首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gamma-ray burst (GRB) afterglow observations in the Swift era have a perceived lack of achromatic jet breaks compared to the BeppoSAX or pre- Swift era. Specifically, relatively few breaks, consistent with jet breaks, are observed in the X-ray light curves of these bursts. If these breaks are truly missing, it has serious consequences on the interpretation of GRB jet collimation and energy requirements, and the use of GRBs as cosmological tools. Here, we address the issue of X-ray breaks that are possibly 'hidden' and hence the light curves are misinterpreted as being single power laws. We do so by synthesizing X-ray telescope (XRT) light curves and fitting both single and broken power laws, and comparing the relative goodness of each fit via Monte Carlo analysis. Even with the well-sampled light curves of the Swift era, these breaks may be left misidentified, hence caution is required when making definite statements on the absence of achromatic breaks.  相似文献   

2.
We present a homogeneous X-ray analysis of all 318 gamma-ray bursts detected by the X-ray telescope (XRT) on the Swift satellite up to 2008 July 23; this represents the largest sample of X-ray GRB data published to date. In Sections 2–3 , we detail the methods which the Swift -XRT team has developed to produce the enhanced positions, light curves, hardness ratios and spectra presented in this paper. Software using these methods continues to create such products for all new GRBs observed by the Swift -XRT. We also detail web-based tools allowing users to create these products for any object observed by the XRT, not just GRBs. In Sections 4–6 , we present the results of our analysis of GRBs, including probability distribution functions of the temporal and spectral properties of the sample. We demonstrate evidence for a consistent underlying behaviour which can produce a range of light-curve morphologies, and attempt to interpret this behaviour in the framework of external forward shock emission. We find several difficulties, in particular that reconciliation of our data with the forward shock model requires energy injection to continue for days to weeks.  相似文献   

3.
Gamma-ray burst (GRB) afterglows are well described by synchrotron emission originating from the interaction between a relativistic blast wave and the external medium surrounding the GRB progenitor. We introduce a code to reconstruct spectra and light curves from arbitrary fluid configurations, making it especially suited to study the effects of fluid flows beyond those that can be described using analytical approximations. As a check and first application of our code, we use it to fit the scaling coefficients of theoretical models of afterglow spectra. We extend earlier results of other authors to general circumburst density profiles. We rederive the physical parameters of GRB 970508 and compare with other authors.  相似文献   

4.
The power-law decay of the X-ray emission of gamma-ray burst (GRB) afterglows 050319, 050401, 050607, 050713A, 050802 and 050922C exhibits a steepening at about 1–4 h after the burst which, surprisingly, is not accompanied by a break in the optical emission. If it is assumed that both the optical and X-ray afterglows arise from the same outflow then, in the framework of the standard forward shock model, the chromaticity of the X-ray light-curve breaks indicates that they do not arise solely from a mechanism related to the outflow dynamics (e.g. energy injection) or the angular distribution of the blast-wave kinetic energy (structured outflows or jets). The lack of a spectral evolution accompanying the X-ray light-curve break shows that these breaks do not arise from the passage of a spectral break (e.g. the cooling frequency) either. Under these circumstances, the decoupling of the X-ray and optical decays requires that the microphysical parameters for the electron and magnetic energies in the forward shock evolve in time, whether the X-ray afterglow is synchrotron or inverse-Compton emission. For a steady evolution of these parameters with the Lorentz factor of the forward shock and an X-ray light curve arising cessation of energy injection into the blast wave, the optical and X-ray properties of the above six Swift afterglows require a circumburst medium with a r −2 radial stratification, as expected for a massive star origin for long GRBs. Alternatively, the chromatic X-ray light-curve breaks may indicate that the optical and X-ray emissions arise from different outflows. Neither feature (evolution of microphysical parameters or the different origin of the optical and X-ray emissions) was clearly required by pre-Swift afterglows.  相似文献   

