首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An extensive study of the IMP-6 and IMP-8 plasma and radio wave data has been performed to try to find electron plasma oscillations associated with type III radio noise bursts and low-energy solar electrons. This study shows that electron plasma oscillations are seldom observed in association with solar electron events and type III radio bursts at 1.0 AU. In nearly four years of observations only one event was found in which electron plasma oscillations are clearly associated with solar electrons. For this event the plasma oscillations appeared coincident with the development of a secondary maximum in the electron velocity distribution functions due to solar electrons streaming outwards from the Sun. Numerous cases were found in which no electron plasma oscillations with field strengths greater than 1 μV m?1 could be detected even though electrons from the solar flare were clearly detected at the spacecraft. For the one case in which electron plasma oscillations are definitely produced by the electrons ejected by the solar flare the electric field strength is relatively small, only about 100 μV m?1. This field strength is about a factor of ten smaller than the amplitude of electron plasma oscillations generated by electrons streaming into the solar wind from the bow shock. Electromagnetic radiation, believed to be similar to the type III radio emission, is also observed coming from the region of the more intense electron plasma oscillations upstream of the bow shock. Quantitative calculations of the rate of conversion of the plasma oscillation energy to electromagnetic radiation are presented for plasma oscillations excited by both solar electrons and electrons from the bow shock. These calculations show that neither the type III radio emissions nor the radiation from upstream of the bow shock can be adequately explained by a current theory for the coupling of electron plasma oscillations to electromagnetic radiation. Possible ways of resolving these difficulties are discussed.  相似文献   

2.
Direction finding measurements with the plasma wave experiments on the HAWKEYE 1 and IMP-8 satellites are used to find the source locations of type III solar radio bursts in elevation (geocentric solar ecliptic latitude) and azimuth (geocentric solar ecliptic longitude) in a frequency range from 31.1 kHz to 500 kHz. IMP-8 has its spin axis perpendicular to the ecliptic plane, hence by analyzing the spin modulation of the signals the location of the type III burst projected into the ecliptic can be found. HAWKEYE 1 has its spin axis nearly parallel to the ecliptic plane, hence the elevation of the source may also be determined. The trajectory of the electrons generating the burst, projected onto the ecliptic plane, follows an Archimedean spiral. Out of the ecliptic plane the trajectory is at a nearly constant heliographic latitude. The electrons originate from a region near a solar flare. With direction measurements of elevation and azimuth along with the modulation factor it is possible to determine the source size. Typical half angle source sizes range from 60° at 500 kHz to 40° at 56.2 kHz as viewed from the sun.  相似文献   

3.
R. P. Lin 《Solar physics》1970,12(2):266-303
Observations of prompt 40 keV solar flare electron events by the IMP series of satellites in the period August, 1966 to December, 1967 are tabulated along with prompt energetic solar proton events in the period 1964–1967. The interrelationship of the various types of energetic particle emission by the sun, including relativistic energy electrons reported by Cline and McDonald (1968) are investigated. Relativistic energy electron emission is found to occur only during proton events. The solar optical, radio and X-ray emission associated with these various energetic particle emissions as well as the propagation characteristics of each particle species are examined in order to study the particle acceleration and emission mechanisms in a solar flare. Evidence is presented for two separate particle acceleration and/or emission mechanisms, one of which produces 40 keV electrons and the other of which produces solar proton and possibly relativistic energy electrons. It is found that solar flares can be divided into three categories depending on their energetic particle emission: (1) small flares with no accompanying energetic phenomena either in particles, radio or X-ray emission; (2) small flares which produce low energy electrons and which are accompanied by type III and microwave radio bursts and energetic ( 20 keV) X-ray bursts; and (3) major solar flare eruptions characterized by energetic solar proton production and type II and IV radio bursts and accompanied by intense microwave and X-ray emission and relativistic energy electrons.  相似文献   

