首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The data deduced from the UV-spectroscope on theCopernicus satellite strongly suggest that the most important ionization source in interstellar space near the solar system is a UV radiation field originating from B-stars. Adopting this hypothesis, we have used the ionization state of several elements in the interstellar medium observed byCopernicus to determine the required radiation field. From this, the degree of ionization of elements that could not be observed byCopernicus is estimated.It is shown that this interpretation of thecopernicus data can be made consistent with neutral interstellar hydrogen densities inferred from extraterrestrial L observations and with electron densities deduced from pulsar dispersion measures. Furthermore, it is shown that the ratio of neutral interstellar helium to neutral interstellar hydrogen is likely to be 2 to 3 times as large as the cosmic abundance ratio of these elements. The possibility that this ratio is about 10 times as large, meaning equal interstellar neutral hydrogen and helium densities near the solar system, cannot be ruled out. It would, however, require an interstellar radiation temperature near 9000 K. A comparison of the intensity of the interplanetary back scattered He 584 Å and the H 1216 Å radiation would lead to a direct determination of this ratio provided the solar radiation at these lines is known.  相似文献   

2.
The equivalent width of the diffuse interstellar absorption band W2200 and the abundances of neutral interstellar hydrogen and sodium derived from the interstellar absorption lines in the spectra of hot stars are well correlated each other.  相似文献   

3.
Based on our H α interferometry and 21-cm and CO observations, we analyze the structure and kinematics of the interstellar medium around the stars WR 134 and WR 135. We conclude that the HI bubble found here previously is associated with WR 135, not with WR 134. High-velocity motions of ionized gas that can be interpreted as expansion of the gas swept up by the stellar wind with a velocity up to 50–80 km s?1 are observed around both stars. The line-of-sight velocity field of the ionized hydrogen in the Cygnus arm is shown to agree with the large-scale line-of-sight velocity distribution of the CO emission.  相似文献   

4.
We show how, given observed equivalent widths of Mgii and Mgi absorptions due to an interstellar cloud in which a late-B star is embedded, the basic physical parameters: kinetic temperature, mean density, electron density, and radius can be constrained. Hydrogen ionization by means of cosmic rays and the effect of the stellar radiation field on the magnesium ionization equilibrium are taken into account.The method is applied to the reflection nebula surrounding the star HD 26676. The resulting solutions for the radius and temperature of the nebulosity are comparable to the typical values derived for diffuse interstellar clouds from optical and 21-cm measurements, if a cosmic-ray ionization rate 10–16s–1 — in agreement with recent determinations — is assumed. The results are not strongly dependent on the gas pressureP forP varying in a range of values typical of interstellar clouds.  相似文献   

5.
We have investigated the effect of ionizing radiation from the UV stars (hot prewhite dwarfs) on the intergalactic medium (IGM). If the UV stars are powered only by gravitational contraction they radiate most of their energy at a typical surface temperature of 1.5×105 K which produces a very highly ionized IGM in which the elements carbon, nitrogen and oxygen are left with only one or two electrons. This results in these elements being very inefficient coolants. The gas is cooled principally by free-free emission and the collisional ionization of hydrogen and helium. For a typical UV star temperature ofT=1.5×105 K, the temperature of the ionized gas in the IGM isT g =1.2×105 K for a Hubble constantH o=75 km s–1 Mpc–1 and a hydrogen densityn H =10–6 cm–3. Heating by cosmic rays and X-rays is insignificant in the IGM except perhaps inHi clouds because when a hydrogen atom recombines in the IGM it is far more likely to be re-ionized by a UV-star photon than by of the other two types of particles due to the greater space density of UV-star photons and their appreciably larger ionization cross-sections. If the UV stars radiate a substantial fraction of their energy in a helium-burning stage in which they have surface temperatures of about 5×104 K, the temperature of the IGM could be lowered to about 5×104 K.  相似文献   

6.
For the direction to a number of stars the depletion of interstellar gaseous iron and titanium as well as the relative abundance of molecular hydrogen and the strength of the interstellar band at 4430 Å were determined by different authors and can be found in the literature. In this paper it is shown that the difference (A c-Aco) is a more reliable measurement of the column density of 4430 Å absorbers than the usually used central depth,A c, because the positive valueA co ofA c forE(B-V)=0, i.e. the intercept with theA c axis of a least-squares fit to the observedA c vsE(B-V) data, is with a high probability not caused by an interstellar effect.There was no correlation found between the interstellar depletion of iron and titanium, respectively, and (A c-Aco), whereas a tendency exists that with increasing relative molecular hydrogen abundance the number of 4430 Å absorbers per hydrogen atom decreases. If the carriers of the 4430 Å absorbers are interstellar grains, then these grains must be altered during the same process in which molecular hydrogen is built. The found correlation is also compatible with the assumption that the 4430 Å absorber is related to an interstellar gaseous species.  相似文献   

