocks with Fe/(Mg+Fe+Mn)<0.5 are likely to display only chlorite+biotite at low grade. These observations are consistent with Wang and Spear and Spear and Cheney.  相似文献   

9.
Low-pressure, medium- to high-temperature (Buchan-type) regional metamorphism of pelitic rocks in the Mount Lofty Ranges, South Australia, is defined by the development of biotite, staurolite-andalusite, fibrolite, prismatic sillimanite and migmatite zones. K-feldspar makes its first appearance in the prismatic sillimanite zone and here we restrict our discussion to lower grade assemblages containing prograde muscovite, concentrating particularly on well-developed andalusitestaurolite parageneses. In general, the spatial distribution and mineral chemical variation of these assemblages accord with the predictions of petrogenetic grids and P-T and T-X Fe pseudo-sections constructed from the internally consistent data set of Holland and Powell (1990) in the system KFMASH, assuming a(H2O) 1, although analysed white mica compositions are systematically more aluminous than predicted. Importantly, the stability ranges of most critical assemblages predicted by these grids and pseudo-sections coincide closely with P-T estimates calculated using the data set of Holland and Powell (1990) from the Mount Lofty Ranges assemblages. With the exception of Mn in garnet and Zn in one staurolite-cordierite-muscovite assemblage non-KFMASH components do not significantly appear to have affected the stability ranges of the observed assemblages. An apparent local reversal in isograd zonation in which andalusite first appears down-grade of staurolite suggests a metamorphic field gradient concave towards the temperature axis and, together with evidence for essentially isobaric heating of individual rocks, is consistent with the exposures representing an oblique profile through a terrain in which heat was dissipated from intrusive bodies at discrete structural levels.Mineral abbreviations used in figures als Al2SiO5 phase - bi biotite - chl chlorite - ky kyanite - ph phengite - sill sillimanite - and andalusite - cd cordieritc - gt garnet - mu muscovite - q quartz - st staurolite  相似文献   

10.
Textural evidence, thermobarometry, and geochronology were usedto constrain the pressure-temperature-time (P—T—t)history of the southern portion of the Britt domain in the CentralGneiss Belt, Ontario Grenville Province. Typical metapeliticassemblages are quartz+plagioclase+ biotite + garnet + kyanite alkali feldspar sillimanite rutile ilmenite staurolite gahnite muscovite. Metatonalitic assemblages have quartz+ plagioclase + garnet biotite + hornblende + rutile + ilmenite.Metagabbroic rocks contain plagioclase + garnet + clinopyroxene+ biotite + ilmenite hornblende rutile quartz. Notabletextural features include overgrowths of sillimanite on kyaniteand of spinel on staurolite. The spinel overgrowths can be modeledby the breakdown of staurolite via the reaction Fe-staurolite= hercynite +kyanite + quartz + H2O. The decomposition of stauroliteto her-cynite has a steep dP/dT slope and constrains the lateprograde path of a staurolite metapelite. Garnet—Al2SiO5—plagioclase—quartz(GASP) barometry applied to metapelitic garnets that preservecalcium zoning reveals a pressure decrease from 11 to 6 kbat an assumed temperature of 700 C. Garnet—plagioclase—ilmenite—rutile—quartzand garnet—clinopyroxene—plagioclase—quartzbarometry is in good agreement with pressures obtained withthe GASP barometer. Geochronologic data from garnet, allanite,and monazite in metapelitic rocks give ages that fall into twogroups, 1–4 Ga and 1.1 Ga, suggesting the presence ofat least two metamorphic events in the area. It is most reasonableto assign the 1.4 Ga age to the high-pressure data and the 1.1Ga age to the lower-pressure data. Collectively the P—T—tdata indicate a complex and protracted history rather than asingle cycle of burial and uplift for this part of the GrenvilleProvince.  相似文献   

