首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analysis of radar and photographic meteor data and of spacecraft meteoroid penetration data indicates that there probably has not been a large increase in meteoroid impact rates in the last 104 yr. The solar flare tracks observed in the glass linings of meteoroid impact pits on lunar rock 15205 are therefore reanalyzed assuming a meteoroid flux that is constant in time. Based on this assumption, the data suggest that the production rate of Fe-group solar flare tracks may have varied by as much as a factor of 50 on a time scale of about 104 yr. No independently obtained data are known to require conflict with this interpretation. Confidence in this conclusion is somewhat qualified by the experimental and analytical uncertainties involved, but the conclusion nevertheless remains the present “best” explanation for the observed data trends.  相似文献   

2.
The distribution of meteor signals reflected from a backscatter radar is considered according to their duration. This duration time (T) is used to classify the meteor echoes and to calculate the mass index (S) of different meteoroids of shower plus sporadic background. Observational data on particle size distribution of the Geminid meteor shower are very scarce, particularly at low latitudes. In this paper the observational data from Gadanki radar (13.46°N, 79.18°E) have been used to determine the particle size distribution and the number density of meteoroids inside the stream of the Geminid meteor shower. The mean variation of meteor number density across the stream has been determined for three echo duration classes, T<0.4, T=0.4–1 and T>1 s. We are more interested in the appearance of echoes of various durations and therefore meteors of various masses in order to understand more on the filamentary structure of the stream. It is observed that the faint particle flux peaks earlier than the larger particles. We found a decreasing trend in the mass index values from the day of peak activity to the next observation days. The mass index profile was found to be U-shaped with a minimum value near the time of peak activity. The observed minimum s values are 1.64±0.05 and 1.65±0.04 in the years 2003 and 2005, respectively. The activity of the shower indicates the mass segregation of meteoroids inside the stream. Our results are best comparable with the “scissors” structure model of the meteoroid stream formation of Ryabova [2007. Mathematical modeling of the Geminid meteoroid stream. Mon. Not. R. Astron. Soc. 375, 1371–1380] by considering the asteroid 3200 Phaethon as an extinct comet.  相似文献   

3.
Over the last decade several new models for the sporadic interplanetary meteoroid flux have been developed. These include the Divine-Staubach and the Dikarev model. They typically cover mass ranges from 10−18 g to 1 g and are applicable for model specific Sun distance ranges between 0.1 AU and 20 AU Near 1 AU averaged fluxes (over direction and velocities) for all these models are tuned to the well established interplanetary model by Grün et al. However, in many respects these models differ considerably. Examples are the velocity and directional distributions and the assumed meteoroid sources. In this paper flux predictions by the various models to Earth orbiting spacecraft are compared. Main differences are presented and analysed. The persisting differences even for near Earth space can be seen as surprising in view of the numerous ground based (optical and radar) and in situ (captured Inter Stellar Dust Particles, in situ detectors and analysis of retrieved hardware) measurements and simulations.  相似文献   

4.
We have developed antibodies and a multi-array competitive immunoassay (MACIA) for the detection of a wide range of molecular size compounds, from single aromatic ring derivatives or polycyclic aromatic hydrocarbons (PAHs), through small peptides, proteins or whole cells (spores). Multiple microarrays containing target molecules are used simultaneously to run several competitive immunoassays. The sensitivity of the MACIA for small organic compounds like naphthalene, 4-phenilphenol or 4-tertbutilphenol is in the range of 100–500 ppb (ng ml−1), for others like the insecticide terbutryn it is at the ppt (ng l−1) level, while for small peptides, as well as for more complex molecules like the protein thioredoxin, the sensitivity is approximately 1–2 ppb, or 104–105 spores of Bacillus subtilis per milliliter. For organic compounds, a water–methanol solution was used in order to achieve a better dissolution of the organics without compromising the antibody–antigen interaction. The above-mentioned compounds were detected by MACIA in water–(10%) methanol extracts from spiked pyrite and hematite-containing rock powder samples, as well as from a spiked-sand sample subjected to organic extraction with dichloromethane–methanol (1/1).  相似文献   

