首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glaciers of the Hengduan Mountains play an important role in the hydrology processes of this region. In this study, the HBV Light model, which relies on a degree-day model to simulate glacier melting, was employed to simulate both glacier runoff and total runoff. The daily temperature and precipitation at the Hailuo Creek No. 1 Glacier from 1952 to 2009 were obtained from daily meteorological observed data at the glacier and from six national meteorological stations near the Hailuo Creek Basin. The daily air temperature, precipitation, runoff depth, and monthly potential evaporation in 1995, 1996, and 2002 were used to obtain a set of optimal parameters, and the annual total runoff and glacier runoff of the Hailuo Creek Glacier(1952–2009) were calculated using the HBV Light model. Results showed the average annual runoff in the Hailuo Creek Basin was 2,114 mm from 1952 to 2009, of which glacial melting accounted for about 1,078 mm. The river runoff in the Hailuo Creek catchment increased as a result of increased glacier runoff. Glacier runoff accounted for 51.1% of the Hailuo Creek stream flow in 1994 and increased to 72.6% in 2006. About 95% of the increased stream flow derived from the increased glacier runoff.  相似文献   

2.
乌鲁木齐河流域不同水体中的氧稳定同位素   总被引:1,自引:0,他引:1  
The variations of the stable oxygen isotope in different water mediums in Urumqi River Basin, China, are analyzed. The stable oxygen isotope in precipitation has marked temperature effect either under synoptic or seasonal scale at the head of Urumqi River. The linear regression equations of δ^18O against temperature are δ^18O=-0.94T-12.38 and δ^18O=1.29T-13.05 under the two time scales, respectively. The relatively large δ^18O/temperature slopes show the strong sensitivity of δ^18O in precipitation to temperature variation at the head of Urumqi River. According to the analyses on the δ^18O in precipitation sampled at three stations with different altitudes along Urumqi River, altitude effect is notable in the drainage basin. The δ^18O/altitude gradients have distinct differences: the gradient from Urumqi to Yuejinqiao is merely -0.054‰/hm, but -0.192‰/hm from Yuejinqiao to Daxigou, almost increasing by 2.6 times over the former. No altitude effect is found in surface firn the east branch of Glacier No. 1 at the head of Urumqi River, showing that precipitation in the glacier is from the cloud cluster with the same condensation level. Influenced by strong ablation and evaporation, the δ^18O in surface firn increases with increasing altitude sometimes. Survey has found that the δ^18O in meltwater at the terminus of Glacier No. 1 and in stream water at Total Control have the similar change trend with the former all smaller than the latter, which displays the different runoff recharges, and all mirror the regime of temperature in the same term basicallv.  相似文献   

3.
The accumulation and ablation of a glacier directly reflect its mass income and wastage, and ice temperature indicates glacier's climatic and dynamic conditions. Glaciological studies at Baishui Glacier No.1 in Mt. Yulong are important for estimating recent changes of the cryosphere in Hengduan Mountains. Increased glacier ablation and higher ice temperatures can cause the incidents of icefall. Therefore, it is important to conduct the study of glacier mass balance and ice temperature, but there are few studies in relation to glacier's mass balance and active-layer temperature in China's monsoonal temperate glacier region. Based on the field observations of mass balance and glacier temperature at Baishui Glacier No.1, its accumulation, ablation, net balance and near-surface ice temperature structure were analyzed and studied in this paper. Results showed that the accumulation period was ranged from October to the following mid-May, and the ablation period occurred from mid-May to October, suggesting that the ablation period of temperate glacier began about 15 days earlier than that of continental glaciers, while the accumulation period began about 15 days later. The glacier ablation rate was 6.47 cm d 1 at an elevation of 4600 m between June 23 and August 30, and it was 7.4 cm d 1 at 4800 m between June 26 and July 11 in 1982, moreover, they respectively increased to 9.2 cm d 1 and 10.8 cm d 1 in the corresponding period and altitude in 2009, indicating that glacier ablation has greatly intensified in the past years. The temperature of the main glacier body was close to melting point in summer, and it dropped from the glacier surface and reached a minimum value at a depth of 4-6 m in the ablation zone. The temperature then rose to around melting point with the depth increment. In winter, the ice temperature rose gradually with the increasing depth, and close to melting point at the depth of 10 m. Compared with the data from 1982, the glacier temperature has risen in the ablation zone in recent decades.  相似文献   

