首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatially variable sedimentation patterns are described for a small montane lake in southwestern British Columbia through the analysis of contemporary (20th century) varve sequences recovered from a high-density sediment coring program. Average, moderate, extreme, and localized depositional regimes, resolved at decadal to intra-annual scales, are differentiated for the Green Lake system from the stratigraphic record based on the volume and areal extent of the associated deposits. Average-regime sedimentation is mediated by the reliable annual freshet for the catchment. Moderate-regime events of the contemporary period (1930–2000) include periods of rapid glacial recession, extreme late-summer and autumn rainstorm-generated floods, and unusual snowmelt conditions. Only exceptional rainstorm events have led to extreme-regime sedimentation in the lake basin. Spatial sedimentation patterns are quantified by empirically derived surface models. Systematic differences are observed between both moderate and extreme sediment delivery events and the defined average-regime model. Substantial differences are observed between average and extreme regimes because of associated changes in sediment bypassing effects, intermediate sub-basin trapping, and sediment focusing mechanisms. Localized deposits coincide with isolated winter rainstorms in the region and anthropogenic disturbances along lake shorelines. Results indicate that the assumption of areal continuity in lacustrine sedimentation is not always appropriate for making comparisons between the identified depositional regimes. Sediment sampling programs that do not capture these spatially fluctuating sedimentation patterns may lead to biased accumulation chronologies and erroneous paleoenvironmental assessments of important hydroclimatic events.  相似文献   

2.
Varved minerogenic sediments from glacial-fed Blue Lake, northern Alaska, are used to investigate late Holocene climate variability. Varve-thickness measurements track summer temperature recorded at Atigun Pass, located 41 km east at a similar elevation (r 2 = 0.31, P = 0.08). Results indicate that climate in the Brooks Range from 10 to 730 AD (varve year) was warm with precipitation inferred to be higher than during the twentieth century. The varve-temperature relationship for this period was likely compromised and not used in our temperature reconstruction because the glacier was greatly reduced, or absent, exposing sub-glacial sediments to erosion from enhanced precipitation. Varve-inferred summer temperatures and precipitation decreased after 730 AD, averaging 0.4°C above the last millennial average (LMA = 4.2°C) from 730 to 850 AD, and 0.1°C above the LMA from 850 to 980 AD. Cooling culminated between 980 and 1030 AD with temperatures 0.7°C below the LMA. Varve-inferred summer temperatures increased between 1030 and 1620 AD to the LMA, though the period between 1260 and 1350 AD was 0.2°C below the LMA. Although there is no equivalent to the European Medieval Warm Period in the Blue Lake record, two warm intervals occurred from 1350 to 1450 AD and 1500 to 1620 AD (0.4 and 0.3°C above the LMA, respectively). During the Little Ice Age (LIA; 1620 to 1880 AD), inferred summer temperature averaged 0.2°C below the LMA. After 1880 AD, inferred summer temperature increased to 0.8°C above the LMA, glaciers retreated, but aridity persisted based on a number of regional paleoclimate records. Despite warming and glacial retreat, varve thicknesses have not achieved pre-730 AD levels. This reflects limited sediment availability and transport due to a less extensive retreat compared to the first millennium, and continued relative aridity. Overall, the Blue Lake record is similar to varve records from the eastern Canadian Arctic that document a cool LIA and twentieth century warming. However, the occurrence and timing of events, such as the LIA and Medieval Warm Period, varies considerably among records, suggesting heterogeneous climatic patterns across the North American Arctic.
Broxton W. BirdEmail:
  相似文献   