7.
We discuss the formation of molecular hydrogen on the surfaces of grains in a hot intercloud medium, by the process of chemisorption of hydrogen atoms on graphite grains. It is suggested that the molecular hydrogen observed towards stars with low reddening, may be located in the intercloud medium towards these stars. A comparison of the observed population distributions of H2 with the theoretical calculations shows that the observations are in the main consistent with a gas kinetic-temperature 8000 K and densities about 0.1 to 1 cm–3, parameters which are appropriate to the intercloud phase of the two phase model of the interstellar medium.Tata Institute of Fundamental Research, Bombay, India  相似文献   

8.
《Astronomische Nachrichten》1976,297(4):189-190
A new method of finding the distribution of chemical elements over the surface of Ap stars is worked out. It is detected that at the surface of 21 Per, iron concentrated in four regions. It is shown that one of the reasons of hydrogen line variability in 21 Per is the inhomogeneous distribution of acceleration of gravity. Rapid variations of hydrogen lines in some phase and minor changes (˜10%) of K Ca II line in γ Boo are detected. Hydrogen lines (H9 – H12) and K Ca II lines are found to vary in γUMi. Variations of Hα line in β Cr B during the period are detected.  相似文献   

9.
An accessible model for interstellar OH/H2O maser associations is presented. It can be classified into radiative pumping model. It can close the dynamical cycle of H2O and OH species, and can give an interpretation on interstellar OH/H2O associations. A reasonable scheme for both regeneration and destruction of interstellar H2O and OH molecules is argued. Our model has overcome the defects of former radiative models, and is compatible with astronomical conditions. It is shown that the rotational population of H2O and OH in these regions is much less affected by collisions than by radiation. Some experiments have confirmed our proposal.  相似文献   

10.
Photoelectric Vilnius photometry of the B-type stars HD 29 647 and HDE 283 809 in the direction of the Taurus molecular cloud indicates their brightness and energy distribution to be constant within 1–2%. The interstellar extinction law is determined for the star HDE 283 809 from the photometry data in the Vilnius andUBVRJHKL systems, which yield the ratioR=A V/EB-V=3.5 and grain sizes exceeding the average by approximately 10%. The interstellar extinction law for the two stars is found to be the same in the infrared, however, it is very different in the near ultraviolet. The new spectra of HDE 283 809 confirm the earlier classification and indicate an absence of emission in the hydrogen lines. The interstellar band at 443 nm is observed but its intensity is a half of what is expected forE B-V=1.61. The observed peculiarities of the energy distribution in the spectrum of HDE 283 809 apparently originate in interstellar or circumstellar dust, not in the star itself.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

11.
On the basis of the effective temperature scale proposed previously for cool carbon stars (Paper I), other intrinsic properties of them are examined in detail. It is shown that the major spectroscopic properties of cool carbon stars, including those of molecular bands due to polyatomic species (SiC2, HCN, C2H2 etc.), can most consistently be understood on the basis of our new effective temperature scale and the theoretical prediction of chemical equilibrium. Various photometric indices of cool carbon stars also appear to be well correlated with the new effective temperatures. Furthermore, as effective temperatures of some 30 carbon stars are now obtained, the calibration of any photometric index is straightforward, and some examples of such a calibration are given. In general, colour index-effective temperature calibrations for carbon stars are quite different from those for K-M giant stars. It is found that the intrinsic (RI)0 colour is nearly the same for N-irregular variables in spite of a considerable spread in effective temperatures, and this fact is used to estimate the interstellar reddening of carbon stars. An observational HR diagram of red giant stars, including carbon stars as well as K-M giant stars, is obtained on the basis of our colour index-effective temperature calibrations and the best estimations of luminosities. It is shown that carbon stars and M giant stars are sharply divided in the HR diagram by a nearly vertical line at aboutT eff = 3200 K (logT eff = 3.50) and the carbon stars occupy the upper right region of M giant stars (except for some high luminosity, high temperature J-type stars in the Magellanic Clouds; also Mira variables are not considered). Such an observational HR diagram of red giant stars shows rather a poor agreement with the current stellar evolution models. Especially, a more efficient mixing process in red giant stars, as compared with those ever proposed, is required to explain the formation of carbon stars.  相似文献   

