首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 207 毫秒
1.
大同市地面沉降特征及地下水开采的环境地质效应   总被引:1,自引:0,他引:1  
大同市是一个以地下水为主要供水水源的城市。地面沉降始于80年代初,大约在此后的10年中,随着地下水开采逐年增加,地面沉降不断加剧。1988 ̄1993年通过建立控制面积400km^2、网点80个的I等形变水准网,监测到平均沉降速率为17 ̄23mm/a,5年累计最大沉降量达124mm,地面沉降面积达160km^2。从其成因看,它包括了人工抽水土层压密、区域地壳构造下降和相邻区新层活动的牵引作用三者叠加  相似文献   

2.
山东地面沉降灾害以鲁北平原最为严重,在德州地区的地面沉降已对当地人民的正常生产和生活构成了威胁,并制约了当地经济的可持续发展。通过建立水准测量网络及监测运行,查明了德州市地面沉降的规模和范围,研究成果表明工作区均存在地面沉降现象,截至2010年,德城区由于地下水开采强度大,地面沉降幅度最大,目前地面累计沉降量为-1186.9~-636.9mm,多年平均沉降速率为59.35mm/a,形成了以市区西北部为中心的地面沉降盆地。超量开采深层地下水是造成大规模地面沉降的重要因素。  相似文献   

3.
昆明市区地面沉降的机理分析   总被引:4,自引:0,他引:4  
昆明市区坐落在昆明晚新生代断陷盆地内,广泛发育第四纪松散沉积层,以湖沼相粉砂和粘土为主,夹多层淤泥、泥炭及褐煤层。近年来市区发生了大规模的地面沉降现象,沉降范围日益扩大,沉降速率逐年加剧,新的沉降中心不断产生,小板桥、渔户村、大塘子和严家山等4个漏斗形沉降区已逐渐连成一体,构成最严重的沉降区域,其中前两个沉降区形成了总面积约300km^2的沉降带。截至1998年小板桥沉降中心的累计沉降量达236.2mm以上,平均沉降速率约20.0mm/a,近期高达31.1mm/a;河尾村沉降中心近几年下沉速率也达25.1mm/a。文章依据1987~1998年期间市区地面沉降的4期水准测量数据,结合区内地质及水文工程地质条件,系统分析地面沉降的空间分布和时程演化特征及其与各制约因素的关系。认为除起因于第四纪松散及半固结土层的自重压密尤其是粘性土、泥炭及褐煤层的压密固结和活动构造的差异性断块升降外,集中超采浅层孔隙水、深层基岩地下(热)水导致的水位持续降低和水位降落漏斗不断扩大及其复合叠加作用,使第四系释水固结,是地面沉降的主要诱发因素。因而,应从地下(热)水开采的合理布局及市政规划入手,采取有针对性的综合防治措施,建立完善的监测网络体系和灾害预警系统,及时开展和加强地面沉降各致害因素的定量评价和系统研究。  相似文献   

4.
北京平原区地面沉降现状及发展趋势分析   总被引:8,自引:3,他引:5  
北京平原区已成为国内地面沉降发育严重的区域之一,对北京城市规划建设的影响日益明显,其潜在危害倍受各级政府和社会各界关注。本文主要从沉降速率、累计沉降量以及沉降区域扩展等几个方面,重点描述北京平原区地面沉降现状,分析其特点与规律,对其发展趋势进行预测,并提出防治措施对策建议。  相似文献   

5.
本文首先通过分析地面沉降的诱发因素和研究对象,发现具有灰色特性,并且地面沉降随时间的变化曲线与Verhulst模型曲线相似,因而可以应用该模型预测太原市地面沉降。其次根据五个沉降中心中30个典型的水准观测点的累积沉降量建立了灰色Verhulst预测模型。最后预测了2010年与2015年的地面沉降发展趋势,得出2010年总体沉降范围向外扩展,小店中心扩大幅度较大,吴家堡年均沉降速率持续减缓;到2015年西张沉降趋势基本趋于稳定状态,万柏林和下元沉降速率减缓,吴家堡沉降幅度变化不大,万柏林、下元和吴家堡的沉降范围已连成一片,小店中心最大沉降量达1 508 mm,年均沉降速率为45 mm/a。  相似文献   