4.
The net accumulation record of ice core is one of the most reliable indicators for reconstructing precipitation changes in high mountains.A 20.12 m ice core was drilled in 2006 from the accumulation zone of Laohugou Glacier No.12 in the northeastern Tibetan Plateau,China.We obtained the precipitation from the ice core net accumulation during 1960-2006,and found out the relationship between Laohugou ice core record and other data from surrounding sites of the northeastern Tibetan Plateau.Results showed that during 1960-2006,the precipitation in the high mountains showed firstly an increasing trend,while during 1980 to 2006 it showed an obvious decreasing trend.Reconstructed precipitation change in the Laohugou glacier basin was consistent with the measured data from the nearby weather stations in the lower mountain of Subei,and the correlation coefficient was 0.619(P<0.001).However,the precipitation in the high mountain was about 3 times more than that of the lower mountain.The precipitation in Laohugou Glacier No.12 of the western Qilian Mountains corresponded well to the net accumulation of Dunde ice core during the same period,tree-ring reconstructed precipitation,the measured data of multiple meteorological stations in the northeastern Tibetan Plateau,and also the changes of adjacent PDSI drought index.Precipitation changes of the Laohugou glacier basin and other sites of the northeastern Tibetan Plateau had significantly positive correlation with ENSO,which implied that the regional alpine precipitation change was very likely to be influenced by ENSO.  相似文献   

5.
Studying the response to warming of hydrological systems in China’s temperate glacier region is essential in order to provide information required for sustainable development.The results indicated the warming climate has had an impact on the hydrological cycle.As the glacier area subject to melting has increased and the ablation season has become longer,the contribution of meltwater to annual river discharge has increased.The earlier onset of ablation at higher elevation glaciers has resulted in the period of minimum discharge occurring earlier in the year.Seasonal runoff variations are dominated by snow and glacier melt,and an increase of meltwater has resulted in changes of the annual water cycle in the Lijiang Basin and Hailuogou Basin.The increase amplitude of runoff in the downstream region of the glacial area is much stronger than that of precipitation,resulting from the prominent increase of meltwater from glacier region in two basins.Continued observations in the glacierized basins should be undertaken in order to monitor changes,to reveal the relationships between climate,glaciers,hydrology and water supplies,and to assist in maintaining sustainable regional development.  相似文献   

6.
Stable hydrogen and oxygen isotope has important implication on water and moisture transportation tracing research. Based on stable hydrogen(δD) and oxygen(δ~(18)O) isotope using a Picarro L1102-i and water chemistry(e.g. major ions, p H, EC and TDS) measurement, this study discussed the temporal variation and characteristics of stable hydrogen and oxygen isotope, chemistry(e.g. TDS, p H, EC, Ca~(2+), Mg~(2+), Na+ and Cl-) in various water bodies including glacier meltwater runoff, ice and snow, and precipitation at the Laohugou glacier basin during June 2012 to September 2013. Results showed that δD and δ~(18)O in the meltwater runoff varied obviously with the temporal change from June to September, showing firstly increasing trend and then decreasing trend, with the highest values in July with high air temperature and strong glacier melting, which could indicate the temporal change of glacier melting process and extent. Variations of δD and δ~(18)O in the runoff were similar with that of snow and ice on the glacier, and the values were also above the GMWL, which probably implied that the glacier runoff was mainly originated from glacier melting and precipitation supply. The glacier meltwater chemical type at the Laohugou glacier basin were mainly composed by Ca-Na-HCO_3-SO_4 and Ca-Mg-HCO_3-SO_4, which also varied evidently with the glacier melting process in summer. By analyzing the temporal change of stable hydrogen and oxygen isotope and chemistry in the melting period, we find it is easy to separate the components of the snow and ice, atmospheric precipitation and melt-runoff in the river, which could reflect the change process of glacier melting during the melting period, and thus this work can contribute to the glacier runoff change study of large-scale region by stable isotope and geochemical method in future.  相似文献   