4.
We trace electrons from the Sun by a variety of proxy methods - solar flare positions, and metric and kilometric type III radio bursts from the Sun until they can be observed in situ as electrons at the ISEE-3 spacecraft. Our study extends over the period of operation of the electron experiment on ISEE-3 from August 1978 to November 1979. By carefully restricting timing within the data sets involved, we find a peak in the number of flares associated with in situ electrons near 60° west solar longitude. This peak shows that type III bursts can be fairly limited in spatial extent, and that the best connection with the solar surface to the flare is along the Archimedean magnetic field spiral. We use this spatial determination to define an average beam shape for an event. We assume this average beam shape to be representative of the distribution in space of each electron group. The electron numbers at 2 and 29–45 keV energies combined with this average beam shape are used to approximate the total numbers of electrons and energy per burst for individual events. We find that the total number of electrons and total energy for events varies significantly with flare type; that on the average brighter flares are associated with more electrons.  相似文献   

5.
S. R. Kane 《Solar physics》1972,27(1):174-181
Observations of impulsive solar flare X-rays 10 keV made with the OGO-5 satellite are compared with ground based measurements of type III solar radio bursts in 10–580 MHz range. It is shown that the times of maxima of these two emissions, when detectable, agree within 18 s. This maximum time difference is comparable to that between the maxima of the impulsive X-ray and impulsive microwave bursts. In view of the various observational uncertainties, it is argued that the observations are consistent with the impulsive X-ray, impulsive microwave, and type III radio bursts being essentially simultaneous. The observations are also consistent with 10–100 keV electron streams being responsible for the type III emission. It is estimated that the total number of electrons 22 keV required to produce a type III burst is 1034. The observations indicate that the non-thermal electron groups responsible for the impulsive X-ray, impulsive microwave, and type III radio bursts are accelerated simultaneously in essentially the same region of the solar atmosphere.  相似文献   

6.
Y. Ma  R. X. Xie  M. Wang 《Solar physics》2006,238(1):105-115
Detailed statistics and analysis of 264 type III bursts observed with the 625–1500 MHz spectrograph during the 23rd solar cycle (from July 2000 to April 2003) are carried out in the present article. The main statistical results are similar to those of microwave type III bursts presented in the literature cited, such as the correlation between type III bursts and flares, polarization, duration, frequency drift rate (normal and reverse slopes), distribution of type III bursts and frequency bandwidth. At the same time, the statistical results also point out that the average values of the frequency drift rates and degrees of polarization increase with the increase in frequency and the average value of duration decreases with the increase in frequency. Other statistical results show that the starting frequencies of the type III bursts are mainly within the range from 650 to 800 MHz, and most type III bursts have an average bandwidth of 289 MHz. The distributions imply that the electron acceleration and the place of energy release are within a limited decimetric range. The characteristics of the narrow bandwidth possibly involve the magnetic configuration at decimetric wavelengths, the location of electron acceleration in the magnetic field nearto the main flare, the relevant runaway or trapped electrons, or the coherent radio emission produced by some secondary shock waves. In addition, the number of type III bursts with positive frequency drift rates is almost equal to that with negative frequency drift rates. This is probably explained by the hypothesis that an equal number of electron beams are accelerated upwards and downwards within the range of 625 to 1500 MHz. The radiation mechanism of type III bursts at decimetric wavelengths probably includes these microwave and metric mechanisms and the most likely cause of the coherent plasma radiation are the emission processes of the electron cyclotron maser.  相似文献   