6.
苏锡常地区地面沉降灾害与经济损失分析   总被引:6,自引:1,他引:6  
地处长江三角洲腹地的苏锡常(苏州、无锡、常州)三市。因强烈开采地下水诱发的地面沉降地质灾害日趋严重,已成为国土开发、环境保护乃至经济发展的一大制约因素。1地面沉降灾害发育特征苏锡常地面沉降在60年代就初露端倪。目前,三城市沉降中心的累计最大沉降量均已超过10加nl_。苏州市自7O年代以来,经济突飞猛进,为满足工农业生产的需求,对第4、第皿承压水大量开采,引起地下水位大幅度下降,诱发了地面沉降灾害,197O~1983年苏州城区年均沉降量约10~20—。n,近年来,沉降速率有所加快,达20~4Omm/a,已形成齐门外大桥等数个…  相似文献   

7.
唐山沿海地区经济在迅速发展,沿海地区城市化规模在扩大,地下水开采量增大,地面沉降加剧.文中分析了唐山沿海地区的水文地质条件,概化为3个含水层、3个弱透水层,共6个压缩层.建立了三维地下水流和垂向一维压缩完全耦合模型.采用25a的观测资料校正模型,计算值与实测值拟合较好,模型具有较高的仿真性和适用性.预测了10a末的地面沉降;当地下水以现有开采量开采时,沉降中心累计达1192.3mm, 10a沉降352.3mm,沉降速率为35.23mma-1;当地下水的开采量在现有开采量的基础上增加10%时,沉降中心累计达1260.8mm, 10a沉降420.8mm,沉降速率为42.08mma-1; 当地下水的开采量在现有开采量的基础上减小10%时,沉降中心累计达1088.7mm, 10a沉降247.9mm,沉降速率为24.79mma-1.增大10%的地下水开采量, 10a地面沉降量增加68.5mm;减少10%的地下水开采量, 10a地面沉降量减少104.4mm.因此,控制地下水开采量是控制地面沉降的有效方法.  相似文献   

8.
一、前言上海自1921年发现地面沉降以来,到解放前夕,市区地面平均累计沉降量为0.639米。解放后随着工业生产的迅速发展,形成以市区为中心的碟形沉降洼地。1921年至1965年最大累计沉降量已达2.63米。由于地面沉降,地面标高减低。市区沿江一带地面低于3米正常潮水位的面积已达50平方公里。高潮时江水上岸,常遭水灾之害;下水道自流排出失效,暴雨后地面积水;桥墩下  相似文献   

9.
鲁北地区作为华北平原地面沉降的重要组成部分,其地面沉降问题日趋严重。以滨州博兴县为工程背景,基于研究区详细水文地质与工程地质资料以及历年地面沉降监测数据,系统分析该地区地下水动态分布及地面沉降分布演化特征。以Biot多孔介质固结理论为基础,建立博兴县地面沉降三维流 固耦合数值模型,还原地面沉降发展过程并预测分析不同地下水开采方案下的沉降演化规律。研究结果表明:博兴县浅层地下水位降幅呈现南大北小特点,深层地下水形成了以县城区为中心的椭圆形地下水区域降落漏斗;地面逐渐形成了分别以博兴县城区、湖滨镇和店子镇为沉降中心的三个小型沉降区,且有相互关联扩展的趋势;地面沉降三维流固耦合模型较为理想还原了研究区地面沉降发展过程,预测在现状地下水开采方案下未来10年内地面沉降仍以较大速率继续发展,累计沉降量超500mm的区域面积不断扩大,当减小20%现状地下水开采量时是较为合理有效的开采方案。  相似文献   