7.
Glacier mass balance, the difference between accumulation and ablation at the glacier surface, is the direct reflection of the local climate regime. Under global warming, the simulation of glacier mass balance at the regional scale has attracted increasing interests. This study selects Urumqi Glacier No. 1 as the testbed for examining the transferability in space and time of two commonly used glacier mass balance simulation models: i.e., the Degree-Day Model(DDM) and the simplified Energy Balance Model(s EBM). Four experiments were carried out for assessing both models’ temporal and spatial transferability. The results show that the spatial transferability of both the DDM and s EBM is strong, whereas the temporal transferability of the DDM is relatively weak. For all four experiments, the overall simulation effect of the s EBM is better than that of the DDM. At the zone around Equilibrium Line Altitude(ELA), the DDM performed better than the s EBM.Also, the accuracy of parameters, including the lapse rate of air temperature and vertical gradient of precipitation at the glacier surface, is of great significance for improving the spatial transferability of both models.  相似文献   

8.
The movement of a glacier can redistribute glacier mass balance and change water and thermal conditions of the glacier.Thus,the glacier can maintain its dynamic balance.Surface velocity of a glacier is a basic feature of glacier movement.With successive monthly observations from 2006 to 2008,we obtained spatial and temporal variations for surface velocity of Glacier No.1 at the headwater of Urumqi River,Tianshan Mountain.Dynamic simulation was used to verify the findings.Results show that altitudinal distribution of glacier velocity was influenced by synthetic effects such as glacier thickness,slope,and bedrock morphology.However,seasonal variation was influenced by changing glacier thickness.  相似文献   

9.
Subglacially-formed debris-rich chemical deposits were found both on bedrock surface and in bedrock crevice on the edge of Qiangyong Glacier, one of the continental glaciers in Tibet. Grain size distribution, internal structures and chemical components of the chemical deposits were analyzed. It can be inferred that the temperature of some part of the ice-bedrock interface is close to the melting point and there exists pressure melting water under Qiangyong Glacier. Debris, especially those from continental aerosols, can release Ca^ in the water. At the lee-side of obstacles on glacier bed the CO2 in the melting water might escape from the water and the melting water might refreeze due to the dramatically reduced pressure, making the enrichment and precipitation of CaCO3. The existence of subglacial melting water and the process of regelation under Qiangyong Glacier indicate that sliding could contribute some proportion to the entire movement of Qiangyong Glacier and it belongs to multiolex cold-temperate glaciers.  相似文献   

10.
近50年气候变化背景下中国西部冰川面积状况分析(英文)   总被引:3,自引:1,他引:2  
Based on the glacier area variation records in the typical regions of China moni-tored by remote sensing, as well as the meteorological data of air temperature and precipitation from 139 stations and the 0℃ isotherm height from 28 stations, the glacier area shrinkage in China and its climatic background in the past half century was discussed. The initial glacier area calculated in this study was 23,982 km2 in the 1960s/1970s, but the present area was only 21,893 km2 in the 2000s. The area-weighted shrinking rate of glacier was 10.1%, and the interpolated annual percentage of area changes (APAC) of glacier was 0.3% a-1 since 1960. The high APAC was found at the Ili River Basin and the Junggar Interior Basin around the Tianshan Mountains, the Ob River Basin around the Altay Mountains, the Hexi Interior Basin around the Qilian Mountains, etc. The retreat of glacier was affected by the climatic background, and the influence on glacier of the slight-increased precipitation was counteracted by the significant warming in summer.  相似文献   

