首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Summertime hydrographic features in the southeastern Hwanghae   总被引:1,自引:0,他引:1  
CTD casts in the southeastern Hwanghae (Yellow Sea) were made in August 1983 and 1984 to describe the spatial structure of the summertime hydrographic features. Cold coastal water appeared around the southwestern coast of Korea, which was formed by strong tidal stirring. Tidal mixing in the study area seems to have been enhanced by the presence of many small islands. In the deeper region beyond the tidal front, stratification became much stronger and the bottom layer below seasonal thermocline was occupied mostly by the Hwanghae Cold Water characterized by a temperature lower than 10°C and salinity of 32.5–33.0%.The northeastward extension of the Changjiang Diluted Water was shown by a tongue-like plume of relatively warm fresh water, confined to the thin surface layer 10 m thick. There was no evidence for the Hwanghae Warm Current carrying high salinity water into the eastern Hwanghae along the Korean coast. The warm current was found to flow in a narrow band close to the west and north coast of Chejudo (Cheju Island) and then to pass eastward through the Cheju Strait. Thus the eastern part of the cyclonic circulation in the surface layer cannot be considered to be a northward continuation of the Hwanghae Warm Current. The local salinity maximum in the lower layer off Kunsan and the higher salinity on the west side of the central trough than on the east side would imply a northward flow on the west flank of the trough to compensate for the southward intrusion of the Hwanghae Cold Water, from which an anticyclonic circulation could be expected in the lower layer.  相似文献   

2.
台湾海峡中、北部海域春、夏季水团分析   总被引:13,自引:2,他引:13  
本文依据1983,1984,1987,1988几年的有关资料,利用“对应分析法”对台湾海峡中、北部海域春、夏季(5—8月)的水团及有关问题进行了分析。结果表明:(1)5—8月间该海域存在两种水团分布类型,其中5月属冬季型,全海域存在浙闽沿岸水和海峡暖流水两个水团;6—8月属夏季型,全海域均为海峡暖流水盘踞,按温度不同,它又分为上层水和深层水两部分。(2)浙闽沿岸水具低温、低盐、高溶解氧特征,均一性较差,年际变异较大;海峡暖流水以高盐为主要特征,温、盐度和溶解氧分布较均匀,且诸特征相对稳定。(3)海峡东、西两侧均存在上升流现象,西侧的上升流出现于6—8月,中心在海潭岛附近;东侧的上升流7月见于澎湖群岛北方海区。(4)6—8月间,海峡暖流深层水(核心)主要沿海峡偏西一侧北上,而不是紧靠东侧径直向北。  相似文献   

3.
本文对冬季南黄海横贯东西断面的生源要素分布特征进行了探讨。指出:1)冬季黄海暖流水除了具有高温、高盐等物理特征外,还具有低氧、高pH和低营养盐等化学特征;2)南黄海西南部海域具有高温、高盐、低氧和高营养盐特征,这是台湾暖流前缘水北上所致;3)南黄海中部营养盐含量较高,西部近岸含量较低;4)叶绿素a含量及初级生产力水平较低。结果还表明,冬季南黄海溶解氧含量及分布主要受水温的控制。  相似文献   

4.
舟山渔场及其邻近海域水团的季节特征   总被引:5,自引:0,他引:5  
根据2001年夏季和2002年冬季两次现场调查所收集的CTD和营养盐资料,利用模糊聚类分析法,对舟山渔场及其邻近海域水团的季节特征进行了分析.结果表明,舟山渔场及其邻近海域水团的配置、分布范围、温盐特性和营养盐含量都有明显的季节特征.其中,冬季在全海域共有3个水团(江浙沿岸水、台湾暖流表层水和黄海混合水),而夏季则存在4个水团(江浙沿岸水、台湾暖流表层水、台湾暖流深层水和黄海混合水);冬季,江浙沿岸水的分布范围较小,温度偏低,盐度略高,营养盐偏高,而夏季,其分布范围较大,温度偏高,盐度偏低,营养盐偏低;冬季,台湾暖流表层水北伸最强,厚度最厚,温度最低,盐度最高,硅酸盐和硝酸盐偏高,而夏季,则北伸最弱,厚度最薄,温度最高,盐度最低,硅酸盐和硝酸盐偏低;台湾暖流深层水是一个季节性水团,它含有较丰富的营养盐;黄海混合水的分布范围和营养盐含量也都呈现出明显的季节特征.  相似文献   