11.
Garnet and plagioclase pairs from fourteen selected samples, from garnet to sillimanite zones, collected along a NS traverse throughout the metamorphic basement of NE Sardinia, have been analyzed by microprobe.Beyond the garnet isograd, plagioclase has albitic composition and the garnet (a Ca-rich almandine) shows Ca/ Ca+Mg+Fe ratios of about 0.35–0.30, fairly constant from core to rim.Towards the North, still in the garnet zone, when on the large albitic core of plagioclase a thin and discontinuous oligoclasic rim (An22–An18) formed, we observe in the garnet edge an abrupt decrease of the Ca/Ca+Mg+Fe ratio (0.27–0.16).In the staurolite and sillimanite zones garnet does not show significant Ca-zoning and it is characterized by low Ca content (Ca/Ca+Mg+Fe<0.1); the coexisting plagioclase has oligoclasic (An16–An27) composition.The chemical data and the microstructural evidence on growth time indicate that the garnet and plagioclase had a strong mutual interference in determining the relative Ca distribution.The most relevant reactions are discussed and, in particular, the antipathetical Ca-zoning, recorded by garnet and plagioclase in the garnet zone, is considered as the evidence of temperature increase during growth of the two minerals. It is also suggested that the sharp variation of Ca content at the garnet edge was controlled by the discontinuous nature of plagioclase solid solution in the peristeritic range.The order of appearance of garnet and oligoclase in the basement of NE Sardinia is also discussed in comparison with other well known metamorphic sequence (Vermont, New Zealand and Dalradian). It is concluded that the different order of appearance is controlled other than the different nature of the calcic phases in the lower grade zones also by the in the fluid phase.  相似文献   

12.
Natural metapelitic staurolites contain appreciable amounts of lithium. Lithium contents were determined by ion microprobe with concentrations of representative samples independently analyzed by atomic absorption spectrophotometry for calibration. Seventy-one percent of the analyzed staurolites contain >0.1 wt.% Li2O, although the distribution is skewed to values less than 0.3 wt.%.High Li contents observed in staurolite are attributed to one or more of several factors: initiation of staurolite breakdown, lack of additional host phases for lithium (e.g. biotite), pre-metamorphic Li-rich bulk rock composition, and/or interaction of the rock with Li-rich fluids. Li content is generally not correlated with the modal amount of staurolite in the rock, rather Li values tend to reflect variable host rock Li. Lithium most likely resides in the R2+ tetrahedral site. Its incorporation into the structure is probably related to a coupled substitution with Al: ivLi viA1/3 ivR –1 2+ vi–1/3 When staurolite analyses yield low R2+ and high Al values, the possibility of high Li should be considered after accounting for variable H.Lithium partitions into common pelitic metamorphic minerals in the order staurolite>cordierite>biotite>muscovite> garnet, tourmaline, and chloritoid. Partitioning is non-ideal in staurolite and a function of Fe content. Li in staurolite expands its stability field to a higher T relative to garnet and sillimanite, and to a lower T relative to chloritoid and Al-silicate. Analysis of staurolites for Li may provide further insight into this enigmatic mineral.  相似文献   

13.
Chloritoid, and the Isochemical Character of Barrow's Zones   总被引:1,自引:0,他引:1  
It is argued that despite poverty of outcrop the apparent restrictionof chloritoid to a wedge-shaped area at the north-eastern extremityof Barrow's zones is real. Two possible interpretations of thisrestriction are considered: (a) That the chloritoid producingreaction (as yet unidentified) was characterized by a lowerP/T than that of the reaction muscovite+ chlorite+chloritoid+quartz staurolite+biotite+H2O, whereby, with increasing grade, chloritoidgives way to staurolite. A pressure gradient increasing fromnorth-east to south-west (postulated on separate grounds, Chinner,1966) would then result in the convergence of the chloritoidand staurolite isograds towards the south-west, and the eventualsuppression of the chloritoid isograd to give the wedge-shapedoutcrop actually found, (b) The lack of low-grade hydrous assemblagesaluminous enough to give chloritoid or staurolite with increasinggrade suggests that the low-grade limit of chloritoid (and,to the south-west, of staurolite) may not be an isograd, buta chemical boundary. Such a boundary could either be metasedimentary,or metasomatic, representing an alkali gradient of the typestudied by Orville, in which, essentially, potassium and waterreleased within the high-grade metamorphic zones have migratedto low-grade zones to form more micaceous assemblages. The widespreadexistence of ‘shimmer aggregate‘ muscovite alterationof aluminous minerals in thesillimanite, kyanite, and staurolitezones provides evidence of potassium transfer during the waneof metamorphic temperatures on a scale comparable to that which,during the main metamorphic imprint, would have been requiredto mask the development of peraluminous assemblages in the chlorite,biotite, and garnet zones.  相似文献   