11.
Based on the glacier area variation records in the typical regions of China monitored by remote sensing, as well as the meteorological data of air temperature and precipitation from 139 stations and the 0℃ isotherm height from 28 stations, the glacier area shrinkage in China and its climatic background in the past half century was discussed. The initial glacier area calculated in this study was 23,982 km2 in the 1960s/1970s, but the present area was only 21,893 km2 in the 2000s. The area-weighted shrinking rate of glacier was 10.1%, and the interpolated annual percentage of area changes (APAC) of glacier was 0.3% a-1 since 1960. The high APAC was found at the Ili River Basin and the Junggar Interior Basin around the Tianshan Mountains, the Ob River Basin around the Altay Mountains, the Hexi Interior Basin around the Qilian Mountains, etc. The retreat of glacier was affected by the climatic background, and the influence on glacier of the slight-increased precipitation was counteracted by the significant warming in summer.  相似文献   

12.
Based on the data observed at two sites (site H1, 4,473 m a.s.l., and site H2, 4,696 m a.s.l.) on Qiyi Glacier in Qilian Mountains, China, by automatic weather station and spectral pyranometer during the period of June 9 through September 27, 2006, we investigated the temporal and spatial variations in surface albedo and spectral reflectance on the glacier. At site H1, the daily mean surface albedos fluctuated between 0.233 and 0.866, which were significantly affected by the air temperature on the glacier. It was found that the albedos clearly showed a diurnal cycle with the lowest value at noon at the two observation sites over the study period, and the difference of albedos between the upper site H2 and the lower site H1 also showed diurnal cycle but with the highest value at noon. The reflectance on the glacier was higher in the ultraviolet (0.28-0.4 μm) and visible (0.4-0.76 μm) wavelengths, lower in the near infrared wavelength (0.76-3 μm), which is quite contrary to the spectral reflectance on other ground surfaces. At the two observation sites, the spectral reflectance declined in all wavelengths with the ablation of snow generally. However, it declined drastically in ultraviolet (0.28-0.4 μm) and 0.6-0.7 μm wavelength, and declined less in 0.4-0.5 μm wavelength. On fresh snow surface, the spectral reflectance had the high values of 0.983 and 0.815 in the ultraviolet and visible (0.4-0.76 μm) wavelengths, respectively; but it had a relatively lower value of 0.671 in near infrared (0.76-3 μm) wavelengths. However, on dirty and melting ice surfaces, the reflectance had the very low values of 0.305 and 0.256 in the ultraviolet and visible wavelengths, with the lowest value of 0.082 in near infrared wavelengths. The spectral reflectance also showed a diurnal cycle like that of albedo. The diurnal variations of spectral reflectance on snow surface in ultraviolet and visible wavelength changed to a greater degree than that on ice surface. The diurnal variation curves were asymmetrical before and after t  相似文献   

13.
Due to global warming, glaciers on the Tibetan Plateau(TP) are experiencing widespread shrinkage; however, the mechanisms controlling glacier variations across the TP are still rather unclear, especially on the northeastern TP. In this study, a physically based, distributed surface-energy and mass-balance model was used to simulate glacier mass balance forced by meteorological data. The model was applied to Laohugou No. 12 Glacier, western Qilian Mountains, China, during2010~2012. The simulated albedo and mass balance were validated and calibrated by in situ measurements. The simulated annual glacier-wide mass balances were-385 mm water equivalent(w.e.) in 2010/2011 and-232 mm w.e. in 2011/2012,respectively. The mean equilibrium-line altitude(ELA) was 5,015 m a.s.l., during 2010~2012, which ascended by 215 m compared to that in the 1970 s. The mean accumulation area ratio(AAR) was 39% during the two years. Climatic-sensitivity experiments indicated that the change of glacier mass balance resulting from a 1.5 °C increase in air temperature could be offset by a 30% increase in annual precipitation. The glacier mass balance varied linearly with precipitation, at a rate of130 mm w.e. per 10% change in total precipitation.  相似文献   