3.
Iceberg Lake, a glacier-dammed proglacial lake in southern Alaska, contains a 1,500+ year varve record complicated by a history of episodic lake-level changes associated with fluctuations in ice-dam thickness and position. To better understand the basinwide glaciolacustrine response to late Holocene climate variability, we collected five cores from two areas in the lake, including a previously unexamined deepwater area distal from inlet streams. Based on eight AMS 14C dates, and correlations among our cores and previously documented outcrops, we describe ~1,000?years of stratigraphy from each area. Deposition at both areas was dominated by fine-grained varves, but cores from the distal area uniquely contain coarser deposits, including rhythmites and graded sand beds, that we attribute to deposition of a subaqueous outwash fan-delta between ~1250 and 1650 AD. We attribute this event to thickening of the impounding glacier and consequent incursion of the glacier margin, and an associated lateral moraine, into the lake. This result suggests an early onset of the Little Ice Age (LIA) glacial advance in this region. Changes in basinwide circulation and sedimentation associated with this event probably caused minor thickening of varves used previously to reconstruct summer temperatures, reducing sensitivity of that record to early LIA cooling. The basinwide impact of this event illustrates the potentially significant spatial and temporal variability of lacustrine sedimentary processes in dynamic glacial landscapes.  相似文献   

4.
We inferred the temperature and environmental conditions of Smreczynski Staw Lake in the Tatra Mountains, southern Poland, from a sediment record covering the last 1,500 years. Paleobiological methods (cladocera, chironomid, and diatom analyses) were used together with sedimentological analysis and dating. These studies provide new information about the timing and character of climate fluctuations during the Little Ice Age (LIA). The Medieval Warm Period ended in the Tatra region at the beginning of the thirteenth century, followed by the first episode of the LIA. The LIA was a relatively long but unstable period. The first part of the LIA was cold in the Tatra Mountains, without evidence of increasing precipitation, while the second part, after AD 1540, was cold and humid. The LIA terminated in the Tatra Mountains at the beginning of the twentieth century, although some aspects of its climatic and sedimentological regime continued until the 1920s. We also found some evidence of warming and acidification during the twentieth century.  相似文献   

5.
A 4450-year sequence of varves, spanning the entire Neoglacialinterval, has been recovered from Hector Lake, Alberta. The varve record is compared to records of regional glacial history toevaluate therelationship between alpine glacial activity and sediment production. Glacial controls on sediment production vary with the timescale considered. Long-term variations in sedimentation rate, of centuries to millennial duration, reflect changes in ice extent of the same timescale. Superimposed on these long-term changes is decadal-scale variability that is complexly related to upvalley ice extent. Over the short term, high sedimentation rates may be associated with glacier maximum stands, or with periods of glacier advance or recession. Overthe last millennium at least, highest sedimentation rates appear to have been associated with transitional periods, preceding or post-dating maximum ice stands, rather than with times of maximum ice extent.  相似文献   

6.
The varved sediment record from glacially-fed Lake Tuborg, Ellesmere Island, Nunavut, shows that only three large jökulhlaups have occurred there in the last millennium: 2003, 1993, and 1960. Detailed analyses of sediment microstructure and particle size, combined with in-situ hydrometeorological and limnological process studies, allowed jökulhlaup facies identification and discrimination from deposits from other processes. Deposits from large jökulhlaups are anomalously thick, typically lack internal structure, have sharp bases, and fine upwards. The ice-dammed lake above Lake Tuborg (the source of the jökulhlaups) likely changed its drainage style in 1960, from ice-dam overtopping to ice-dam flotation and glacial tunnel enlargement by melt widening, which allowed the lake to drain completely and catastrophically. Complete drainage of ice-dammed lakes by ice-dam flotation is rare in the region is due to the pervasiveness of cold-based ice. Twentieth century warming is likely responsible for some combination of dam thinning, lake expansion and deepening, and changing the thermal regime at the base of the dam. Anomalously thick individual varves were periodically deposited beginning in the nineteenth century, and their thickness increased with time. This likely reflects a combination of increased ice dam overtopping, subaqueous slope failures, sediment availability and rising air temperature. The varve record presented here significantly correlates with a previous, shorter record from Lake Tuborg. However, generally weak correlations are found between the new varve time series, regional records of air temperature, and glacial melt from ice cores on the Agassiz Ice Cap. It is hypothesized that on short timescales, sedimentation at the coring location reflects a complex and varying integration of multiple hydroclimatic, geomorphic and limnologic influences.  相似文献   