10.
宁波轨道交通规划区域地面沉降特征分析及监测   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对沿线地形地貌、工程地质、水文地质的调查,利用宁波地面沉降漏斗扩展动态结果、沉降中心各土层变形量统计和各土层累计沉降量,分析了宁波轨道规划区域地面沉降特征。针对宁波区域地面沉降监测存在的问题,提出由地面沉降基岩标、地面沉降分层标、水准点、孔隙水压力孔和地下水监测井等组成的宁波轨道交通地面沉降监测网布设方案,探讨了地面沉降监测及预警对策。轨道交通地面沉降监测网的建立将减轻地面沉降对轨道交通造成的影响。  相似文献   

11.
吴江市地面沉降与开采地下水关系的研究   总被引:3,自引:1,他引:3  
通过对吴江市地面沉降与开采地下水关系的研究,证实地面沉降在时空分布上与地下水开采量基本一致,地面沉降速率与地下水位呈明显的相关性,地下水累计开采量与地面累计沉降量有较好的相关性,运用太沙基的有效应力原理及一维团结理论,对地面沉降极限量进行估量,提出控制地面沉降的措施。  相似文献   

12.
地面沉降是北京平原区最主要的地质灾害之一,形成了多个沉降中心,其将对高速铁路运行的安全性产生不利影响。以我国首条高速城际轨道交通—京津城际高铁工程为例,分析铁路沿线地面沉降发育现状,以及该线路运营五年多来的差异沉降与坡度变化特征。结果显示,由区域沉降导致的差异沉降量较大,但沉降坡度变化目前仍处于高铁轨道平顺性的设计要求许可范围内。以该线路100年使用年限的设计指标为预测时段,按2013年度沉降速率及2008~2013年间的平均沉降速率分别估算因差异沉降而导致的线路坡度变化,其最大值为3‰左右,远低于20‰的设计临界线;但显著的累计沉降量无疑将影响线路维护及安全运行。指出须采取切实有效的地面沉降防治措施,以减缓高铁线路坡度的变化速率。  相似文献   

13.
温州市永强平原经济发达,工业化的发展和地下水无计划的开采,使永强平原地面沉降较为严重,永中累计沉降量超过300mm。为了更好地对永强平原地面沉降做出分析预测,本文通过研究区域地质环境、地下水开采量、地下水位的动态变化特征及2005~2010年的地面沉降监测资料,分析地面沉降速率、范围、沉降量,从而进一步探讨地面沉降与地层结构、地下水动态的关系,同时采用年开采量和年平均沉降速率预测2015年的地面沉降量。分析结果对深化永强平原地面沉降研究具有一定意义。  相似文献   

14.
由于抽汲地下水造成区域性的地面沉降现象,目前已成为世界各地较为普遍的现象。由地面沉降带来的危害性及其发展的日趋严重性,已为人们普遍关注和重视。在上海,从一九二○年抽用地下水以来,沉降中心区的最大累计沉降量已达二点六米,最大的年沉降量为10厘米,年沉降的速率随着年抽用地下水量的增加而加剧。一九六六年起,采取压缩与控制地下水的开采量、人工注水、以及开采层次的调整等对策措施以后,目前已使上海地区的地面沉降基本上得到了控制。但是,年复一年地周期性地抽汲地下水和人  相似文献   

15.
上海市近期地面沉降形势与对策建议   总被引:19,自引:2,他引:17  
1991 ̄1996年期间,上海中心城区年均沉降达10.2mm,约为前25年的2.5倍。外加海平面上升与上海地壳下沉,上海近期沉降加速形势引起了新闻媒介和市政府的高度重视。本文概述了上海近期地面沉降的面上和垂向分布特征。指出上海近期地面沉降加速是在浅部土层保持持续性压缩的基础上,第Ⅱ、Ⅲ含水层水位上升速率大大降低,第Ⅳ、Ⅴ含水层开采量大幅增加而地下水位下降速率加大及建筑工程大面积施工等多种因素所产生  相似文献   

