首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
在充分调查万州区地质环境及滑坡灾害基本特征的基础上,根据资料的有效性和可获得性,选取地表高程、坡度、地层岩性、地质构造、土地利用类型、区域交通建设及河流侵蚀冲刷7个影响滑坡发生的因素作为评价指标,采用AHP法确定各个指标权重并建立滑坡灾害危险性指数模型,通过GIS系统的空间分析功能进行栅格运算,得出研究区滑坡灾害危险性分区。采用上述指标和方法将重庆市万州区的滑坡灾害划分为极高危险区、高危险区、中危险区、低危险区和极低危险区,划分结果符合该区滑坡灾害的实际情况。  相似文献   

2.
基于GIS的重庆市万州区滑坡灾害危险性评价   总被引:1,自引:0,他引:1  
在充分调查万州区地质环境及滑坡灾害基本特征的基础上,根据资料的有效性和可获得性,选取地表高程、坡度、地层岩性、地质构造、土地利用类型、区域交通建设和河流侵蚀冲刷7个影响滑坡发生的因素作为评价指标,采用AHP法确定各个指标的权重并建立滑坡灾害危险性指数模型,通过GIS系统的空间分析功能进行栅格运算,得出研究区滑坡灾害危险性分区.采用上述指标和方法将重庆市万州区的滑坡灾害划分为极高危险区、高危险区、中危险区、低危险区和极低危险区,划分结果符合该区滑坡灾害的实际情况.  相似文献   

3.
文章以德格县为研究区,以7 m DEM进行地形分析处理,并结合相关调查数据建立了德格县滑坡灾害数据库,通过选取的地震峰值加速度、断裂带、水系、坡度、坡向、高程、岩性等7个指标,在GIS技术支持下,利用信息量模型(I)、层次分析法模型(AHP)、确定性系数模型(CF)相互耦合对研究区灾害敏感性评价,再分析得到活动频率因素对研究区全县域进行危险性评价,将得到的结果分成4个区域,分别为高危险区、较高危险区、中危险区、低危险区,其中高、较高危险区占总面积2.23%。其中,滑坡灾害占总灾害的42%。评价结果与实际调查结果符合程度较高,能够为该地域未进行实地调查的地方进行相关滑坡灾害的预测预报,并对安全防治提供技术支持,亦可以为其他地区滑坡灾害危险性评价提供理论指导和技术参考。  相似文献   

4.
浙江省永嘉县滑坡灾害危险性区划   总被引:7,自引:0,他引:7  
永嘉县是浙江省滑坡灾害发生频繁的区县之一,其滑坡受地质、地形和人类工程活动等因素的影响。本文根据永嘉县滑坡灾害分布情况,选择了影响滑坡分布的主要因素,将各种因子归一化处理后转换成相同分辨率的定量数据,选择了逻辑回归分析模型和信息量模型进行滑坡灾害危险性评价。在逻辑回归模型中,利用SPSS软件,通过逐步回归分析筛选出影响滑坡的最直接的因子,计算出各个因子的回归系数,得到逻辑回归方程,据此编制了危险性预测分区图。在信息量模型中,通过MAPGIS软件及其二次开发的信息量模型,对永嘉县滑坡灾害进行了危险性区划,并依信息量法的结果编制了该区的危险性预测分区图。两种方法所编制的危险性分区图中高危险区和中危险区重合率达到了87%,具有很高的一致性,起到了相互验证的作用,为滑坡的有效防治提供了依据。最后根据"云娜"台风期间永嘉县实际灾害发生情况的资料分析,新灾害点绝大部分落在危险性预测区中的高危险区,表明模型的预测准确率很高。  相似文献   

5.
为了弥补滑坡灾害危险性区划研究中影响因子和等级划分的不确定性,结合前人研究成果,依据斜坡几何形态、岩性、地质构造、河流侵蚀、土地利用类型、人类工程活动、降水条件等影响因子与研究区实际已发生的滑坡灾害数之间的关系,编制重庆市万州区滑坡灾害危险性评价标准,并基于GIS技术和信息量模型法,计算滑坡评价因子的信息量,就万州区滑坡危险性进行区划,最后基于乡镇行政区对该区滑坡危险性区划进行细化。结果表明:建设用地、坡高为90~200 m的地形、1 024~1 060 mm的年降雨量以及侏罗系中统上沙溪庙组岩层等因素对万州区滑坡发生影响较大;根据滑坡灾害危险性评价标准,万州区滑坡灾害被划分为高、中、低、极低等4个危险区;应用信息量模型法得到的万州区滑坡危险性区划与实际情况比较吻合;高危险区和中危险区面积分别为564.4 km2和848.6 km2,分别占万州区总面积的16.3%和24.5%,主要分布于长江干流及支流两岸的居民相对集中区以及公路干线地段;高危险和中危险乡镇主要分布在万州区经济较为发达的长江干流两岸,尤其是左岸的黄柏乡、太龙镇、天城镇、李河镇等以及万州主城区。  相似文献   