7.
A high-speed, halo-type coronal mass ejection (CME), associated with a GOES M4.6 soft X-ray flare in NOAA AR 0180 at S12W29 and an EIT wave and dimming, occurred on 9 November 2002. A complex radio event was observed during the same period. It included narrow-band fluctuations and frequency-drifting features in the metric wavelength range, type III burst groups at metric – hectometric wavelengths, and an interplanetary type II radio burst, which was visible in the dynamic radio spectrum below 14 MHz. To study the association of the recorded solar energetic particle (SEP) populations with the propagating CME and flaring, we perform a multi-wavelength analysis using radio spectral and imaging observations combined with white-light, EUV, hard X-ray, and magnetogram data. Velocity dispersion analysis of the particle distributions (SOHO and Wind in situ observations) provides estimates for the release times of electrons and protons. Our analysis indicates that proton acceleration was delayed compared to the electrons. The dynamics of the interplanetary type II burst identify the burst source as a bow shock created by the fast CME. The type III burst groups, with start times close to the estimated electron-release times, trace electron beams travelling along open field lines into the interplanetary space. The type III bursts seem to encounter a steep density gradient as they overtake the type II shock front, resulting in an abrupt change in the frequency drift rate of the type III burst emission. Our study presents evidence in support of a scenario in which electrons are accelerated low in the corona behind the CME shock front, while protons are accelerated later, possibly at the CME bow shock high in the corona.  相似文献   

8.
A detailed comparison is made between hard X-ray spikes and decimetric type III radio bursts for a relatively weak solar flare on 1981 August 6 at 10: 32 UT. The hard X-ray observations were made at energies above 30 keV with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission and with a balloon-born coarse-imaging spectrometer from Frascati, Italy. The radio data were obtained in the frequency range from 100 to 1000 MHz with the analog and digital instruments from Zürich, Switzerland. All the data sets have a time resolution of 0.1 s or better. The dynamic radio spectrum shows many fast drift type III radio bursts with both normal and reverse slope, while the X-ray time profile contains many well resolved short spikes with durations of 1 s. Some of the X-ray spikes appear to be associated in time with reverse-slop bursts suggesting either that the electron beams producing the radio bursts contain two or three orders of magnitude more fast electrons than has previously been assumed or that the electron beams can trigger or occur in coincidence with the acceleration of additional electrons. One case is presented in which a normal slope radio burst at 600 MHz occurs in coincidence with the peak of an X-ray spike to within 0.1 s. If the coincidence is not merely accidental and if it is meaningful to compare peak times, then the short delay would indicate that the radio signal was at the harmonic and that the electrons producing the radio burst were accelerated at an altitude of 4 × 109 cm. Such a short delay is inconsistent with models invoking cross-field drifts to produce the electron beams that generate type III bursts but it supports the model incorporating a MASER proposed by Sprangle and Vlahos (1983).  相似文献   

9.
The association of solar radio bursts of spectral type II and coronal shocks with solar flare ejecta observed in H, the green coronal line, and white-light coronagraphs is examined. Rather than identifying fast-moving optical coronal transients with outward-travelling shock waves that generate type II radio bursts, as has been suggested in some earlier papers, we suggest that, for the most part, such transients should probably be identified with piston-type phenomena well behind the shock. We then discuss a general model, consisting of three main velocity regimes, in which we relate type II radio bursts and coronal shocks to optically-observed ejecta.  相似文献   

10.
The planetary radio astronomy experiment on the Voyager spacecraft observed several type II solar radiobursts at frequencies below 1.3 MHz; these correspond to shock waves at distances between 20R and 1 AU from the Sun. We study the characteristics of these bursts and discuss the information that they give on shock waves in the interplanetary medium and on the origin of the high energy electrons which give rise to the radioemission. The relatively frequent occurence of type II bursts at large distances from the Sun favors the hypothesis of the emission by a longitudinal shockwave. The observed spectral characteristics reveal that the source of emission is restricted to only a small portion of the shock. From the relation between type II bursts, type III bursts and optical flares, we suggest that some of the type II bursts could be excited by type III burst fast electrons which catch up the shock and are then trapped.  相似文献   