14.
Mountains have been described as the water towers of the world. Almost all major rivers have their sources in mountains; glaciers are important water resources that contribute meltwater to river discharge. Glaciers participate in the global water cycle and, with their solid water storage, are an important component of the water balance. As solid reservoirs, glaciers continue to receive the mass nourishment of solid precipitation from the atmosphere, and their meltwater feed and regulate river discharge. Physical changes in glaciers are an indicator of climate change. Over the past half century, the global temperature has increased by 1–2 °C, which emphasizes the urgent task of monitoring glaciers and predicting their trend. As an example, we have investigated, researched, and surveyed Glacier No.1 in the Urumqi River source, Tianshan (abbr. Glacier No.1 Tianshan or Glacier No.1) for half a century. We have found an increase by degrees of the glacial regression during the last 400 years and discovered a terminal moraine which is forming today. The global temperature is rising continually, while the local glacial temperature is 0.4 times that of the global temperature change. Thus, we forecast that Glacier No.1 Tianshan will disappear during the late 21st Century (2074–2100 A.D.).  相似文献   

15.
Hydrology of the high glacierized region in the Tianshan Mountains is an important water resource for arid and semiarid areas of China, even Central Asia. The hydrological process is complex to understand, due to the high variability in climate and the lack of hydrometeorological data. Based on field observations, the present study analyzes the meteorological and hydrological characteristics of the Koxkar Glacier River Basin during 2008-2011; and the factors influencing climate impact on glacier hydrology are discussed. The results show that precipitation at the terminus of the glacier was 426.2 mm, 471.8 mm, 624.9 mm, and 532 mm in 2008, 2009, 2010, and 2011, respectively. Discharge increases starting in May,reaches its highest value in July and August, and then starts to decrease. The mean annual discharge was 118.23×106 m~3 during the four years observed, with 87.0% occurring in the ablation season(May-September). During the study period,the runoff in August accounted for 29% of total streamflow, followed by July(22%) and June(14%). The runoff exhibited obviously high interannual variability from April to September, induced by drastic changes in climate factors. Discharge autocorrelations are very high for all the years. The climate factors show different influences on discharge. The highest correlation R between daily temperature and discharge was for a time lag of 2-3 days on the Koxkar Glacier(0.66-0.76).The daily depth of runoff to daily temperature and daily water vapor pressure had an R~2 value of 0.56 and 0.69, respectively, which could be described by an exponential function. A closer relationship is found between runoff and either temperature or water vapor pressure on a monthly scale; the R~2 values are 0.65 and 0.78, respectively. The study helps us to understand the mechanisms of the hydrological-meteorological system of typical regional glaciers and to provide a reference for glacier-runoff simulations and water-resource management.  相似文献   

16.
Based on hydrological data observed at Lijin gauging station from 1950 to 2008, the temporal changes of water discharge and sediment load of the Yellow River into the sea were analyzed by the wavelet analysis, and their impacts on the estuary were investigated in different periods based on the measured coastline and bathymetry data. The results show that: (1) there were three significant periodicities, i.e. annual (0.5-1.0-year), internnual (3.0-6.5-year) and decadal (10.1-14.2-year), in the variations of water discharge and sedi- ment load into the sea, which might be related to the periodic variations of El Nino and Southern Oscillation at long-term timescales. Variations of water discharge and sediment load were varying in various timescales, and their periodic variations were not significant during the 1970s-2000s due to strong human disturbances. (2) The long-term variation of water discharge and sediment load into the sea has shown a stepwise decrease since the 1950s due to the combined influences of human activities and precipitation decrease in the Yellow River Basin, and the human activities were the main cause for the decrease of water discharge and sediment load. (3) The water discharge and sediment load into the sea greatly influenced the evolution of the Yellow River Estuary, especially the stretch rate of coastline and the deposition rate of the sub-aqueous topography off the estuary which deposited since 1976.  相似文献   

17.
Surface snow samples of different altitudes and snow pit samples were collected from Glacier No.1 at the Urumqi River Head, Tianshan. Denaturing gradient gel electrophoresis (DGGE) was used to examine the diversity and temporal-spatial characteristics of eukaryotic microorganisms with different altitudes and depths. Results show that the eukaryotic microorganisms belong to four kingdoms—Viridiplantae, Fungi, Amoebozoa, and Alveolata. Among them, algae (especially Chlamydomonadales) were the dominant group. The diversity of eukaryotic microorganisms was negatively correlated with altitude and accumulation time, but positively correlated with δ18O values. These results indicate that temperature is the main factor for the temporal- spatial change of eukaryotic microorganisms, and the diversity of eukaryotic microorganisms could be an index for climate and environmental change.  相似文献   