5.
We calculate the GeV afterglow emission expected from a few mechanisms related to gamma-ray bursts (GRBs) and their afterglows. Given the brightness of the early X-ray afterglow emission measured by Swift /X-Ray Telescope, Gamma-ray Large Area Space Telescope (GLAST)/Large Area Telescope (LAT) should detect the self-Compton emission from the forward shock driven by the GRB ejecta into the circumburst medium. Novel features discovered by Swift in X-ray afterglows (plateaus and chromatic light-curve breaks) indicate the existence of a pair-enriched, relativistic outflow located behind the forward shock. Bulk and inverse-Compton upscattering of the prompt GRB emission by such outflows provide another source of GeV afterglow emission detectable by LAT. The large-angle burst emission and synchrotron forward-shock emission are, most likely, too dim at high photon energy to be observed by LAT. The spectral slope of the high-energy afterglow emission and its decay rate (if it can be measured) allow the identification of the mechanism producing the GeV transient emission following GRBs.  相似文献   

6.
We study the spectral and energetics properties of 47 long-duration gamma-ray bursts (GRBs) with known redshift, all of them detected by the Swift satellite. Due to the narrow energy range (15–150 keV) of the Swift -BAT detector, the spectral fitting is reliable only for fitting models with two or three parameters. As high uncertainty and correlation among the errors is expected, a careful analysis of the errors is necessary. We fit both the power law (PL, two parameters) and cut-off power law (CPL, three parameters) models to the time-integrated spectra of the 47 bursts, and we present the corresponding parameters, their uncertainties and the correlations among the uncertainties. The CPL model is reliable only for 29 bursts for which we estimate the  ν f ν  peak energy E pk. For these GRBs, we calculate the energy fluence and the rest-frame isotropic-equivalent radiated energy,   E γ,iso  , as well as the propagated uncertainties and correlations among them. We explore the distribution of our homogeneous sample of GRBs on the rest-frame diagram   E 'pk  versus   E γ,iso  . We confirm a significant correlation between these two quantities (the 'Amati' relation) and we verify that, within the uncertainty limits, no outliers are present. We also fit the spectra to a Band model with the high-energy PL index frozen to −2.3, obtaining a rather good agreement with the 'Amati' relation of non- Swift GRBs.  相似文献   

7.
The Swift mission has discovered an intriguing feature of gamma-ray burst (GRBs) afterglows, a phase of shallow decline of the flux in the X-ray and optical light curves. This behaviour is typically attributed to energy injection into the burst ejecta. At some point this phase ends, resulting in a break in the light curve, which is commonly interpreted as the cessation of the energy injection. In a few cases, however, while breaks in the X-ray light curve are observed, optical emission continues its slow flux decline. This behaviour suggests a more complex scenario. In this paper, we present a model that invokes a double component outflow, in which narrowly collimated ejecta are responsible for the X-ray emission while a broad outflow is responsible for the optical emission. The narrow component can produce a jet break in the X-ray light curve at relatively early times, while the optical emission does not break due to its lower degree of collimation. In our model both components are subject to energy injection for the whole duration of the follow-up observations. We apply this model to GRBs with chromatic breaks, and we show how it might change the interpretation of the GRBs canonical light curve. We also study our model from a theoretical point of view, investigating the possible configurations of frequencies and the values of GRB physical parameters allowed in our model.  相似文献   

8.
A systematic study on the early X-ray afterglows of both optically bright and dark gamma-ray bursts (B-GRBs and D-GRBs) observed by Swift is presented. Our sample includes 25 GRBs of which 13 are B-GRBs and 12 are D-GRBs. Our results show that the distributions of the X-ray afterglow fluxes (Fx), the gamma-ray fluxes (5r), and the ratio (Rr,x.) are similar for the two kinds of GRBs, that any observed differences should be simply statistical fluctuation. These results indicate that the progenitors of the two kinds of GRBs are of the same population with comparable total energies of explosion. The suppression of optical emission in the D-GRBs should result from circumburst but not from their central engine.  相似文献   