5.
舟山渔场及其邻近海域水团的气候学分析   总被引:23,自引:1,他引:23  
根据多年(1958—1990)月平均温、盐度资料,采用模糊聚类分析法划分了舟山渔场及其邻近海域的水团,并对该海域水团的配置、主要特性及其季节变异特征进行了气候学分析。结果表明,舟山渔场及其邻近海域共存在4个水团,即江浙沿岸水、台湾暖流表层水、台湾暖流深层水和黄海混合水;全年水团的配置可归纳为冬季型、夏季型和过渡型3种类型;江浙沿岸水的主要特征为低盐,其分布范围和盐度的季节变化与长江入海径流密切相关,而温度的季节变化则主要受太阳辐射的影响;台湾暖流表层水具有高温、次高盐特征,其北伸程度和温、盐特性均具有明显的季节变化,即冬季北伸强、温度低、盐度高,夏季北伸弱、温度高、盐度低;台湾暖流深层水以低温、高盐为主要特征,仅存在于4—9月,其温、盐性质较稳定;黄海混合水的主体不在研究海域。  相似文献   

6.
The Japan Sea Intermediate Water; Its Characteristics and Circulation   总被引:6,自引:0,他引:6  
In the southern Japan Sea there is a salinity minimum layer between the Tsushima Current Water and the Japan Sea Proper Water. Since the salinity minimum corresponds to the North Pacific Intermediate Water, it is named the Japan Sea Intermediate Water (JIW). To examine the source and circulation of JIW, the basin-wide salinity minimum distribution was investigated on the basis of hydrographic data obtained in 1969. The young JIW, showing the highest oxygen concentration and the lowest salinity, is seen in the southwestern Japan Sea west of 133°E, while another JIW with lower oxygen and higher salinity occupies the southeastern Japan Sea south of the subpolar front. Since the young JIW shows high oxygen concentrations, high temperatures and low densities, the source of the water is probably in the surface layer. It is inferred that the most probable region of subduction is the subarctic front west of 132°E with the highest oxygen and the lowest salinity at shallow salinity minimum. In addition, property distributions suggest that JIW takes two flow paths: a eastward flow along the subarctic front and an southward flow toward the Ulleung Basin. On the other hand, a different salinity minimum from JIW occupies the northern Japan Sea north of the subarctic front, which shows an apparently higher salinity and high oxygen concentration than JIW. However, this salinity minimum is considered not to be a water mass but to be a boundary between overlying and underlying water masses. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Seasonal Variation of the Cheju Warm Current in the Northern East China Sea   总被引:1,自引:1,他引:1  
The Cheju Warm Current has been defined as a mean current that rounds Cheju-do clockwise, transporting warm and saline water to the western coastal area of Cheju-do and into the Cheju Strait in the northern East China Sea (Lie et al., 1998). Seasonal variation of the Cheju Warm Current and its relevant hydrographic structures were examined by analyzing CTD data and trajectories of satellite-tracked drifters. Analysis of a combined data set of CTD and drifters confirms the year-round existence of the Cheju Warm Current west of Cheju-do and in the Cheju Strait, with current speeds of 5 to 40 cm/s. Saline waters transported by the Cheju Warm Current are classified Cheju Warm Current water for water of salinity greater than 34.0 psu and modified Cheju Warm Current for water having salinity of 33.5–34.0 psu. In winter, Cheju Warm Current water appears in a relatively large area west of Cheju-do, bounded by a strong thermohaline front formed in a "" shape. In summer and autumn, the Cheju Warm Current water appears only in the lower layer, retreating to the western coastal area of Cheju-do in summer and to the eastern coastal area sometimes in autumn. The Cheju Warm Current is found to flow in the western channel of the Korea/Tsushima Strait after passing through the Cheju Strait, contributing significantly to the Tsushima Warm Current.  相似文献   