14.
Calcic schists in the andalusite-type regional metamorphic terrainin the Panamint Mountains, California, contain the low-varianceassemblage quartz+epidote+muscovite+biotite+calcic amphibole+chlorite+plagioclase+spheneat low grade. Near the sillimanite isograd, chlorite in thisassemblage is replaced by garnet. The low variance in many calcicschists allows the determination of the nature of the reactionthat resulted in the coexistence of garnet+hornblende. A graphicalanalysis of the mineral assemblages shows that the reactioncan not be of the form biotite+epidote+chlorite+plagioclase+quartz=garnet+hornblende+muscovite+sphene+H2Obecause garnet+chlorite never coexisted during metamorphismand the chlorite-bearing and garnet-bearing phase volumes donot overlap. The compositions of the minerals show that withincreasing grade amphibole changed from actinolite to pargasitichornblende with no apparent miscibility gap, the partitioningof Fe and Mg between chlorite and hornblende changed from KD(Mg/Fe, chl&amp) < 1 to KD > 1, the partitioning betweenbiotite and hornblende changed from KD (Mg/Fe, bio/amp) <1 in chlorite-zone samples to KD > 1 in garnet + hornblende-zonesamples, and the transition to the garnet-bearing assemblageoccurred when the composition of plagioclase was between An55and An80. Both the graphical analysis and an analytical analysisof the compositions of the minerals using simplified componentsderived from the natural mineral compositions indicate thatat the garnet+hornblende isograd the composition of hornblendewas colinear with that of plagioclase and biotite, as projectedfrom quartz, epidote, muscovite, and H2O. During progressivemetamorphism, chlorite+biotite+epidote+quartz continuously brokedown to form hornblende+muscovite+sphene until the degeneracywas reached. At that point, tie lines from hornblende couldextend to garnet without allowing garnet to coexist with chlorite.Thus, the garnet+hornblende isograd was established throughcontinuous reactions within the chlorite-grade assemblage ratherthan through a discontinuous reaction. In this type of isograd,the low-grade diagnostic assemblage occurs only in Mg-rich rocks;whereas the high-grade assemblage occurs only in Fe-rich rocks.This relation accounts for the restricted occurrence of garnet+hornblendeassemblage in low-pressure terrains. In Barrovian terrains,garnet+chlorite commonly occurs, and the first appearana ofgarnet+hornblende can simply result from the continuous shiftof the garnet+chlorite tie line to Mg-rich compositions.  相似文献   

15.
Garnet, biotite and host rock have been analysed along a traverse from the garnet isograd to the kyanite zone in the Dalradian of Central Perthshire, Scotland. FeO and MgO increase and MnO and CaO decrease in the garnet with increasing grade. Microprobe analyses of the garnets reveal zoning, which indicates that a garnet crystal as a whole does not equilibrate with the matrix during growth. Coexisting biotite varies in composition as a result of the abstraction of MnO, FeO etc. from the rook by the growing garnet, i.e. the mg/mg + fe ratio increases with grade. The microprobe analyses also reveal the size of the system from which garnet abstracted material varied from 0.100 to 2.000 g and the nucleation was frequently instantaneous. It also reveals the equilibrium or non-equilibrium nature of the assemblage, and explains the variation in garnet composition with grade in terms of a segregation model with a changing distribution coefficient. Primary chlorite was analysed from rocks near to the garnet isograd containing garnet and biotite. It has a similar mg/mg + fe value to the coexisting biotite. The results show that the three phase field defining the garnet isograd moves towards the mg corner with increasing grade. The higher grade fields lie to the mg rich side of the three phase field so that the sequence of mineral assemblages across the Barrovian zones in Perthshire, from the garnet isograd to the kyanite zone, can be summarized and displayed on a phase diagram.  相似文献   