16.
冲洪积平原地面沉降特征及主控因素——以北京平原为例   总被引:3,自引:0,他引:3  
周毅  罗郧  郭高轩  罗勇  雷坤超  王荣 《地质通报》2016,35(12):2100-2110
北京由于长期过量开采地下水,相继引发了一系列地质环境问题,其中地面沉降问题尤为突出。回顾了北京地面沉降发展历史,从平面和垂向上分析了地面沉降特征,在此基础上对北京冲洪积平原区沉降的主控因素进行了研究。结果表明:(1)平面上,沉降分为南、北2个大区,7个沉降中心。北区已由多个单独沉降中心区扩展成一个大区域,南区北扩明显;(2)垂向上,南区第一压缩层为沉降主贡献层,沉降占比42%,浅部地层沉降速率减小,深部地层沉降速率增加。土体变形特征为塑性变形,包含蠕变变形;北区第二压缩层为沉降主贡献层,沉降占比65%,浅部沉降量值很小且波动平缓,深部沉降量相对较大。土体变形特征为浅部以弹性变形为主,深部以塑性变形为主,包含蠕变变形;(3)沉降受构造作用及基底格架控制,北东方向受冲洪积扇上部单一砂卵砾石的地层条件控制扩展范围有限,沉降整体向北西、南东方向扩张;(4)地层结构决定沉降平面和垂向分布特征,尤其北部冲洪积与南部湖相沉积的差异,是产生深浅部地层沉降贡献率不同的重要因素;(5)地下水开采仍是沉降产生的主因,地下水漏斗的扩展和沉降中心的分布高度吻合,主要沉降层地下水位下降速率与沉降速率成正比。  相似文献   

17.
韩彦霞 《地下水》2012,(2):82-84
河北省沧州市多年来由于严重超采深层地下水,形成水位降落漏斗,中心埋深已近100 m,造成地面发生沉降。地面沉降于1970年开始出现,当时沉降量只有9 mm,但到2001年底,沉降中心累计已沉降到2 236mm。地面沉降导致城市内涝积水、危害水利防洪工程、埙坏建筑物、管道变形断裂、发生地裂缝、风暴潮危害进一步加重、浅层地下水位抬高引起环境恶化等问题。对地面沉降应采取积极、行之有效、经济上合理、技术上可行的防治措施,为子孙后代留下一个美好的家园。  相似文献   

18.
为掌握盘锦地区地面沉降现状,包括沉降中心位置、沉降区面积、沉降量、沉降速率等,选取2013-2016年覆盖研究区的19期C波段Radasat-2数据,采用SBAS-InSAR技术提取盘锦地区地面沉降速率和累积地面沉降量。结果表明,研究区内存在两个沉降区:曙四联沉降区,面积约为43.6km^2,最大沉降速率为-151.49mm/a;龙王村沉降区,面积约为33.28km^2,最大沉降速率为-119.55mm/a。与2007-2009年的3期ASAR数据得到的结果进行对比后发现,两者得到的沉降区基本一致。通过地面沉降监测数据的时序分析,累积沉降量和沉降区范围均随着时间不断增大。  相似文献   

19.
基于情景分析的天津市滨海新区地面沉降预测   总被引:2,自引:0,他引:2  
鉴于地面沉降演化的地质系统渐变性特征,从主要致灾因子考虑建立地面沉降数值模型。设计3种地下水开采情景,编译计算机程序预测地下水位动态变化过程中的地面沉降值。至2020年,在最不利、适中和最理想3种情景下天津市滨海新区最大累计沉降量分别达640 mm、520 mm和150mm;全区平均累计沉降量分别达268 mm、177 mm和95 mm。  相似文献   

20.
温岭市西部平原地面沉降特征及防治对策   总被引:1,自引:0,他引:1  
温岭市西部平原是经济活动最为活跃的地区.近20年以来,随着地下水开采量的不断增大,引发了严重的地面沉降,本文通过对不同时期的地形高程对比,分析确定了地面沉降量等特征,研究表明温岭市西部平原始地面高程仅2.5~3.3m,近20年来累计最大沉降量已大于1300mm.已成为浙江省地面沉降最为严重的地区之一,地面沉降导致沉降区内部分民房和耕地被水淹,直接影响到当地群众的生活和生产,本文根据温岭市实际,提出了地面沉降的防治措施和对策。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号