8.
通过2017年5月闽浙沿岸附近海域航次的温度、盐度和溶解态稀土元素(Rare Earth Elements,REEs)的实测数据,对该海域溶解态REEs的分布、配分模式以及主要影响原因进行了分析。结果表明:研究区域,盐度随着采样站位离岸距离的增加而增大。溶解态REEs则呈现近岸高而远岸低的分布特点。造成这种分布状况的原因:一是近岸陆源河流的输入导致近岸盐度低,REEs浓度高;二是受到高温高盐水(台湾暖流水和黑潮次表层水)的入侵,造成远岸盐度高而溶解态REEs元素浓度低。不同站位的溶解态REEs的配分模式有明显区别。近岸低盐站位由北向南,重稀土元素富集程度逐渐增大,反映了陆源不同河流的输入。通过溶解态REEs的配分模式发现,远岸高盐站位会受到台湾暖流和黑潮次表层水的共同影响。  相似文献   

9.
The Formation and Circulation of the Intermediate Water in the Japan Sea   总被引:1,自引:0,他引:1  
In order to clarify the formation and circulation of the Japan/East Sea Intermediate Water (JESIW) and the Upper portion of the Japan Sea Proper Water (UJSPW), numerical experiments have been carried out using a 3-D ocean circulation model. The UJSPW is formed in the region southeast off Vladivostok between 41°N and 42°N west of 136°E. Taking the coastal orography near Vladivostok into account, the formation of the UJSPW results from the deep water convection in winter which is generated by the orchestration of fresh water supplied from the Amur River and saline water from the Tsushima Warm Current under very cold conditions. The UJSPW formed is advected by the current at depth near the bottom of the convection and penetrates into the layer below the JESIW. The origin of the JESIW is the low salinity coastal water along the Russian coast originated by the fresh water from the Amur River. The coastal low salinity water is advected by the current system in the northwestern Japan Sea and penetrates into the subsurface below the Tsushima Warm Current region forming a subsurface salinity minimum layer. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Study on abundance variation of pteropods in the East China Sea   总被引:5,自引:0,他引:5  
1 Introduction Pteropoda, an order of marine pelagic mollusks, belongstoClassGastropoda,SubclassOpisthobranchia. The speciesofthisorder can be found all over the world buttheyareusuallyabundantinthecontinentalshelfand continental slope area. As fish diets…  相似文献   

11.
2006年7月—2007年12月,在长江口及邻近海域(29°30′N~32°30′N,120°00′E~127°30′E)布设150个观测站位,进行了4个季节生物、化学和物理海洋学综合调查。根据采集的浮游动物样品的分析鉴定结果及现场环境参数的测定数据,对浮游动物群落生物量分布及季节变化进行了研究。结果表明:长江口及邻近海域浮游动物生物量有明显的季节变化,主要表现为:春季>夏季>秋季>冬季。中华哲水蚤(Calanussinicus)、双生水母(Diphyeschamissonis)、百陶带箭虫(Zonosagittabedoti)和中华假磷虾(Pseudeuphausiasinica)是长江口及邻近海域浮游动物生物量的主要贡献者。化学营养盐是影响长江口及邻近海域浮游动物生物量分布的主要环境因素,除此以外,其它环境因子在不同季节对浮游动物生物量的影响存在差异。春季,温度和盐度是影响浮游动物生物量的主要因素;夏季,温度、溶解氧和叶绿素a是影响浮游动物生物量的主要因素;秋季,盐度、溶解氧和悬浮颗粒物是影响浮游动物生物量的主要因素。冬季,环境因子对浮游动物生物量影响不明显。  相似文献   