5.
We estimate the flux of the gamma-ray burst (GRB) neutrino background and compute the event rate at SK and TITAND in the collapsar model, assuming that GRB formation rate is proportional to the star formation rate. We find that the predicted background neutrino flux is highly sensitive to unknown model parameters, mainly to the mass–accretion rate, to the fraction of disk energy emitted in thermal neutrinos (as opposed to emission through electromagnetic processes), and to the fraction of collapsar events leading to GRBs. The predicted neutrino flux varies over many orders of magnitude as the values of unknown model parameters are varied. We investigate the detection possibility of thermal neutrinos from collapsars which lead to GRBs by TITAND. We find that the GRB neutrino background might be detected by TITAND within 10 yrs only for the optimistic cases in which the average mass–accretion rate is high ( a few M s−1), and the probability that one collapsar generates a GRB is high (f=0.5–1.0).  相似文献   

6.
W.-H. Ip 《Icarus》1984,60(3):547-552
Reevaluation of the interplanetary meteoroid mass flux at 10 AU obtains a value of M≈6×104g sec?1 for the meteoroid mass loading rate to the rings of Saturn. This meteoroid impact flux suggests that a large change to the configuration of the ring system could occur in a relatively short time (?109years). This new element thus should be taken into consideration in discussion of the dynamical evolution of the rings.  相似文献   

7.
The shape and characteristics (beginning and end heights, and height of maximum brightness) of meteor light curves are investigated under the constraint that the surface area S that a meteoroid presents to the oncoming air flow varies as a power law in the meteoroid mass m such that   S ∼ m α  . We investigate the meteoroid ablation for a range of values of α, and find that the  α= 1  condition allows for a fully analytic solution to the coupled differential equations of meteoroid ablation when the density profile is that of an isothermal atmosphere. The possible geometrical properties of Geminid meteoroids are discussed in terms of the  α= 1  ablation model and it is shown that they are consistent with being derived from an asteroidal, rather than cometary, parent body.  相似文献   

8.
Recent work on the gravitational focusing of meteoroid streams and their threat to satellites and astronauts in the near-Earth environment has concentrated on Earth acting as the gravitational attractor, totally ignoring the Moon. Though the Moon is twelve-thousandths the mass of the Earth, it too can focus meteors, albeit at a much greater distance downstream from its orbital position in space. At the Earth–Moon distance during particular phases of the Moon, slower speed meteoroid streams with very compact radiant diameters can show meteoroid flux enhancements in Earth’s immediate neighborhood. When the right geometric alignment occurs, this arises as a narrowed beam of particles of approximately 1,000 km width. For a narrow radiant of one-tenth degree diameter there is a 10-fold increase in the level of flux passing through the near-Earth environment. Meteoroid streams with more typical radiant sizes of 1° show at most two times enhancement. For sporadic sources, the enhancement is found to be insignificant due to the wide angular spread of the diffuse radiant and thus may be considered of little importance.  相似文献   

9.
We propose a new approach for studying the radiation of a fireball, one of the main processes which occur when the meteor body enters the planetary atmosphere. The only quantities which directly follow from the available observations are the fireball brightness, its height above sea level, the length along the trajectory, and as a consequence its velocity as a function of time. Other important parameters like meteoroid’s mass, its shape, bulk and grain density, temperature remain unknown. The present study takes recent results in fireball aerodynamics and considers them together with the classical postulate that a fraction of the meteoroid kinetic energy is transformed into radiation during its flight. This gives us a new analytical dependence, which in particular shows that the fireball luminosity in general is proportional to the body pre-entry mass value, its initial velocity to the power of 3, and the sine of the slope between horizon and trajectory. Research helps in finding an answer to the general important question: Which fraction of the fireball kinetic energy is transformed into light during meteoroid drag and ablation in the atmosphere?  相似文献   