7.
The lack of radiocarbon ages and correlated varve sequences in southeastern New England has left the deglacial chronology of the region poorly constrained. A 265-year varve series from Glacial Lake Narragansett was constructed from eight continuous sediment cores collected from the Providence River, Narragansett Bay, Rhode Island. This varve series could not be correlated with either the North American Varve Chronology or other varve sequences from southern New England or southeastern New York. The uncorrelated varve sequences presented here represent the minimum time of deposition within the northern segment of Glacial Lake Narragansett. These sequences, used in conjunction with the calibrated North American Varve Chronology and cosmogenic exposure ages from recessional end moraines, provide minimum (>19,400 cal BP) and maximum (<20,500 cal BP) ages for Glacial Lake Narragansett. Correlations with the updated Greenland (NGRIP and GRIP) ice core records suggest that cold periods associated with moraine formation are 200–250 years older than the cosmogenic exposure ages. Whereas many studies refer to the last glacial maximum occurring from 20,000 to 18,000 cal BP, the constrained age of Glacial Lake Narragansett suggests that at least for the southeastern portion of the Laurentide Ice Sheet, deglaciation was well underway by this time.  相似文献   

8.
A new lichen dating method and new moraine observations enabled us to improve the chronology of glacier advances in the Cordillera Blanca (Peru) during the Little Ice Age (LIA). Our results reveal that an early LIA glacial advance occurred around AD 1330 ± 29. However, a second major glacial advance at the beginning of the 17th century overlapped the earlier stage for most glaciers. Hence, this second glacial stage, dated from AD 1630 ± 27, is considered as the LIA maximum glacial advance in the Cordillera Blanca. During the 17th–18th centuries, at least three glacial advances were recorded synchronously for the different glaciers (AD 1670 ± 24, 1730 ± 21, and 1760 ± 19). The moraines corresponding to the two first stages are close to the one in 1630 suggesting a slow recession of about 18% in the total length of the glacier. From the LIA maximum extent to the beginning of the 20th century, the 24 glaciers have retreated a distance of about 1000 m, corresponding to a reduction of 30% in their length. This rate is comparable to that observed during the 20th century. Estimates of palaeo-Equilibrium Line Altitudes show an increase in altitude of about 100 m from the LIA maximum glacial extension at the beginning of the 17th century to the beginning of the 20th century. Because long time series are not available for precipitation and temperature, this glacial retreat is difficult to explain by past climate changes. However, there is a fair correspondence between changes in glacier length and the δ18O recorded in the Quelccaya ice core at a century timescale. Our current knowledge of tropical glaciers and isotope variations leads us to suggest that this common tropical signal reflects a change from a wet LIA to the drier conditions of today. Finally, a remarkable synchronicity is observed with glacial variations in Bolivia, suggesting a common regional climatic pattern during the LIA.  相似文献   

9.
Clastic varved sediments from Donard Lake, in the Cape Dyer region of Baffin Island, provide a 1250 yr record of decadal-to-centennial scale climate variability. Donard Lake experiences strong seasonal fluctuations in runoff and sediment fluxes due to the summer melting of the Caribou Glacier, which presently dominates its catchment. The seasonal variation in sediment supply results in the annual deposition of laminae couplets. A radiocarbon date measured on moss fragments, with a calibrated age of 860 ± 80 yrs before present (BP), is in close agreement with the age based on paired-layer counts. Together with the fabric of the laminae determined from microscope analysis, the age agreement demonstrates that the laminae couplets are annually deposited varves. Comparisons of varve thickness and average summer temperature from nearby Cape Dyer show a significant positive correlation (r= 0.57 for annual records, r = 0.82 for 3-yr averages), indicating that varve thickness reflects changes in average summer temperature. Varve thickness was used to reconstruct average summer temperatures for the past 1250 yrs, and shows abrupt shifts and large amplitude decadal-to-centennial scale variability throughout the record. The most prominent feature of the record is a period of elevated summer temperatures from 1200-1375 AD, followed by cooler conditions from 1375-1820 AD, coincident with the Little Ice Age.  相似文献   