16.
A general model has been developed to calculate changes of 18O of minerals in addition to their composition and modal abundance in metamorphic systems. A complete set of differential equations can be written to describe any chemical system in terms of the variables dP, dT, dX, dM, and d18O (X, M, and 18O refer to the chemical composition, number of moles, and oxygen isotope composition of each phase respectively). This set is composed of the differentials of five subsets of equations: (1) conditions of heterogeneous equilibrium; (2) compositional stoichiometry for each mineral; (3) mass balance for each oxide component; (4) oxygen isotope partitioning between phases; (5) conservation of the oxygen isotope ratio of the system. The variance of the complete set of equations is 2, and changes of 18O, composition, and modal abundance for each mineral can be calculated for arbitrary changes of P and T. Applications to a typical pelitic bulk composition at amphibolite and lower granulite facies conditions suggest that for systems dominated by continuous reactions such as: (a) chlorite + quartz = garnet+H2O; (b) staurolite + biotite = garnet + muscovite + H2O; or (c) garnet + muscovite = sillimanite + biotite, isopleths of mineral 18O are nearly independent of pressure, and have a spacing of about 0.1 per 10–20°C. For nearly discontinuous reactions such as: (d) garnet + chlorite + muscovite = biotite + staurolite+H2O; (e) staurolite + muscovite = biotite + aluminosilicate + garnet+H2O; or (f) muscovite + quartz = sillimanite + K-feldspar+H2O, isopleths of mineral 18O have slopes more nearly parallel to endmember reaction boundaries and 18O of phases can have a greater temperature dependence (e.g., 0.1 per 2°C for reaction d). This behavior results from relatively large amounts of reaction progress for small changes of P or T. However, the calculated exhaustion of a reactant within 0.1–5°C ensures that the predicted effects of such reactions on mineral 18O will not exceed 0.25 for typical bulk compositions. Models that allow for fractional crystallization of garnet suggest that prograde garnet zoning in pelitic assemblages will be relatively smooth until staurolite becomes unstable. At higher temperatures, garnet may develop a step of as much as 0.6 in its core-rim zoning as a result of combined garnet resorption during the continuous reaction garnet + muscovite = sillimanite + biotite and repartitioning of the garnet rim composition to relatively heavy 18O. The models are insensitive to the degree to which garnet fractionally crystallizes and to the isotope fractionation factors used; only extreme changes in modal abundance or bulk composition for a given mineral assemblage can produce significant changes in the predicted trends. In the absence of infiltration, isotopic shifts resulting from net transfer reactions for minerals in typical amphibolite, eclogite, and lower granulite facies metapelites and metabasites are inferred from the models to be 1 or less for 150°C of heating.  相似文献   

17.
A quantitative petrogenetic grid for pelitic schists in the system KFMASH that includes the phases garnet, chlorite, biotite, chloritoid, cordierite, staurolite, talc, kyanite, andalusite, sillimanite, and pyrophyllite (with quartz, H2O and muscovite or K-feldspar in excess) is presented. The grid is based on thermodynamic data of Berman et al. (1985) and Berman (1988) for endmember KFASH and KMASH equilibria and natural Fe-Mg partitioning for the KFMASH system. Calculation of P-T slopes and the change in Fe/(Fe+Mg) along reactions in the KFMASH system were made using the Gibbs method. In addition, the effect on the grid of MnO and CaO is evaluated quantitatively. The resulting grid is consistent with typical Buchan and Barrovian parageneses at medium to high grades. At low grades, the grid predicts an extensive stability field for the paragenesis chloritoid+biotite which arises because of the unusual facing of the reaction chloritoid+biotite + quartz+H2O = garnet+chlorite+muscovite, which proceeds to the right with increasing T in the KFMASH system. However, the reaction proceeds to the left with increasing T in the MnKFASH system so the assemblage chloritoid + biotite is restricted to bulk compositions with high Fe/(Fe+Mg+Mn). Typical metapelites will therefore contain garnet+chlorite at low grades rather than chloritoid + biotite.  相似文献   

18.
On the basis of the systematic variation and the appearance and disappearance of some metamorphic minerals in metapelitic assemblages, the metamorphic terrain of Leros can be divided into chlorite, biotite, garnet and staurolite-kyanite zones of progressive regional metamorphism. The matapelites are interbedded with blueschists containing magnesioriebeckite in Fe3+-rich mafic assemblages in the chlorite zone and more normal greenschist and amphibolite facies in higher grade zones. Combining the observed mineral assemblages in pelitic and mafic schists with the available experimental or calculated relevant phase equilibria, one can deduce temperature conditions of metamorphism ranging from about 350° C up to about 700° C and pressures ranging between a minimum value defined by the pressure of the triple point of the Al2SiO5 polymorphs and a possible minimum around 7 kb.The observed metamorphic sequence may be interpreted as the result of progressive transportation of the original sediments and the interbedded mafic rocks from a regime typified by low temperatures and relatively high pressures, to regimes characterized by higher temperature and medium pressures.  相似文献   