9.
There has been increasing evidence that at least some gamma-ray bursts (GRBs) are emission beamed. The beamed GRB-afterglow evolution has been discussed by several authors in the ultrarelativistic case. It has been shown that the dynamics of the blast wave will be significantly modified by the sideways expansion, and there may be a sharp break in the afterglow light curves under certain circumstances. However, this is only true when the fireball is still relativistic. Here we present an analytical approach to the evolution of the beamed GRB blast wave expanding in the surrounding medium (density     in the non-relativistic case, our purpose is to explore whether the sideways expansion will strongly affect the blast-wave evolution as in the relativistic case. We find that the blast-wave evolution is strongly dependent on the speed of the sideways expansion. If it expands with the sound speed, then the jet angle θ increases with time as     which means that the sideways expansion has little effect on the afterglow light curves, the flux     for     and     for     It is clear that the light curve of     is not always steeper than that of     as in the relativistic case. We also show that if the expansion speed is a constant, then the jet angle     and the radius     in this case the sideways expansion has the most significant effect on the blast-wave evolution, the flux     independent of s , and we expect that there should be a smooth and gradual break in the light curve.  相似文献   

10.
Scattering of the forward-shock synchrotron emission by a relativistic outflow located behind the leading blast wave may produce an X-ray emission brighter than that coming directly from the forward shock and may explain four features displayed by Swift X-ray afterglows: flares, plateaus (slow decays), chromatic light-curve breaks and fast post-plateau decays. For a cold scattering outflow, the reflected flux overshines the primary one if the scattering outflow is nearly baryon-free and highly relativistic. These two requirements can be relaxed if the scattering outflow is energized by weak internal shocks, so that the incident forward-shock photons are also inverse-Compton scattered, in addition to bulk scattering. Sweeping-up of the photons left behind by the forward shock naturally yields short X-ray flares. Owing to the boost in photon energy produced by bulk scattering, the reflected emission is more likely to overshine that coming directly from the forward shock at higher photon energies, yielding light-curve plateaus and breaks that appear only in the X-ray. The brightness, shape and decay of the X-ray light-curve plateau depend on the radial distribution of the scatterer's Lorentz factor and mass flux. Chromatic X-ray light-curve breaks and sharp post-plateau decays cannot be accommodated by the direct forward-shock emission and argue in favour of the scattering-outflow model proposed here. On the other hand, the X-ray afterglows without plateaus, those with achromatic breaks and those with very long lived power-law decays are more naturally accommodated by the standard forward-shock model. Thus, the diversity of X-ray light curves arises from the interplay of the scattered and direct forward-shock emissions.  相似文献   

11.
The Swift satellite early X-ray data show a very steep decay in most of the gamma-ray bursts light curves. This decay is either produced by the rapidly declining continuation of the central engine activity or by some leftover radiation starting right after the central engine shuts off. The latter scenario consists of the emission from an 'ember' that cools via adiabatic expansion and, if the jet angle is larger than the inverse of the source Lorentz factor, the large angle emission. In this work, we calculate the temporal and spectral properties of the emission from such a cooling ember, providing a new treatment for the microphysics of the adiabatic expansion. We use the adiabatic invariance of   p 2/ B ( p   is the component of the electrons' momentum normal to the magnetic field, B ) to calculate the electrons' Lorentz factor during the adiabatic expansion; the electron momentum becomes more and more aligned with the local magnetic field as the expansion develops. We compare the theoretical expectations of the adiabatic expansion (and the large angle emission) with the current observations of the early X-ray data and find that only ∼20 per cent of our sample of 107 bursts are potentially consistent with this model. This leads us to believe that, for most bursts, the central engine does not turn off completely during the steep decay of the X-ray light curve; therefore, this phase is produced by the continued rapidly declining activity of the central engine.  相似文献   

12.
The discovery by Swift that a good fraction of gamma-ray bursts (GRBs) have a slowly decaying X-ray afterglow phase led to the suggestion that energy injection into the blast wave takes place several hundred seconds after the burst. This implies that right after the burst the kinetic energy of the blast wave was very low and in turn the efficiency of production of γ-rays during the burst was extremely high, rendering the internal shocks model unlikely. We re-examine the estimates of kinetic energy in GRB afterglows and show that the efficiency of converting the kinetic energy into γ-rays is moderate and does not challenge the standard internal shock model. We also examine several models, including in particular energy injection, suggested to interpret this slow decay phase. We show that with proper parameters, all these models give rise to a slow decline lasting several hours. However, even those models that fit all X-ray observations, and in particular the energy injection model, cannot account self-consistently for both the X-ray and the optical afterglows of well-monitored GRBs such as GRB 050319 and GRB 050401. We speculate about a possible alternative resolution of this puzzle.  相似文献   