10.
A composite record of varve sedimentation is presented from high arctic meromictic Lake C2. The combination of a short runoff and sediment transport season with the strong density stratification of the lake lead to the formation of annual sediment couplets. This conclusion was confirmed by 210Pb determinations. High intra-lake correlation of the varves allowed the construction of a composite record of varve sedimentation from overlapping segments of multiple sediment cores. Cross-dating between core segments isolated counting errors in individual cores, that could be attributed to minor sediment disturbances and vague structures. Resolving counting errors by cross-dating reduced the chronological error of the composite series to an estimated ±57 years.The Lake C2 series is the first non-ice cap, high resolution late-Holocene environmental record from the Canadian high arctic. The composite varve series compares favorably with other high resolution proxies from the arctic, in particular with the ice core records from Devon Island and Camp Century, Greenland. A general correspondence between the varve record and other North American proxies for the little Ice Age period (1400–1900 AD) suggests that the Lake C2 record is sensitive to large-scale synoptic changes.This is the tenth in a series of papers published in this issue on the Taconite Inlet Lakes Project. These papers were collected by Dr R. S. Bradley.  相似文献   

11.
Two varve counts made nearly 20 yrs apart and by different authors in the small and well sheltered meromictic lake of Valkiajärvi were compared with a view to establishing how similar, or otherwise, these two independent varve chronologies might be. The results were significant, the difference between the two varve counts being less than 2% for most of the sediment length, even though the average varve thickness was only 0.3 mm. The continuous and essentially uniform varve record - so far the longest in Finland - covers 8400 yrs and could be applied for accurate dating of palaeoenvironmental indicators in the sediment. As an example, we present a varve-dated pollen diagram for Lake Valkiajärvi.In addition, some magnetic parameters (susceptibility, ARM, SIRM) were measured on the sediment sequence to support the stratigraphic division and correlation of the cores, and to outline the development of the basin since the last deglaciation. Magnetic variables reflected mainly the variation in minerogenic material in the sediment, and were therefore related to changes in the catchment. The magnetic parameters also showed a drastic change some 6000 yrs ago, the reason for which, unfortunately, is still not fully understood.  相似文献   

12.
Genovesa Crater Lake is a remote, hypersaline lake in the northern Galápagos archipelago that contains a finely laminated sediment record. This sediment record has the potential to provide a high-resolution history of past climate variability in the eastern tropical Pacific. Here we present modern climate, lake, and sediment observations from 2009 to 2012 to explore how local climate variability influences Genovesa Crater Lake and its sediments. Surface lake temperature is strongly linked to air temperature and is highly seasonal. Temperature stratification is strongest during the warm season, whereas temperature becomes more uniform through the water column in the cool season. Deeper and earlier mixing occurred during the 2010 La Niña, which subsequently delayed 2011 cool season mixing and maximum warm season surface temperatures in 2011 and 2012. Lake salinity changes are influenced by precipitation, evaporation and persistent seawater influx. The largest declines in subsurface salinity follow months after the rainy season, when temperatures cool and fresher surface water from the previous warm/wet season mixes into the subsurface. Between 2009 and 2012, more calcium carbonate precipitated during a period of higher salinity. The period of highest calcium carbonate abundance measured in sediment records that span the late nineteenth to twentieth century coincides with the failure of two consecutive rainy seasons in 1988 and 1989 as well as the coldest monthly sea surface temperature measured at Puerto Ayora in 1989. More calcium carbonate-rich laminae from AD 1550 ± 70 to 1675 ± 90 may indicate a greater frequency of prolonged droughts or cooler temperatures, although enhanced productivity may also modulate carbonate precipitation. More Ca-rich laminae in Genovesa coincide with dry conditions inferred from other Galápagos sediment proxies, as well as prolonged dry and cool conditions inferred from reconstructions of the Southern Oscillation Index and NINO3 sea surface temperatures.  相似文献   