19.
In the Slave Craton of northern Canada, extensive areas weremetamorphosed in broad aureoles (typically ca. 10–15 kmwide) around granitie batholiths emplaced about 2575 m.y. ago.Meta-greywackes and meta-pelites from two areas traversing oneof these aureoles near Yellowknife have been studied. New petrographicdata are given and integrated with previously published mineralogicaldata to elucidate the metamorphic history of the area. Metasedimentsin the aureole contain the concentrically zoned succession ofindex minerals chlorite, biotite, cordierite, gedrite, andalusite,sillimanite. In addition, garnet, staurolite, and parageneticallylate andalusite occur more irregularly, and cummingtonite characterizessubordinate calcic rock-types. The chemistry of all these mineralsis given and their origins discussed. The aureole evolved by the development and decay of a thermaldome. This was a continuous process, but three recognizablemetamorphic phases can be correlated as follows with establisheddeformational phases. The cycle began with a deformation phase(D1) unaccompanied by metamorphism. This evolved into D2 whichwas accompanied by broad regional metamorphism M2 (characterizedby the index succession chlorite, biotite, garnet, staurolite)as thermal doming began. With continued updoming of the isotherms,the third phase (D3) produced only minor folding but causedmajor metamorphic recrystallization (M3), culminating in theemplacement of granite at the core of the thermal dome. A concentriczonation of the metamorphic index minerals biotite, cordierite,gedrite, andalusite+sillimanite was superimposed on earlierassemblages. This M3 phase occurred at lower pressure (2.5–3.5kb) than M2 because of erosional unloading, but the temperatureswere more extreme, ranging up to about 700 °C. With deformationthen complete, the thermal dome decayed, and minor mineralogicalchanges occurred in this (M4) decay phase. The region has sincebeen effectively stable.  相似文献   

20.
Eclogite boudins occur within an orthogneiss sheet enclosed in a Barrovian metapelite‐dominated volcano‐sedimentary sequence within the Velké Vrbno unit, NE Bohemian Massif. A metamorphic and lithological break defines the base of the eclogite‐bearing orthogneiss nappe, with a structurally lower sequence without eclogite exposed in a tectonic window. The typical assemblage of the structurally upper metapelites is garnet–staurolite–kyanite–biotite–plagioclase–muscovite–quartz–ilmenite ± rutile ± silli‐manite and prograde‐zoned garnet includes chloritoid–chlorite–paragonite–margarite, staurolite–chlorite–paragonite–margarite and kyanite–chlorite–rutile. In pseudosection modelling in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) using THERMOCALC, the prograde path crosses the discontinuous reaction chloritoid + margarite = chlorite + garnet + staurolite + paragonite (with muscovite + quartz + H2O) at 9.5 kbar and 570 °C and the metamorphic peak is reached at 11 kbar and 640 °C. Decompression through about 7 kbar is indicated by sillimanite and biotite growing at the expense of garnet. In the tectonic window, the structurally lower metapelites (garnet–staurolite–biotite–muscovite–quartz ± plagioclase ± sillimanite ± kyanite) and amphibolites (garnet–amphibole–plagioclase ± epidote) indicate a metamorphic peak of 10 kbar at 620 °C and 11 kbar and 610–660 °C, respectively, that is consistent with the other metapelites. The eclogites are composed of garnet, omphacite relicts (jadeite = 33%) within plagioclase–clinopyroxene symplectites, epidote and late amphibole–plagioclase domains. Garnet commonly includes rutile–quartz–epidote ± clinopyroxene (jadeite = 43%) ± magnetite ± amphibole and its growth zoning is compatible in the pseudosection with burial under H2O‐undersaturated conditions to 18 kbar and 680 °C. Plagioclase + amphibole replaces garnet within foliated boudin margins and results in the assemblage epidote–amphibole–plagioclase indicating that decompression occurred under decreasing temperature into garnet‐free epidote–amphibolite facies conditions. The prograde path of eclogites and metapelites up to the metamorphic peak cannot be shared, being along different geothermal gradients, of about 11 and 17 °C km?1, respectively, to metamorphic pressure peaks that are 6–7 kbar apart. The eclogite–orthogneiss sheet docked with metapelites at about 11 kbar and 650 °C, and from this depth the exhumation of the pile is shared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号