12.
东海西部陆架海域水团的季节特征分析   总被引:3,自引:1,他引:2  
On the basis of the CTD data and the modeling results in the winter and summer of 2009, the seasonal characteristics of the water masses in the western East China Sea shelf area were analyzed using a cluster analysis method. The results show that the distributions and temperature-salinity characteristics of the water masses in the study area are of distinct seasonal difference. In the western East China Sea shelf area, there are three water masses during winter, i.e., continental coastal water(CCW), Taiwan Warm Current surface water(TWCSW) and Yellow Sea mixing water(YSMW), but four ones during summer, i.e., the CCW, the TWCSW, Taiwan Warm Current deep water(TWCDW) and the YSMW. Of all, the CCW, the TWCSW and the TWCDW are all dominant water masses. The CCW, primarily characterized by a low salinity, has lower temperature, higher salinity and smaller spatial extent in winter than in summer. The TWCSW is warmer, fresher and smaller in summer than in winter, and it originates mostly from the Kuroshio surface water(KSW) northeast of Taiwan, China and less from the Taiwan Strait water during winter, but it consists of the strait water and the KSW during summer. The TWCDW is characterized by a low temperature and a high salinity, and originates completely in the Kuroshio subsurface water northeast of Taiwan.  相似文献   

13.
北黄海温盐分布季节变化特征分析   总被引:9,自引:1,他引:8  
利用2006~2007年夏冬春秋4个季节北黄海的大面调查资料,分析了4个季节北黄海温度和盐度大面以及典型断面分布特征,得出以下结论:2007年冷水团势力范围强于2006年,北黄海冷水团的形成受地形影响.黄海暖流冬春季较强,冬季最强,夏季最弱,秋季开始形成.鲁北沿岸流冬季最强,春季减弱,夏秋季消失,但夏季鲁北沿岸存在冬季鲁北沿岸流水的残余体,即鲁北沿岸水.辽南沿岸水4个季节都以低盐为特征,除夏季低盐中心位于庄河口外,其它3个季节低盐中心均位于调查区域的东北角.渤海与北黄海之间的水交换4个季节都存在.春季,断面盐跃层形成滞后于温跃层;秋季,断面盐跃层消失滞后于温跃层.  相似文献   

14.
夏冬季北黄海水体浊度分布特征研究   总被引:3,自引:1,他引:2  
应用2007年1月和7月国家908专项北黄海区块水体调查获取的浊度等资料,分析了夏季和冬季北黄海海域水体浊度的水平和垂向分布特征,初步阐述了夏、冬季北黄海水体浊度分布具有南北高,中间低的特征。无论是夏季还是冬季,山东半岛东北沿岸和辽东半岛东南沿岸为高浊度区,中部海域受北黄海冷水团的影响而维持低浊度。夏季,北黄海冷水团导致的水体层结效应产生了"水障"作用——悬浮物只能沿岸分布和输送;冬季,山东半岛东端外海的强海流切变锋阻碍了悬浮物的纬向输送。此外,研究还发现由于黄海冷水团和黄海暖流的作用,导致夏、冬季黄海中部的沉积动力环境有所差异。  相似文献   

15.
Hydrographic observations in Hidaka Bay, south of Hokkaido, Japan were carried out in late winter 1996 and 1997 to examine the spatial distributions and circulation features of two different water masses, i.e., Coastal Oyashio Water (COW) and Tsugaru Warm Water (TWW), and their modifications. It is known that COW is mostly composed of cold and low-salinity water of the melted drift ice coming from the Okhotsk Sea and flows into Hidaka Bay from winter to spring and TWW with high-salinity continuously supplies from the Tsugaru Strait to the North Pacific. Cold surface mixed layers (<26.2σθ, 0–100 m depth) were found mainly over the shelf slope, confirming that anti-clockwise flow of COW was formed. TWW was relatively high in salinity and low in potential vorticity, and had some patch-like water masses with a temperature and salinity maximum in the limited area in the further offshore at the deeper density levels of 26.6–26.8σθ. The fine structure of vertical temperature and salinity profiles appeared between TWW and COW is an indication of enhanced vertical mixing (double-diffusive mixing), as inferred from the estimated Turner angles. At a mouth of the Tsugaru Strait in late winter 1997, a significant thermohaline front between TWW and the modified COW was formed and a main path of TWW spreaded south along the Sanriku coast, probably as the bottom controlled flow. Hence, the patch-like TWW observed in late winter is isolated from the Tsugaru Warm Current and then rapidly modified due to a diapycnal mixing. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
应用对应分析法划分夏季东海水团的初步研究   总被引:9,自引:1,他引:9       下载免费PDF全文
本文所用资料主要是日本气象厅等单位于1966年7月10日一8月10日所收集的溫、盐度和溶解氧的观测資料,共75个测站。测站分布均匀且遍及24°—32°N的整个东海海域(图1c)。  相似文献   