13.
We calculate the very high-energy (sub-GeV to TeV) inverse Compton emission of GRB afterglows. We argue that this emission provides a powerful test of the currently accepted afterglow model. We focus on two processes: synchrotron self-Compton emission within the afterglow blast wave, and external inverse Compton emission which occurs when flare photons (produced by an internal process) pass through the blast wave. We show that if our current interpretations of the Swift X-ray telescope (XRT) data are correct, there should be a canonical high-energy afterglow emission light curve. Our predictions can be tested with high-energy observatories such as GLAST , Whipple, HESS and MAGIC. Under favourable conditions we expect afterglow detections in all these detectors.  相似文献   

14.
We selected a sample of 33 gamma-ray bursts detected by Swift , with known redshift and optical extinction at the host frame. For these, we constructed the de-absorbed and K -corrected X-ray and optical rest-frame light curves. These are modelled as the sum of two components: emission from the forward shock due to the interaction of a fireball with the circumburst medium and an additional component, treated in a completely phenomenological way. The latter can be identified, among other possibilities, as a 'late prompt' emission produced by a long-lived central engine with mechanisms similar to those responsible for the production of the 'standard' early prompt radiation. Apart from flares or re-brightenings, that we do not model, we find a good agreement with the data, despite of their complexity and diversity. Although based, in part, on a phenomenological model with a relatively large number of free parameters, we believe that our findings are a first step towards the construction of a more physical scenario. Our approach allows us to interpret the behaviour of the optical and X-ray afterglows in a coherent way, by a relatively simple scenario. Within this context, it is possible to explain why sometimes no jet break is observed; why, even if a jet break is observed, it is often chromatic and why the steepening after the jet break time is often shallower than predicted. Finally, the decay slope of the late prompt emission after the shallow phase is found to be remarkably similar to the time profile expected by the accretion rate of fall-back material (i.e.  ∝ t −5/3  ), suggesting that this can be the reason why the central engine can be active for a long time.  相似文献   

15.
Whether gamma-ray bursts are highly beamed or not is a very important question, as it has been pointed out that the beaming will lead to a sharp break in the afterglow light curves during the ultrarelativistic phase, with the breaking point determined by  Γ∼1/ θ 0  , where Γ is the bulk Lorentz factor and θ 0 is the initial half opening angle of the ejecta, and such a break is claimed to be present in the light curves of some GRBs. In this paper we will examine whether all the observed breaks in GRB afterglow light curves can be explained by jet effects. Here we present a detailed calculation of the jet evolution and emission, and have obtained a simple formula of bulk Lorentz factor evolution. We show that the light curves are very smoothly steepened by jet effect, and the shape of the light curve is determined by only one parameter –     , where E and n are the fireball energy and surrounding medium density, respectively. We find that for GRB 990123 and GRB 991216, the jet model can approximately fit their light curves, and the values of     are about 0.17 and 0.22, respectively. On the other hand, the light curves of GRB 990510, GRB 000301c, GRB 000926 and GRB 010222 cannot be fitted by the jet model, which suggests that the breaks may be caused by some other reasons, and the jet effect should be not the unique reason.  相似文献   

16.
We compute the luminosity function (LF) and the formation rate of long gamma-ray bursts (GRBs) by fitting the observed differential peak flux distribution obtained by the Burst and Transient Source Experiment (BATSE) in two different scenarios: (i) the GRB luminosity evolves with redshift and (ii) GRBs form preferentially in low-metallicity environments. In both cases, model predictions are consistent with the Swift number counts and with the number of detections at   z > 2.5  and >3.5. To discriminate between the two evolutionary scenarios, we compare the model results with the number of luminous bursts (i.e. with isotropic peak luminosity in excess of 1053 erg s−1) detected by Swift in its first 3 yr of mission. Our sample conservatively contains only bursts with good redshift determination and measured peak energy. We find that pure luminosity evolution models can account for the number of sure identifications. In the case of a pure density evolution scenario, models with   Z th > 0.3 Z  are ruled out with high confidence. For lower metallicity thresholds, the model results are still statistically consistent with available lower limits. However, many factors can increase the discrepancy between model results and data, indicating that some luminosity evolution in the GRB LF may be needed also for such low values of Z th. Finally, using these new constraints, we derive robust upper limits on the bright end of the GRB LF, showing that this cannot be steeper than ∼2.6.  相似文献   