18.
Glaciers and snow are major constituents of solid water bodies in mountains; they can regulate the stability of local water sources. However, they are strongly affected by climate change. This study focused on the Tianshan Mountains, using glacier and snow datasets to analyse variations in glaciers, snow, water storage, and runoff. Three typical river basins(Aksu, Kaidou, and Urumqi Rivers) were selected to interpret the impacts of glacier and snow changes on regional water resources in the Tianshan Mountains. The results exhibited a nonlinear functional relationship between glacial retreat rate and area, demonstrating that small glacial retreat is more sensitive under climate change. Further, the glacial retreat rate at the low-middle elevation zone was seen to be faster than that at the high elevation zone. The regional average terrestrial water storage(TWS) decrease rate in the Tianshan Mountains was –0.7±1.53 cm/a during 2003–2015. The highest TWS deficit region was located in the central part of the Tianshan Mountains, which was closely related to sharp glacial retreats. The increases in glacier and snow meltwater led to an increase in runoff in the three typical river basins, especially that of the Aksu River(0.4×10~8 m~3/a). The decreasing and thinning of areas, and increasing equilibrium line altitude(ELV) of glaciers have been the major causes for the decrease in runoff in the three river basins since the mid-1990 s. Therefore, the results reveal the mechanisms causing the impacts of glaciers and snow reduction in mountains on regional water resources under climate change, and provide a reference for water resources management in the mountainous river basins.  相似文献   

19.
Based upon the 1970 aero-photo topographic map, and TM/ETM satellite images taken in 1991 and 2000, the authors artificially interpreted boundaries of lake and glaciers in Nam Co Catchment, and quantified lake-glacier area variations in different stages by "integrated method" with the support of GIS. Results show that from 1970 to 2000, lake area increased from 1942.34 km^2 to 1979.79 km^2 at a rate of 1.27 km^2/a, while glacier area decreased from 167.62 km^2 to 141.88 km^2 at a rate of 0.86 km^2/a. The increasing rate of lake in 1991-2000 was 1.76 km^2/a that was faster than 1.03 km^2/a in 1970-1991, while in the same period of time, the shrinking rates of glaciers were 0.97 km^2/a and 0.80 km^2/a respectively. Important factors, relevant to lake and glacier response to the climate, such as air temperature, precipitation, potential evapotranspiration and their values in warm and cold seasons, were discussed. The result suggests that temperature increasing is the main reason for the accelerated melting of glaciers. Lake expansion is mainly induced by the increase of the glacier melting water, increase of precipitation and obvious decrease of potential evapotranspiration. Precipitation, evaporation and their linkages with lake enlargement on regional scale need to be thoroughly studied under the background of global warming and glacier retreating.  相似文献   

20.
We describe a radio-echo sounding (RES) survey for the determination of ice thickness, subglacial topography and ice volume of Glacier No. 1 , in Tien Shan, China, using ground-penetrating radar (GPR). Radar data were collected with 100-MHz antennas that were spaced at 4 m with a step size of 8 m. The images produced from radar survey clearly show the continuity of bedrock echoes and the undulation features of the bedrock surface. Radar results show that the maximum ice thickness of Glacier No. 1 is 133 m, the thickness of the east branch of Glacier No. 1 averages at 58. 77 m while that of the west branch of Glacier No. 1 averages at 44. 84 m. Calculation on ice volume indicates that the ice volume of the east branch of Glacier No. 1 is 51. 87 × 106 m3 and that of the west branch of Glacier No. 1 is 20. 21 × 106 m3. The amplitude of the undulation of the bedrock surface topography revealed by radar profiles is larger than that of the glacier surface topography, indicating that the surface relief does  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号