10.
The interaction between a large meteoroid and the atmosphere is modeled as its destruction into a cloud of fragments and vapors moving with a common shock wave. Under the action of aerodynamic forces the shape of this cloud is deformed—it is expanded in the direction transverse to the motion and compressed in the longitudinal direction. With allowance for the pressure distribution over the surface of a body varying its shape (it is assumed that the sphere is transformed into a flattened spheroid), the relation for the rate of increase in the midsection radius of a fragmented meteoroid has been obtained. This rate significantly depends on the degree of the meteoroid flattening which leads to a significantly smaller increase in the transverse size of the meteoroid along the trajectory as compared to similar models used in the literature where the influence of the body shape was not considered. The proposed model also takes into account the change in the density of the cloud of fragments due to an increase in gaps between them. An approximate analytical solution of equations of the physical theory of meteors with drag and heat transfer coefficients varying along the trajectory has been obtained for a fragmented meteoroid. The interaction of the Chelyabinsk meteoroid with the atmosphere is modeled and the solution obtained for the energy release curve is compared with the observational data.  相似文献   

11.
This work is devoted to modeling of the transverse scattering of meteoroid fragments in the atmosphere by adopting supersonic gas dynamics around a system of bodies. Artem’eva and Shuvalov (1996, Shock Waves, 367) and Zhdan et al. (2004, Dokl. Phys., 315–317) found that the transverse force decreases with the increase of the distance between fragments, that is, fragments do not separate in a transverse direction under the action of constant repulsion force. This work on the decreasing transverse force uses the values of the transverse force coefficient by Zhdan et al. (2004, Dokl. Phys., 315–317) obtained from numerical modeling for spheres in a supersonic flow to derive the analytical solution of the dynamic equation for a fragment. The new model of layer-by-layer scattering of meteoroid fragments moving as a system of bodies is constructed on the basis of the analytical solutions derived in this work and the numerical data by Zhdan et al. (2005, Dokl. Phys., 514–518).  相似文献   

12.
《Astroparticle Physics》2002,17(4):1083-475
Using data from the HEGRA air shower array, taken in the period from April 1998 to March 2000, upper limits on the ratio Iγ/ICR of the diffuse photon flux Iγ to the hadronic cosmic ray flux ICR are determined for the energy region 20–100 TeV. The analysis uses a gamma–hadron discrimination which is based on differences in the development of photon- and hadron-induced air showers after the shower maximum. A method which is sensitive only to the non-isotropic component of the diffuse photon flux yields an upper limit of Iγ/ICR (at 54 TeV) <2.0×10−3 (at the 90% confidence level) for a sky region near the inner galaxy (20°< galactic longitude <60° and |galactic latitude |<5°). A method which is sensitive to both the isotropic and the non-isotropic component yields global upper limits of Iγ/ICR (at 31 TeV) <1.2×10−2 and Iγ/ICR (at 53 TeV) <1.4×10−2 (at the 90% confidence level).  相似文献   

13.
The lunar cratering rate is known reasonably well from comparison of observed crater frequencies with radiometric ages. Attempts to obtain a cratering rate for Mars have usually been based on calculation of the relative flux of asteroidal and cometary bodies on Mars and the Moon.The asteroidal flux on Mars cannot be obtained in a simple way from the observed number of Mars-crossing asteroids, i.e. those asteroids with perihelia within the orbit of Mars. Calculations of the secular perturbations of these asteroids by several authors, particularly williams, has shown that most of these bodies rarely come near even to Mars' aphelion when they are in the vicinity of the ecliptic plane, and their contribution to the Martian meteoroid flux is much smaller than has been commonly stated. Ring asteroids in the vicinity of the secular resonances discovered by Williams, high velocity fragments of asteroids on the inner edge of the asteroid belt, and possibly objects obtained from the 2:1 Kirkwood gap by a process described by Zimmerman and Wetherill are probably of greater importance in the 103-106 g meteoroid size range but are much less important in the production of large craters. Calculations of the Martian asteroidal and cometary impact rate are made, but the present unavoidable uncertainties in the results of these calculations result in their being of little value in establishing a Martian chronology. Suggestions for improving this situation are discussed.Paper presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973.  相似文献   