13.
For the heavily glaciated mountains of southern Alaska, few high-resolution, millennial-scale proxy temperature reconstructions are available for comparison with modern temperatures or with the history of glacier fluctuations. Recent catastrophic drainage of glacier-dammed Iceberg Lake, on the northern margin of the Bagley Icefield, exposed subaerial outcrops of varved lacustrine sediments that span the period 442–1998 AD. Here, an updated chronology of varve thickness measurements is used to quantitatively reconstruct melt-season temperature anomalies. From 1958 to 1998, varve thickness has a positive and marginally significant correlation with May–June temperatures at the nearest coastal measurement stations. Varve sensitivity to temperature has changed over time, however, in response to lake level changes in 1957 and earlier. I compensate for this by log-transforming the varve thickness chronology, and also by using a 400-year-long tree-ring-based temperature proxy to reconstruct melt-season temperatures at Iceberg Lake. Regression against this longer proxy record is statistically weak, but spans the full range of occupied lake levels and varve sensitivities. Reconstructed temperature anomalies have broad confidence intervals, but nominally span 1.1°C over the last 1500+ years. Maximum temperatures occurred in the late twentieth century, with a minimum in the late sixth century. The Little Ice Age is present as three cool periods between 1350 and 1850 AD with maximum cooling around 1650 AD. A Medieval Warm Period is evident from 1000 to 1100 AD, but the temperature reconstruction suggests it was less warm than recent decades—an observation supported by independent geological evidence of recent glacier retreat that is unprecedented over the period of record. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Michael G. LosoEmail:
  相似文献   

14.
Laguna Chichój (Lake Chichój) is the only deep permanent lake in the central highlands of Guatemala. The lake is located in the boundary zone between the North American and Caribbean plates. The lake has been struck by devastating earthquakes and tropical cyclones in historical times. We investigated the imprint of twentieth century extreme events on the sedimentary record of this tropical lake using a bathymetric survey of the lake, coring the lake floor, and providing a chronology of sediment accumulation. The lake occupies a series of circular depressions likely formed by the rapid dissolution of a buried body of gypsum. 210Pb and 137Cs inventories and varve counting indicate high rates of sedimentation (1–2 cm year?1). The annually layered sediment is interrupted by turbidites of two types: a darker-colored turbidite, enriched in lake-derived biogenic constituents, and interpreted as a seismite, and a lighter-colored type, enriched in catchment-derived constituents, interpreted as a flood layer. Comparison of our 137Cs-determined layer ages with a catalog of twentieth century earthquakes shows that an earthquake on the Motagua fault in 1976 generated a conspicuous darker-colored turbidite and slumped deposits in separate parts of the lake. The entire earthquake inventory further reveals that mass movements in the lake are triggered at Modified Mercalli Intensities higher than V. Tropical cyclonic depressions known to have affected the lake area had limited effect on the lake, including Hurricane Mitch in 1998. One storm however produced a significantly thicker flood layer in the 1940s. This storm is reportedly the only event to have generated widespread slope failures in the lake catchment. It is thus inferred that abundant landsliding provided large amounts of concentrated sediment to the lake, through hyperpycnal flows.  相似文献   