11.
Type III radio bursts observed at kilometric wavelengths ( 0.35 MHz) by the OGO-5 spacecraft are compared with > 45 keV solar electron events observed near 1 AU by the IMP-5 and Explorer 35 spacecraft for the period March 1968–November 1969.Fifty-six distinct type III bursts extending to 0.35 MHz ( 50 R equivalent height above the photosphere) were observed above the threshold of the OGO-5 detector; all but two were associated with solar flares. Twenty-six of the bursts were followed 40 min later by > 45 keV solar electron events observed at 1 AU. All of these 26 bursts were identified with flares located west of W 09 solar longitude. Of the bursts not associated with electron events only three were identified with flares west of W 09, 18 were located east of W 09 and 7 occurred during times when electron events would be obscured by high background particle fluxes.Thus almost all type III bursts from the western half of the solar disk observed by OGO-5 above a detection flux density threshold of the order of 10–13 Wm–2 Hz–1 at 0.35 MHz are followed by > 45 keV electrons at 1 AU with a maximum flux of 10 cm–2 s–1 ster–1. If particle propagation effects are taken into account it is possible to account for lack of electron events with the type III bursts from flares east of the central meridian. We conclude that streams of 10–100 keV electrons are the exciting agent for type III bursts and that these same electrons escape into the interplanetary medium where they are observed at 1 AU. The total number of > 45 keV electrons emitted in association with a strong kilometer wavelength type III burst is estimated to be 5 × 1032.  相似文献   

12.
Coherent synchrotron deceleration of 100 keV electrons is proposed as the mechanism by which type II and III solar radio bursts are generated. This mechanism directly excites the transverse electromagnetic radiation by a linear mechanism at the relativistic electron cyclotron frequency and at the first harmonic thereof if the energy spread of the exciting component is sufficiently narrow. Higher cyclotron harmonics are excluded by the energy spread in the 100 keV exciting electron component. This mechanism appears to fit the observational data concerning these emissions some-what better than the existing theory based on the non-linear interaction of electrostatic plasma waves.  相似文献   

13.
The relation between the ejected plasma cloud and the shock wave propagating ahead of it is examined for 27 pairs of such events. The flare sprays and the eruptive prominences observed in H line as well as the fast-moving sources of type-IV radio bursts have been considered as such ejected plasma clouds. Propagation of the shock wave in the solar corona has been examined from the observations of type-II radio bursts. Using the Parker model of the propagation of a shock wave, the shock wave velocity has been compared with the plasma cloud velocity. Energy interconnection between these two events has been studied. In the majority of the investigated cases there exists an energetic interconnection between the plasma cloud and the shock wave.  相似文献   

14.
In this paper, the 3B flare of February 4, 1986 is studied comprehensively. The escape electrons accelerated to 10–100 keV at the top of coronal loop are confirmed by III type bursts. The energetic electron beams moved downward trigger the eruptions in the low layer of solar atmosphere. The radio and soft X-ray bursts are interpreted, respectively, by the maser mechanism and evaporation effect. Finally, the important role of energetic electron beams in solar flares is pointed out.  相似文献   

15.
A solar flare of importance 1B which occurred at 06:36 UT on April 27, 1979 on the solar disk (N 20, E 16) produced intense radio bursts. The most interesting feature of this event is the observation of a strong continuum radiation (type IV) starting at 06:53 UT and lasting for about 10 min in the decametric range. This continuum radiation displayed sharp low frequency cut-off, which varied from about 40 to 30 MHz in a quasiperiodic manner and could be attributed to Razin effect. The perturbation of this cut-off frequency is interpreted as that induced by the passing MHD shock wave through the region of the trapped energetic electrons. Assuming model electron density values and using the observed cut-off frequency, the magnitude of coronal magnetic field around 2R from Sun center works out to be about 6 G.  相似文献   

16.
We consider potential sources of infrared (1 to 1 mm) continuum in solar flares. Several mechanisms should produce detectable fluxes: in the 350 window for ground-based observations, impulsive emission will arise in synchrotron radiation from 1–10 MeV electrons, and possibly thermal (free-free) continuum from the source of the white-light flare; the hot flare plasma responsible for soft X-ray emission will also emit detectable fluxes of free-free continuum in the largest flares. At shorter wavelengths the dominant infrared emission will come from the H flare itself. Observations in the infrared wavelengths will help to complete our picture of flare structure in both the impulsive and gradual phases.  相似文献   