14.
We calculate the expected flux of γ-ray and radio emission from the LMC due to neutralino annihilation. Using rotation curve data to probe the density profile and assuming a minimum disk, we describe the dark matter halo of the LMC using models predicted by N-body simulations. We consider a range of density profiles including the NFW profile, a modified NFW profile proposed by Hayashi et al. (2003) to account for the effects of tidal stripping, and an isothermal sphere with a core. We find that the γ-ray flux expected from these models may be detectable by GLAST for a significant part of the neutralino parameter space. The prospects for existing and upcoming Atmospheric Cherenkov Telescopes (ACTs) are less optimistic, as unrealistically long exposures are required for detection. However, the effects of adiabatic compression due to the baryonic component may improve the chances for detection by ACTs. The maximum flux we predict is well below EGRET's measurements and thus EGRET does not constrain the parameter space. The expected synchrotron emission generally lies below the observed radio emission from the LMC in the frequency range of 19.7–8550 MHz. As long as σv<2×10−26 cm3 s−1 for a neutralino mass of 50 GeV, the observed radio emission is not primarily due to neutralinos and is consistent with the assumption that the main source is cosmic rays. We find that the predicted fluxes, obtained by integrating over the entire LMC, are not very strongly dependent on the inner slope of the halo profile, varying by less than an order of magnitude for the range of profiles we considered.  相似文献   

15.
Analysis of seismic signals from man-made impacts, moonquakes, and meteoroid impacts has established the presence of a lunar crust, approximately 60 km thick in the region of the Apollo seismic network; an underlying zone of nearly constant seismic velocity extending to a depth of about 1000 km, referred to as the mantle; and a lunar core, beginning at a depth of about 1000 km, in which shear waves are highly attenuated suggesting the presence of appreciable melting. Seismic velocitites in the crust reach 7 km s–1 beneath the lower-velocity surface zone. This velocity corresponds to that expected for the gabbroic anorthosites found to predominate in the highlands, suggesting that rock of this composition is the major constituent of the lunar crust. The upper mantle velocity of about 8 km s–1 for compressional waves corresponds to those of terrestrial olivines, pyroxenites and peridotites. The deep zone of melting may simply represent the depth at which solidus temperatures are exceeded in the lower mantle. If a silicate interior is assumed, as seems most plausible, minimum temperatures of between 1450°C and 1600°C at a depth of 1000 km are implied. The generation of deep moonquakes, which appear to be concentrated in a zone between 600 km and 1000 km deep, may now be explained as a consequence of the presence of fluids which facilitate dislocation. The preliminary estimate of meteoroid flux, based upon the statistics of seismic signals recorded from lunar impacts, is between one and three orders of magnitude lower than previous estimates from Earth-based measurements.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April, 1973.  相似文献   

16.
An approximate calculation of the amount of organic material (OM) delivered to the Earth by comets during the first 700 million years of the planet's existence has been carried out. Approximation formulas based on lunar-crater data have been used for the flux of bodies colliding with the Earth. The calculations of impact velocities have been performed with allowance made for dragging and ablation of bodies in the atmosphere. Semianalytical models used in these calculations take into account the increase in the cross-sectional area of a disrupted meteoroid due to aerodynamic forces, as well as specific features of radiative heat transfer at large optical depths. Particular attention has been given to oblique trajectories that correspond to the perigee distances of cometary orbits close to the Earth's radius. Kilometer-sized comets, which arrived at the surface with low velocities, contributed largely to the mean OM flux under conditions of a dense early terrestrial atmosphere. For the atmosphere with a near-surface pressure of 10 bars, this flux comprises (1–40) × 107 kg per year. As will be shown below, rare but highly probable events of atmospheric entry of large (10 km) comets along oblique trajectories may have produced high local concentrations of organic molecules.  相似文献   

17.
18.
We estimate energy spectra and fluxes at the Earth’s surface of the cosmic and Galactic neutrino backgrounds produced by thermonuclear reactions in stars. The extra-galactic component is obtained by combining the most recent estimates of the cosmic star formation history and the stellar initial mass function with accurate theoretical predictions of the neutrino yields all over the thermonuclear lifetime of stars of different masses. Models of the structure and evolution of the Milky Way are used to derive maps of the expected flux generated by Galactic sources as a function of sky direction. The predicted neutrino backgrounds depend only slightly on model parameters. In the relevant 50 keV–10 MeV window, the total flux of cosmic neutrinos ranges between 20 and 65 cm−2 s−1. Neutrinos reaching the Earth today have been typically emitted at redshift z2. Their energy spectrum peaks at E0.1–0.3 MeV. The energy and entropy densities of the cosmic background are negligible with respect to the thermal contribution of relic neutrinos originated in the early universe. In every sky direction, the cosmic background is outnumbered by the Galactic one, whose integrated flux amounts to 300–1000 cm−2 s−1. The emission from stars in the Galactic disk contributes more than 95% of the signal.  相似文献   