15.
The evolution of the early Great Lakes was driven by changing ice sheet geometry, meltwater influx, variable climate, and isostatic rebound. Unfortunately none of these factors are fully understood. Sediment cores from Fenton Lake and other sites in the Lake Superior basin have been used to document constantly falling water levels in glacial Lake Minong between 9,000 and 10,600 cal (8.1–9.5 ka) BP. Over three meters of previously unrecovered sediment from Fenton Lake detail a more complex lake level history than formerly realized, and consists of an early regression, transgression, and final regression. The initial regression is documented by a transition from gray, clayey silt to black sapropelic silt. The transgression is recorded by an abrupt return to gray sand and silt, and dates between 9,000 and 9,500 cal (8.1–8.6 ka) BP. The transgression could be the result of increased discharge from Lake Agassiz overflow or the Laurentide Ice Sheet, and hydraulic damming at the Lake Minong outlet. Alternatively ice advance in northern Ontario may have blocked an unrecognized low level northern outlet to glacial Lake Ojibway, which switched Lake Minong overflow back to the Lake Huron basin and raised lake levels. Multiple sites in the Lake Huron and Michigan basins suggest increased meltwater discharges occurred around the time of the transgression in Lake Minong, suggesting a possible linkage. The final regression in Fenton Lake is documented by a return to black sapropelic silt, which coincides with varve cessation in the Superior basin when Lake Agassiz overflow and glacial meltwater was diverted to glacial Lake Ojibway in northern Ontario.  相似文献   

16.
A multi-core, multidisciplinary palaeolimnological study of the partially varved sediment of a deep, meromictic, arctic lake, Kongressvatnet (Svalbard, Western Spitsbergen), provides a record of environmental and climatic changes during last ca. 1800 years. The chronology of sedimentation was established using several dating techniques (137Cs, 210Pb, varve counts, palaeomagnetic correlation). A multiproxy record of palaeolimnological variability was compiled based on sedimentation rates, magnetic properties, varve thickness, organic matter, geochemistry, pigments from algal and photosynthetic bacteria, mineralogy and biological assemblages (diatoms, Cladocera). The major features recognised in our master core K99-3 include a shift in sediment source and supply (magnetic measurements, geochemistry) probably caused by glaciological changes in the catchment around 38–32 cm core depth (AD 700–820). Additional environmental changes are inferred at 20–18, 8–4.5 and 3–2 cm (AD ca. 1160–1255; 1715–1880; 1940–1963, respectively). During the past ca. 120 years a prominent sedimentological change from brownish-grey, partly laminated silt-clay (varves) to black organic-rich deposits was observed. From AD 1350 to AD1880 the sediment is comprised of a continuous sequence of varves, whereas the earlier sediments are mostly homogeneous with only a few short intercalated laminated sections between AD 860 and 1350. Sedimentation and accumulation rates increased during the last 30 years (modern warming). Pigment concentrations are very low in the lower ca. 32 cm of the core (AD 820) probably because of the high turbidity high energy environment. The high sulphur content in the uppermost 32 cm of sediment has given rise to two horizontally stratified populations of sulphur anaerobic photosynthetic bacteria, as inferred from their specific carotenoids. These bacteria populations are much more abundant during the Little Ice Age (LIA) than during warmer periods (e.g., during the Medieval Warm Period and 20th century). Diatoms are lacking from the core base up to 18 cm (ca. AD 1255); at this level, species indicative of mesotrophic water are present, whereas from 17 cm to the top of the core, oligotrophic taxa such as Staurosira construens/S. pinnata complex dominate, indicating extended ice coverage and more oligotrophic waters during the LIA. The concentration of Cladocera subfossil remains (dominated by Chydorus) are relatively high in the deepest sections (54–32 cm), whereas the upper 32 cm are characterized by a very low concentration of remains, possibly because of the strongly anoxic conditions, and in this upper sediment section rotifer resting eggs become prevalent. We interpret these changes as responses to climate forcing through its impact on glacial melt water, lake ice cover duration and mainly redox conditions in deep water. The observed changes suggest that at least some of our recorded changes may parallel the Greenland Ice core, although our study added more details about the inferred climatic changes. Further aspects are discussed, such as catchment processes, glacial activity, duration of the Medieval Warm Period, the Little Ice Age, local human activity, and limnology.  相似文献   