17.
Observations of energetic-ion intensity enhancements (E 290 keV) associated with solar flare generated shock waves (solar flare ESP events), obtained during nearly a decade by the APL/JHU instruments on board the Earth orbiters IMP-7 and 8, are incorporated in this work in order to examine the role of the heliolongitude depended large scale shock morphology with relation to the upstream interplanetary magnetic field in the formation of these ESP events. It is shown that a clear east-west solar hemisphere asymmetry is present in the distribution of the ESP relative intensity enhancements with respect to the heliolongitudes of the shock wave source-flare sites. The large ion-intensity enhancements superimposed on the ambient solar flare ion population are preferentially associated with solar flare sites located to the east of the spacecraft meridian, whereas on the average only weak ESP events are associated with solar flare sites to the west of the spacecraft meridian. The observed asymmetry and its implications on the dominant processes for the generation of the solar flare ESP events are discussed on the basis of the presented extensive survey.  相似文献   

18.
We analyze hard and soft X-ray, microwave and meter wave radio, interplanetary particle, and optical data for the complex energetic solar event of 22 July 1972. The flare responsible for the observed phenomena most likely occurred 20° beyond the NW limb of the Sun, corresponding to an occultation height of 45 000 km. A group of type III radio bursts at meter wavelengths appeared to mark the impulsive phase of the flare, but no impulsive hard X-ray or microwave burst was observed. These impulsive-phase phenomena were apparently occulted by the solar disk as was the soft X-ray source that invariably accompanies an H flare. Nevertheless essentially all of the characteristic phenomena associated with second-stage acceleration in flares - type II radio burst, gradual second stage hard X-ray burst, meter wave flare continuum (FC II), extended microwave continuum, energetic electrons and ions in the interplanetary medium - were observed. The spectrum of the escaping electrons observed near Earth was approximately the same as that of the solar population and extended to well above 1 MeV.Our analysis of the data leads to the following results: (1) All characteristics are consistent with a hard X-ray source density n i 108 cm–3 and magnetic field strength 10 G. (2) The second-stage acceleration was a physically distinct phenomenon which occurred for tens of minutes following the impulsive phase. (3) The acceleration occurred continuously throughout the event and was spatially widespread. (4) The accelerating agent was very likely the shock wave associated with the type II burst. (5) The emission mechanism for the meter-wave flare continuum source may have been plasma-wave conversion, rather than gyrosynchrotron emission.  相似文献   

19.
Electron beams in the low corona   总被引:3,自引:0,他引:3  
Selected high-resolution spectrograms of solar fast-drift bursts in the 6.2–8.4 GHz range are presented. The bursts have similar characteristics as metric and decimetric type III bursts: rise and decay in a few thermal collision times, total bandwidth 3% of the center frequency, low polarization, drift rate of the order of the center frequency per second, and flare association. They appear in several groups per flare, each group consisting of some tens of single bursts. Fragmentation is also apparent in frequency; there are many narrowband bursts randomly scattered in the spectrum. The maximum frequency of the bursts is highly variable.The radiation is interpreted in terms of plasma emission of electron beams at plasma densities of more than 1011 cm–-3. At this extremely high frequency, emission from the plasma level even at the harmonic is only possible in a very anisotropic plasma. The scale lengths perpendicular and parallel to the magnetic field can be estimated. A model of the source region and its environment is presented.Paper presented at the 4th CESRA Workshop in Ouranopolis (Greece) 1991.  相似文献   

20.
王德焴 《天文学报》2004,45(2):168-175
为解释太阳运动IV型射电爆发的相干辐射机制提出一个理论模型.从耀斑中产生的高能电子,可以被扩展上升的太阳磁流管俘获.在磁流管顶部,这些高能电子的速度分布形成为类束流速度分布,激发束流等离子体的不稳定性,并且主要直接放大O模电磁波.不稳定性增长率敏锐地依赖了日冕等离子体参数,fpe/fce和射束温度Tb,这能定性解释在太阳运动IV型射电爆发中观测到的高亮温度和高偏振度,以及宽频谱的特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号