19.
A model of planetary neutral and ion-exospheres in the solar wind is formulated for weak or lunar like solar-wind interaction with a planet. The neutral exosphere model allows for density and temperature variations and for rotation at the exobase. The ion-exosphere is produced by ionization of the neutral exosphere in the solar wind and its density distribution is obtained by solving the continuity equation in the drift approximation. Applying to Mercury a surface temperature distribution inferred from infra-red data and a vanishing bound neutral flux at the base, He and He+ density distributions are found. When the He atmosphere of Mercury is due entirely to the surface bombardment by solar wind He++, the resulting He+ density is found to vary from 1.5 × 10−1 to 10−3 cm−3 over the range 1.5–5 planetocentric radii on the dayside. These densities are found to be detectable by typical solar-wind plasma instruments. The possible effects of cyclotron-resonant scattering by interplanetary magnetic field fluctuations are examined and shown to be negligible. An electromagnetic plasma instability, triggered by the birth of ions in the exosphere, is shown to be important for the thermalization of the energy mode transverse to the interplanetary magnetic field, allowing more ions to be detected by solar-wind ion probes.  相似文献   

20.
Meteorite and meteoroid: New comprehensive definitions   总被引:1,自引:0,他引:1  
Abstract– Meteorites have traditionally been defined as solid objects that have fallen to Earth from space. This definition, however, is no longer adequate. In recent decades, man‐made objects have fallen to Earth from space, meteorites have been identified on the Moon and Mars, and small interplanetary objects have impacted orbiting spacecraft. Taking these facts and other potential complications into consideration, we offer new comprehensive definitions of the terms “meteorite,”“meteoroid,” and their smaller counterparts: A meteoroid is a 10‐μm to 1‐m‐size natural solid object moving in interplanetary space. A micrometeoroid is a meteoroid 10 μm to 2 mm in size. A meteorite is a natural, solid object larger than 10 μm in size, derived from a celestial body, that was transported by natural means from the body on which it formed to a region outside the dominant gravitational influence of that body and that later collided with a natural or artificial body larger than itself (even if it is the same body from which it was launched). Weathering and other secondary processes do not affect an object’s status as a meteorite as long as something recognizable remains of its original minerals or structure. An object loses its status as a meteorite if it is incorporated into a larger rock that becomes a meteorite itself. A micrometeorite is a meteorite between 10 μm and 2 mm in size. Meteorite– “a solid substance or body falling from the high regions of the atmosphere” ( Craig 1849 ); “[a] mass of stone and iron that ha[s] been directly observed to have fallen down to the Earth’s surface” (translated from Cohen 1894 ); “[a] solid bod[y] which came to the earth from space” ( Farrington 1915 ); “A mass of solid matter, too small to be considered an asteroid; either traveling through space as an unattached unit, or having landed on the earth and still retaining its identity” ( Nininger 1933 ); “[a meteoroid] which has reached the surface of the Earth without being vaporized” (1958 International Astronomical Union (IAU) definition, quoted by Millman 1961 ); “a solid body which has arrived on the Earth from outer space” ( Mason 1962 ); “[a] solid bod[y] which reach[es] the Earth (or the Moon, Mars, etc.) from interplanetary space and [is] large enough to survive passage through the Earth’s (or Mars’, etc.) atmosphere” ( Gomes and Keil 1980 ); “[a meteoroid] that survive[s] passage through the atmosphere and fall[s] to earth” ( Burke 1986 ); “a recovered fragment of a meteoroid that has survived transit through the earth’s atmosphere” ( McSween 1987 ); “[a] solid bod[y] of extraterrestrial material that penetrate[s] the atmosphere and reach[es] the Earth’s surface” ( Krot et al. 2003 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号