12.
With more and more exoplanets being detected, it is paid closer attention to whether there are lives outside solar system. We try to obtain habitable zones and the probability distribution of terrestrial planets in habitable zones around host stars. Using Eggleton’s code, we calculate the evolution of stars with masses less than 4.00 M . We also use the fitting formulae of stellar luminosity and radius, the boundary flux of habitable zones, the distribution of semimajor axis and mass of planets and the initial mass function of stars. We obtain the luminosity and radius of stars with masses from 0.08 to 4.00 M , and calculate the habitable zones of host stars, affected by stellar effective temperature. We achieve the probability distribution of terrestrial planets in habitable zones around host stars. We also calculate that the number of terrestrial planets in habitable zones of host stars is 45.5 billion, and the number of terrestrial planets in habitable zones around K type stars is the most, in the Milky Way.  相似文献   

13.
It is argued that a Salpeter initial luminosity function is consistent with the observed integral properties of giant elliptical galaxies if the gaseous material lost by evolving stars can be retained in the system for times of the order of 108 yr. One model which emerges is of a highly condensed system consisting mainly of metal-poor population II stars with an admixture (1.5%–15%) of super-metalrich stars born from the gaseous debris, which at the present time constitutes 0.05%–0.5% of the total mass. HighM/L ratios result from obscuration of the starlight, and the missing radiation reappears in the form of a strong I-R flux at wavelengths of the order of 100 . The difference in colour betweengE anddE galaxies is explained in terms of interstellar reddening, and strong interstellar metallic absorption lines are also expected. The model leads to a negligible evolutionary correction to the cosmological deceleration parameterq 0. An alternative model, in which the stars arenot metal poor, has a more condensed, heavily obscured nucleus, surrounded by the unobscured central bulge of the Galaxy which provides most of the light. In this version a large evolutionary correction would be required.  相似文献   

14.
This paper is based on 2MASS photometry (J H Ks magnitudes) of 1172 Be stars. The observed mean intrinsic colours have been derived with aid of two‐colour diagrams for Be stars of luminosity classes Ie‐IIe, IIIe and IVe‐Ve. The obtained results are the first determinations of their intrinsic colours in the astronomical literature. The smoothed infrared colours are compared with those obtained for “normal” B stars. Several two‐colour diagrams and plots of observed and smoothed intrinsic colour versus spectral type of luminosity classes Ie‐IIe, IIIe and IVe‐Ve are presented. Generally the determined infrared intrinsic colours of Be stars (VJ)0, (VH)0, and (VKs)o differ substantially from those of “normal” B stars. It is found that the intrinsic colours of B stars are generally bluer than Be stars of corresponding spectral type and luminosity class. The mean absolute visual magnitude Mv of 528 Be stars for luminosity classes Iae, Ibe‐Iabe, IIe, IIIe and IVe‐Ve is derived from HIPPARCOS parallaxes. The Mv calibration is compared with the existing ones. The Be stars are generally brighter than “normal” B stars of corresponding spectral types. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We present two new luminous blue variable (LBV) candidate stars discovered in the M33 galaxy. We identified these stars as massive star candidates at the final stages of evolution, presumably with a notable interstellar extinction. The candidates were selected from the Massey et al. catalog based on the following criteria: emission in H α , V<18./m 5 and 0.m 35 < (B - V) < 1.m 2. The spectra of both stars reveal a broad and strong H α emission with extended wings (770 and 1000 kms−1). Based on the spectra we estimated the main parameters of the stars. Object N45901 has a bolometric luminosity log(L/L) = 6.0–6.2 with the value of interstellar extinction A V = 2.3 ± 0.1. The temperature of the star’s photosphere is estimated as T⋆ ∼ 13000–15000 K, its probable mass on the Zero Age Main Sequence is M∼ 60–80 M. The infrared excess in N 45901 corresponds to the emission of warm dust with the temperature Twarm ∼ 1000 K, and amounts to 0.1%of the bolometric luminosity. A comparison of stellar magnitude estimates from different catalogs points to the probable variability of the object N45901. Bolometric luminosity of the second object, N125093, is log(L/L) = 6.3 − 6.6, the value of interstellar extinction is A V = 2.75 ± 0.15. We estimate its photosphere’s temperature as T⋆∼ 13000–16000K, the initial mass as M ∼ 90–120 M. The infrared excess in N125093 amounts to 5–6% of the bolometric luminosity. Its spectral energy distribution reveals two thermal components with the temperatures Twarm ∼ 1000K and Tcold ∼ 480 K. The [Ca II] λλ7291, 7323 lines, observed in LBV-like stars Var A and N93351 in M33 are also present in the spectrum of N 125093. These lines indicate relatively recent gas eruptions and dust activity linked with them. High bolometric luminosity of these stars and broad H α emissions allow classifying the studied objects as LBV candidates.  相似文献   