17.
本文综合分析四个断面16个标准层的因子点聚,表明在整个海区有九个水团,即:黑潮表层水、黑潮次表层水、黑潮中层水、黑潮深层水、大陆沿岸水、台湾暖流水、黄海水、对马暖流水和东海混合水,前6个水团是该海区的主要水团。本文还详细讨论了每个水团的分布特征。  相似文献   

18.
根据1978—1980年渤海及北黄海70个测站的表、底层温、盐资料,用预先给定控制临界值的聚类方法,在该海域划分出5个水团。分析结果表明。1.渤黄海暧水团在冬季为高盐特征,夏季为中盐性质;其分布范围在冬—春季较小而夏—秋季较大。2.渤海水团为中温中盐性质:其温、盐度变化较小而冬—春季范围较大。3.黄海冷水团是一个高盐水团,它在5个水团中保守性最强,而从5月至8月范围较大。4.渤海沿岸水是一个不稳定的水团,其盐度较低,温度变化较小,春季和秋季范围较大而夏季和冬季较小。5.江河冲淡水是温度变化较大的低盐水,其范围夏季大而冬季小。水团的分布,在地理位置上是从该海区之东向西,一层套一层,而各水团在不同季节有自己的模式。此外,本文还探讨了水团消长变化和渔场的关系。  相似文献   

19.
利用南黄海西部2007-04的温盐实测资料,采用海洋层结谱表达法及自适应识别,得到逆温跃层的"五点三要素",形成强度要素平面分布图.分析表明,逆温跃层的存在与黄海暖流水有直接的关系:1)4月份,黄海暖流水受到的海面冷却仍是产生逆温跃层的普遍原因,在该海区黄海暖流向北延伸和向两侧拓展的区域都有该种类型的逆温跃层存在,位置相对较浅;2)但在偏南的黄海暖流主干区,海面冷却产生的效应被主流区的热量补充所抵消,逆温跃层很弱甚至消失,这是该月份逆温跃层分布区向北退缩并在南部中心附近呈现缺失区的主要原因;3)南下的鲁北沿岸流水的冷水叠加在黄海暖流水的暖水上方,使逆温跃层加强,使得冷暖水的作用区成为强逆温跃层区;4)黄海暖流左侧冷沿岸流水及右侧冷水的前端向黄海暖流楔入,其前端往往覆盖在底层高温高盐的黄海暖流水上方形成下逆温跃层,从而形成双逆温跃层.这些特点,较以前认知更加客观、全面、细致和准确.  相似文献   

20.
By using Acoustic Doppler Current Profiler (ADCP) measurements with the four round-trips method to remove diurnal/semidiurnal tidal currents, the detailed current structure and volume transport of the Tsushima Warm Current (TWC) along the northwestern Japanese coast in the northeastern Japan Sea were examined in the period September–October 2000. The volume transport of the First Branch of the TWC (FBTWC) east of the Noto Peninsula was estimated as approximately 1.0 Sv (106 m3/s), and the FBTWC continued to flow along the Honshu Island to the south of the Oga Peninsula. To the north of the Oga Peninsula, the Second Branch of Tsushima Warm Current and the eastward current established by the subarctic front were recombined with the FBTWC and the total volume transport increased to 1.9 Sv. The water properties at each ADCP line strongly suggested that most of the upper portion of the TWC with high temperature and low salinity flowed out to the North Pacific as the Tsugaru Warm Current. In the north of the Tsugaru Strait, the volume transport of the northward current was observed to be as almost 1 Sv. However, the component of the TWC water was small (approximately 0.3 Sv).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号