6.
滑坡灾害持续影响着人民生命财产安全和地区社会经济可持续发展,滑坡危险性评价能够为防灾减灾和区域规划提供有效的理论依据。以福建省南平市为研究区,区内1711个历史滑坡灾害点,选择高程、坡度、坡向、曲率、地质岩性、土壤类型、降雨、水系、土地利用类型、公路和铁路共11个影响因子构成基本评价体系。使用Spearman相关系数对各因子进行共线性分析。基于1711个滑坡样本和1711个随机选取的非滑坡样本数据,利用人工神经网络模型对研究区进行了滑坡危险性评价,并利用混淆矩阵和接收者操作特征曲线(ROC)对模型进行验证。结果表明:混淆矩阵精度84.91%,ROC曲线下面积AUC值0.93,说明模型具有较高精度和预测率。使用自然间断法将滑坡危险性分为5个等级,结果表明研究区内危险性最高地区位于延平区和浦城县,顺昌县和松溪县次之,其余地区多为低危险区和较低危险区。研究结果可为当地区域规划和防灾减灾工程提供一定的理论依据和科学指导。  相似文献   

7.
危险性评价是滑坡灾害预防与减灾工作首要解决的重要内容.在地理信息系统技术支持下, 以山地灾害频发区——小江流域作为研究对象, 选取坡度、土体粘聚力和内摩擦角这3个评价指标构建滑坡危险性分级评价指标体系, 将投影寻踪技术运用到滑坡危险性等级评价中, 对评价样本的各指标因素进行线性投影, 以最优投影方向所对应的投影特征值作为评价依据, 建立了滑坡危险性等级综合评价模型, 绘制了滑坡危险性等级分布图.结果表明: 研究区极高危险区、高危险区、中等危险区、低危险区和极低危险区的面积比例为14.28∶9.41∶69.12∶7.00∶0.19;根据所建立的5级评价指标体系对研究区60个土质滑坡点资料进行了验证, 在占研究区总面积23.69%的高、极高危险区的小范围内, 实际发生土质滑坡数量45个, 占总土质滑坡数量的75.00%;中等危险性级别以上区域拥有的土质滑坡数量占全部土质滑坡的96.67%;不同危险性级别的滑坡体积方量统计结果表明, 滑坡体积方量密度随危险性级别的提高而迅速增加.对比评价结果及实测结果可知, 投影寻踪分级结果符合实际情况, 证实了该方法的正确性, 为滑坡危险性评价提供了一条新思路.   相似文献   

8.
三峡库区重庆市丰都县滑坡灾害危险性评价   总被引:6,自引:10,他引:6  
在对三峡库区丰都县滑坡灾害调查和统计分析的基础上,初步概括了滑坡灾害的分布特征和主要影响因素,进而利用综合信息模型评价了丰都县滑坡灾害的危险性,将丰都县滑坡灾害的危险性划分为高危险区、中危险区、低危险区和基本安全区4个等级。其中,高危险区和中危险区分别占全县总面积的2.6%和23.2%,主要分布在长江干流及其支流两岸的居民相对集中区,不同规模的滑坡灾害经常发生,因此潜在危害也很大;低危险区占全县总面积的47.5%,偶有小规模的滑坡灾害发生;基本安全区占全县总面积的25.5%,在人为因素的诱发下可能偶有小规模的滑坡灾害发生,适合于大型工程建设和城镇居民点建设。  相似文献   

9.
本文以涪江上游南坝-水晶流域滑坡为研究对象, 选取坡度、高程、坡向、岩性、岸坡结构等9个影响因子, 基于GIS平台, 采用滑坡确定性系数模型与层次分析模型相结合的 (CF-AHP) 模型对研究区进行滑坡危险性评价。根据评价结果, 将研究区划分为极高危险区 (18. 57%) 、高危险区 (38. 71%) 、中危险区 (23. 92%) 、低危险区 (18. 8%) 四个等级。利用危险性评价结果对比法和受试者工作特征曲线 (ROC) 对评价结果进行验证, 得到ROC曲线下面积AUC值为88. 36%, 表明CF-AHP模型能够较客观准确地对研究区滑坡危险性评价。  相似文献   

10.
区域地质灾害评价是减灾防治的重要非工程手段,构建区域滑坡危险性评价模型,对提高地质灾害评价精度和防治效率具有重要意义。文章以滑坡频发的大渡河中游地区为研究区,初选高程、坡度、坡向、地震动参数、土壤类型、工程地质岩组、年平均降雨量和地形湿度指数(TWI)等13个因子,建立滑坡危险性初级评价指标体系。考虑各因子对滑坡形成贡献程度的不同和目前常权栅格叠加方式对滑坡危险性评价结果精度的影响,引入了地理探测器和变权栅格叠加,构建了地理探测器、信息量法和变权栅格叠加的组合模型(GDIV模型)。基于2021年四川省1∶50 000地质灾害风险调查中313处滑坡地质灾害隐患点,开展基于GDIV模型的大渡河中游地区滑坡危险性评价,并与逻辑回归模型和信息量模型的组合模型(LRI模型)评价结果进行对比分析。结果表明:研究区以中危险及以下危险区为主,占总面积的78.3%,极高和高危险区主要分布在大渡河、革什扎河和东谷河两岸的低海拔地区;与LRI模型相比,基于GDIV模型的评价结果精度更高,其受试者工作特征(ROC)曲线的线下面积(AUC)值为0.917。文章提出的GDIV模型提高了区域滑坡危险性评价精度,可为...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号