17.
Human activity and climatic forcing have influenced sedimentation in three of Finland's deepest lakes during the last centuries. High-resolution sediment sequences of Lake Päijänne, Lake Pääjärvi and Lake Pyhäjärvi represent records of the last 440 years, 839 years and 633 years, respectively. The accumulation rates of dry matter, organic carbon and biogenic silica refer to changes in human activity in the catchments. However, they also reveal the importance of climatic forcing on lake sediment deposition. A significant correlation was found between instrumentally measured records of temperature (163 years) and precipitation (148 years), and varve thickness. Warm winter months indicating a short ice-cover period have the strongest control on varve thickness. This shows that wind-driven resuspension of littoral material is the forcing mechanism of climate on lake sediments. The long-term human-induced erosion pulses observed may even have magnified the climatic signals in some cases. Nevertheless, increased anthropogenic field erosion in the catchment, and the associated leaching of bioavailable nutrients, hampers the observation of climate signals, especially during the last 50 years, in the lakes studied.This is the second paper a series of papers published in this issue on high-resolution paleolimnology. These papers were presented at the Sixth International Palaeolimnology Symposium held 19-April, 1993 at the Australian National University, Canberra, Australia. Dr A. F. Lotter and Dr. M. Sturm served as guest editors for these papers.  相似文献   

18.
West Hawk Lake (WHL) is located within the glacial Lake Agassiz basin, 140 km east of Winnipeg, Manitoba. The small lake lies in a deep, steep-sided, meteorite impact crater, which has been partly filled by 60 m of sediment that today forms a flat floor in the central part of the basin below 111 m of water. Four cores, 5–11 m in length, were collected using a Kullenberg piston gravity corer. All sediment is clay, contains no unconformities, and has low organic content in all but the upper meter. Sample analyses include bulk and clay mineralogy, major and minor elements, TOC, stable isotopes of C, N, and O, pollen, charcoal, diatoms, and floral and faunal macrofossils. The sequence is divided into four units based mainly on thickness and style of lamination, diatoms, and pollen. AMS radiocarbon dates do not provide a clear indication of age in the postglacial sequence; possible explanations include contamination by older organic inwash and downward movement of younger organic acids. A chronological framework was established using only selected AMS dates on plant macrofossils, combined with correlations to dated events outside the basin and paleotopographic reconstructions of Lake Agassiz. The 822 1-cm-thick varves in the lower 8 m of the cored WHL sequence were deposited just prior to 10,000 cal years BP (∼8,900 14C years BP), during the glacial Lake Agassiz phase of the lake. The disappearance of dolomite near the top of the varved sequence reflects the reduced influence of Lake Agassiz and the carbonate bedrock and glacial sediment in its catchment. The lowermost varves are barren of organisms, indicating cold and turbid glacial lake waters, but the presence of benthic and planktonic algae in the upper 520 varves indicates warming; this lake phase coincides with a change in clay mineralogy, δ18O and δ13C in cellulose, and in some other parameters. This change may have resulted from a major drawdown in Lake Agassiz when its overflow switched from northwest to east after formation of the Upper Campbell beach of that lake 9,300–9,400 14C years ago. The end of thick varve deposition at ∼10,000 cal years BP is related to the opening of a lower eastern outlet of Lake Agassiz and an accompanying drop in West Hawk Lake level. WHL became independent from Lake Agassiz at this time, sedimentation rates dropped, and only ∼2.5 m of sediment was deposited in the next 10,000 years. During the first two centuries of post-Lake Agassiz history, there were anomalies in the diatom assemblage, stable O and C isotopes, magnetic susceptibility, and other parameters, reflecting an unstable watershed. Modern oligotrophic conditions were soon established; charcoal abundance increased in response to the reduced distance to the shoreline and to warmer conditions. Regional warming after ∼9,500 cal years BP is indicated by pollen and diatoms as well as C and O isotope values. Relatively dry conditions are suggested by a rise in pine and decrease in spruce and other vegetation types between 9,500 and 5,000 cal years BP (∼8,500–4,400 14C years BP), plus a decrease in δ13Ccell values. After this, there was a shift to slightly cooler and wetter conditions. A large increase in organic content and change in elemental concentration in the past several thousand years probably reflects a decline in supply of mineral detritus to the basin and possibly an increase in productivity.  相似文献   