16.
A model of compact galactic nuclei in statistical equilibrium was developed in [L. Sh. Grigorian and G. S. Sahakian, Astrofizika (in press)]. It was shown that they should consist predominantly of neutron stars (pulsars) and white dwarfs. The problem of the energy reserves of galactic nuclei is discussed in terms of this concept. The mechanism of conversion of a white dwarf into a neutron star due to the accretion of interstellar matter is considered. This means that a galactic nucleus has an energy reserve of some 5·1060 N8 erg (N is the number of stars in the nucleus). It is shown that galactic nuclei are powerful sources of hard γ radiation [power L » 2·1044µ30N8(Ω/50)17/7 erg/sec, where µ is the magnetic moment and Ω is the angular rotation rate of a neutron star ] due to curvature radiation from relativistic electron fluxes flowing along channels of open magnetic field lines of pulsars. The x-ray and ultraviolet emission are due to synchrotron emission from the same electron fluxes in the magnetic field of the galactic nucleus (L » 1042-1044 erg/sec). The optical (visible and infrared) and radio emission are due to bremsstrahlung from electrons in the interstellar medium [L » 6·1046N 8 2 (5/Rpc)3 erg/sec, where R is the radius of the galactic nucleus]. An equation is obtained for the magnetic moment of a pulsar: µ ≈ 3.4·10-5LγP17/7, where P is the pulsar’s period and L03B3; is the luminosity of the pulsar’s y radiation.  相似文献   

17.
A number of variable stars of the Orion population has been identified with IRAS point sources by us. This finding supports the conclusion that the prominent Algol-like minima in the lightcurves of these stars originate from obscurations by dust clouds in a circumstellar shell. The discussion of the existingUBVR data leads to the remarkable conclusion that the extinction properties of the grain populations contained in individual dust clouds moving in one and the same circumstellar shell are quite different.From the multicolour photometric data of the different Algol-like minima we derived individual values of the reddening parameterR = A v /E(B - V). It covers a remarkable wide range of values from that one typical of the interstellar extinction law up to 7. In the case of SV Cep one of the grain populations produces a virtually neutral extinction. The large values ofR speak in favour of larger than normal (interstellar) dust grains, which may have grown by coagulation processes. The cloudy circumstellar dust shell provides a natural explanation for the observed infrared excess. The properties derived from the optical light variations are fully compatible with the properties deduced from the infrared radiation. The irregularity of the light variations indicates that many clouds are involved and may sometimes superimpose themselves.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

18.
It is at first reported that certain kinds of stars which have been classified as T Tauri stars or related objects are in reality not of this type. After the exclusion of those objects, the infrared measurements accessible in the literature permit to draw some astrophysical inferences. It is then possible to distinguish three classes of light variations. All T Tauri stars have an infrared excess. From the colour indices HK and KL it can be deduced that the infrared excess for more than one half of the objects is due to the thermal radiation of the circumstellar dust envelope; for the remaining stars also free-free radiation from the gas envelope can play an essential part. The largest infrared excesses EH–K were found with the hotter stars (spectral type A) and the strongest emission lines with the cooler stars (spectral types G, K, M). This can finally be explained by the fact that the convection zone in cooler stars reaches far down into their interior than in hotter stars.  相似文献   

19.
Ultraviolet radiation is a double-edged sword to life. If it is too strong, the terrestrial biological systems will be damaged. And if it is too weak, the synthesis of many biochemical compounds cannot go along. We try to obtain the continuous ultraviolet habitable zones, and compare the ultraviolet habitable zones with the habitable zones of host stars. Using the boundary ultraviolet radiation of ultraviolet habitable zone, we calculate the ultraviolet habitable zones of host stars with masses from 0.08 to 4.00 M . For the host stars with effective temperatures lower than 4,600 K, the ultraviolet habitable zones are closer than the habitable zones. For the host stars with effective temperatures higher than 7,137 K, the ultraviolet habitable zones are farther than the habitable zones. For a hot subdwarf as a host star, the distance of the ultraviolet habitable zone is about ten times more than that of the habitable zone, which is not suitable for the existence of life.  相似文献   

20.
The photometrically determined mean surface magnetic fields BS need a revision. None of the stars for which BS can be measured directly by Zeeman line splitting fulfils the relation between the photometric parameter Δ(V1G) and the mean surface field BS, which is used by NORTH , CRAMER and MAEDER to determine BS for other B2 – A3 stars. The ratio BeffMax/BS for stars, which define North's relation, shows unreasonable large values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号