17.
In the synchrotron radiation model, the polarization property depends on both the configuration of the magnetic field and the geometry of the visible emitting region. Some peculiar behaviours in the X-ray afterglows of gamma-ray bursts (GRBs) observed with Swift , such as energetic flares and a plateau followed by a sharp drop, might be highly linearly polarized because the outflows powering these behaviours may be dominated by Poynting flux. The breakdown of the symmetry of the visible emitting region may also be well hidden in the peculiar X-ray data and may give rise to interesting polarization signatures. In this paper, we focus on the polarization accompanying the very early sharp decline of GRB X-ray afterglows. We show that strong polarization evolution is possible in both the high latitude emission model and the dying central engine model, which are used to interpret this sharp X-ray decline. It is thus not easy to efficiently probe the physical origin of the very early X-ray sharp decline with future polarimetry. Strong polarization evolution is also possible in the decline phase of X-ray flares and in the shallow decline phase of X-ray light curves characterized by chromatic X-ray versus optical breaks. A detector such as the X-ray Telescope (XRT), but with polarization capability, on board a satellite like Swift would be suitable for testing our predictions.  相似文献   

18.
We investigate the possibility that the     relation between the peak energy E p of the  ν F ν  spectrum and energy output     for long-duration gamma-ray bursts (GRBs) arises from the external shock produced by the interaction of a relativistic outflow with the ambient medium. To that aim, we take into account the dependence of all parameters which determine E p and     on the radial distribution of the ambient medium density and find that the     relation can be explained if the medium around GRBs has a universal radial stratification. For various combinations of GRB radiative process (synchrotron or inverse-Compton) and dissipation mechanism (reverse or forward shock), we find that the circumburst medium must have a particle density with a radial distribution different than the   R −2  expected for the stellar wind corresponding to a constant mass-loss rate and terminal speed.  相似文献   

19.
We present the results of X-ray and optical observations of GRB 050712 performed by Swift . The X-ray light curve of this burst exhibits episodes of flares in the first 1000 s, the same epoch at which the UVOT detected an optical counterpart. A shallow X-ray decay, with a decay slope of  α=−0.73  , followed and lasted ∼70 ks. This behaviour can be explained in terms of activity of the gamma-ray burst 'inner engine', with the possibility that the last flare is caused by the interaction of the ejecta with the surrounding medium.
We also find interesting spectral parameters for the X-ray emission. In particular, data suggest the presence of an intrinsic absorption in the first 1000 s, which can be explained if circumburst medium clouds lie along the line of sight.  相似文献   

20.
We constrain the distance of the gamma-ray burst (GRB) prompt emission site from the explosion centre R , by determining the location of the electron's self-absorption frequency in the GRB prompt optical-to-X/γ-ray spectral energy distribution, assuming that the optical and the γ-ray emissions are among the same synchrotron radiation continuum of a group of hot electrons. All possible spectral regimes are considered in our analysis. The method has only two assumed parameters, namely the bulk Lorentz factor of the emitting source Γ and the magnetic field strength B in the emission region (with a weak dependence). We identify a small sample of four bursts that satisfy the following three criteria: (1) they all have simultaneous optical and γ-ray detections in multiple observational time intervals, (2) they all show temporal correlations between the optical and γ-ray light curves and (3) the optical emission is consistent with belonging to the same spectral component as the γ-ray emission. For all the time intervals of these four bursts, it is inferred that   R ≥ 1014  (Γ/300)3/4 ( B /105 G)1/4  cm. For a small fraction of the sample, the constraint can be pinned down to   R ≈ 1014–1015 cm  for  Γ∼ 300  . For a second sample of bursts with prompt optical non-detections, only upper limits on R can be obtained. We find no inconsistency between the R -constraints for this non-detection sample and those for the detection sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号