19.
Annually-laminated clastic sediments preserve a high resolution proxy record of paleoclimate, provided that allochthonous sedimentation represents a response to meteorological forcing of watershed sediment transfer. Here, we demonstrate this linkage, and illustrate a calibration process using the most recent 40 years of a varve record from Lake C2 (82°50 N; 78°00 W), three years of field measurements, and meteorological data for 1951–92 from nearby AES weather station Alert. Field measurements were used to correlate proxies of the energy available for snowmelt (e.g. air temperature) and daily suspended sediment discharge (SSQ). Our calibration was extended through use of weather data from Alert. Both mean daily air temperature at Echo, and daily SSQ, were well correlated with air temperature at 600 m above Alert, as obtained from the 1200 Z (0800 LST) rawinsonde sounding. Accordingly, we used pooled 1990 and 1992 Alert 600 m data to predict the lagged daily sediment discharge into Lake C2 (adj. r 2=0.43). Daily values were summed each year in order to produce an annual series of predicted sediment transfer to the lake. The original varve chronology was based on eight sediment cores recovered from the deep basin of the lake (>80 m). Although low-frequency fluctuations of the varve and predicted SSQ series agree, slight tuning of the varve record optimizes the correlation between them. Adjustments were based on examination of weather data for specific years, reexamination of sediment core thin sections, and by aligning fluctuations in the two series which closely matched. Although the original chronology is reasonably well correlated with 600 m temperatures at Alert (for JJA mean, r=0.41, significant at 0.01), the adjusted chronology is both better correlated and contains a more precise climate signal (r=0.54 for July mean, significant at 0.01). This is the first calibrated varve record produced from Arctic lake sediments, and demonstrates that varves from Lake C2 contain a paleoclimatic record. We believe the post-facto manipulations required to produce the adjusted varve chronology are reasonable given the uncertainties inherent in varve counting, and the lack of any independent corroborating chronostratigraphic markers.This is the ninth in a series of papers published in this issue on the Taconite Inlet Lakes Project. These papers were collected by Dr R. S. Bradley.  相似文献   

20.
Instrumental climate records from the central Canadian treeline zone display a pattern of variation similar to general Northern Hemisphere temperature trends. To examine whether this general correspondence extends back beyond the instrumental record, we obtained a sediment core from Lake S41, a small lake in the Northwest Territories of Canada at 63°43.11′ N, 109°19.07′ W. A radiocarbon-based chronology was developed for the core. The sediments were analyzed for organic-matter content by loss-on-ignition (LOI), biogenic-silica content (BSi), and chironomid community composition to reconstruct July air temperature and summer water temperature. The paleolimnological records were compared with records of atmospheric CO2 concentration, solar variability, and hemispheric temperature variations over the past 2000 years. The results of the analyses suggest that widely-documented long-term variations in Northern Hemisphere temperature associated with radiative forcing, namely the cooling following the medieval period during the Little Ice Age (LIA), and twentieth century warming, are represented in the central Canadian treeline zone. There is also evidence of a brief episode of warming during the eighteenth century. As evidenced by LOI and BSi, the twentieth century warming is typified by increased lake productivity relative to the LIA. Depending upon the measure, the increased productivity of the twentieth century nearly equals or exceeds that of any other period in the past 2000 years. In contrast, the rate of chironomid head capsule accumulation decreased and remained low during the twentieth century. Although the chironomid-inferred temperature reconstructions indicate cooling during the LIA, they present no evidence of greatly increased temperatures during the twentieth century. Warming during the twentieth century might have enhanced lake stratification, and the response of the chironomid fauna to warming was attenuated by decreased oxygen and lower temperatures in the hypolimnion of the more stratification-prone lake.
Glen M. MacDonaldEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号