首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
This study presents promising variants of genetic programming (GP),namely linear genetic programming (LGP) and multi expression programming (MEP) to evaluate the liquefaction resistance of sandy soils....  相似文献   

2.
Ozone is one of the most significant secondary pollutants with numerous negative effects on human health and environment including plants and vegetation. Therefore, more effort is made recently by governments and associations to predict ozone concentrations which could help in establishing better plans and regulation for environment protection. In this study, we use two Artificial Neural Network based approaches (MPL and RBF) to develop, for the first time, accurate ozone prediction models, one for urban and another one for rural area in the eastern part of Croatia. The evaluation of actual against the predicted ozone concentrations revealed that MLP and RBF models are very competitive for the training and testing data in the case of Kopa?ki Rit area whereas in the case of Osijek city, MLP shows better evaluation results with 9% improvement in the correlation coefficient. Furthermore, subsequent feature selection process has improved the prediction power of RBF network.  相似文献   

3.
Preparation of landslide susceptibility maps is considered as the first important step in landslide risk assessments, but these maps are accepted as an end product that can be used for land use planning. The main objective of this study is to explore some new state-of-the-art sophisticated machine learning techniques and introduce a framework for training and validation of shallow landslide susceptibility models by using the latest statistical methods. The Son La hydropower basin (Vietnam) was selected as a case study. First, a landslide inventory map was constructed using the historical landslide locations from two national projects in Vietnam. A total of 12 landslide conditioning factors were then constructed from various data sources. Landslide locations were randomly split into a ratio of 70:30 for training and validating the models. To choose the best subset of conditioning factors, predictive ability of the factors were assessed using the Information Gain Ratio with 10-fold cross-validation technique. Factors with null predictive ability were removed to optimize the models. Subsequently, five landslide models were built using support vector machines (SVM), multi-layer perceptron neural networks (MLP Neural Nets), radial basis function neural networks (RBF Neural Nets), kernel logistic regression (KLR), and logistic model trees (LMT). The resulting models were validated and compared using the receive operating characteristic (ROC), Kappa index, and several statistical evaluation measures. Additionally, Friedman and Wilcoxon signed-rank tests were applied to confirm significant statistical differences among the five machine learning models employed in this study. Overall, the MLP Neural Nets model has the highest prediction capability (90.2 %), followed by the SVM model (88.7 %) and the KLR model (87.9 %), the RBF Neural Nets model (87.1 %), and the LMT model (86.1 %). Results revealed that both the KLR and the LMT models showed promising methods for shallow landslide susceptibility mapping. The result from this study demonstrates the benefit of selecting the optimal machine learning techniques with proper conditioning selection method in shallow landslide susceptibility mapping.  相似文献   

4.
Accurate prediction of the chemical constituents in major river systems is a necessary task for water quality management, aquatic life well-being and the overall healthcare planning of river systems. In this study, the capability of a newly proposed hybrid forecasting model based on the firefly algorithm (FFA) as a metaheuristic optimizer, integrated with the multilayer perceptron (MLP-FFA), is investigated for the prediction of monthly water quality in Langat River basin, Malaysia. The predictive ability of the MLP-FFA model is assessed against the MLP-based model. To validate the proposed MLP-FFA model, monthly water quality data over a 10-year duration (2001–2010) for two different hydrological stations (1L04 and 1L05) provided by the Irrigation and Drainage Ministry of Malaysia are used to predict the biochemical oxygen demand (BOD) and dissolved oxygen (DO). The input variables are the chemical oxygen demand (COD), total phosphate (PO4), total solids, potassium (K), sodium (Na), chloride (Cl), electrical conductivity (EC), pH and ammonia nitrogen (NH4-N). The proposed hybrid model is then evaluated in accordance with statistical metrics such as the correlation coefficient (r), root-mean-square error, % root-mean-square error and Willmott’s index of agreement. Analysis of the results shows that MLP-FFA outperforms the equivalent MLP model. Also, in this research, the uncertainty of a MLP neural network model is analyzed in relation to the predictive ability of the MLP model. To assess the uncertainties within the MLP model, the percentage of observed data bracketed by 95 percent predicted uncertainties (95PPU) and the band width of 95 percent confidence intervals (d-factors) are selected. The effect of input variables on BOD and DO prediction is also investigated through sensitivity analysis. The obtained values bracketed by 95PPU show about 77.7%, 72.2% of data for BOD and 72.2%, 91.6% of data for DO related to the 1L04 and 1L05 stations, respectively. The d-factors have a value of 1.648, 2.269 for BOD and 1.892, 3.480 for DO related to the 1L04 and 1L05 stations, respectively. Based on the values in both stations for the 95PPU and d-factor, it is concluded that the neural network model has an acceptably low degree of uncertainty applied for BOD and DO simulations. The findings of this study can have important implications for error assessment in artificial intelligence-based predictive models applied for water resources management and the assessment of the overall health in major river systems.  相似文献   

5.
Due to the various influencing factors on river suspended sediment transportation, determining an appropriate input combination for developing the suspended sediment load forecasting model is very important for water resources management. The influence of pre-processing of input variables by Gamma Test (GT) was investigated on performance of Support Vector Machine (SVM) with two kernels; Radial Basis Function (RBF) and polynomial in order to forecast daily suspended sediment amount in the period between 1983 and 2014 at Korkorsar basin, northern Iran. The best input combination was identified using GT and correlation coefficient analysis. Then, the SVM model was developed and the suspended sediment amount was forecasted with RBF and polynomial kernels. The obtained results in testing phase showed that GT-SVM (RBF kernel) model can estimate suspended sediment more accurately with the lowest RMSE (14.045 ton/day), highest correlation coefficient (0.88) and highest NSEC coefficient (0.88) than SVM (RBF kernel) model (RMSE?=?18.36ton/day, \( {R}^2=0.79, \) \( NSEC=0.73 \)) and had a better performance than the other models. The results indicated that in forecasting the first nine maximum values of suspended sediment load, GT-SVM (RBF) had a higher capability than the other models and could provide a more accurate estimation from the maximum rate of suspended sediment. The results of this study showed the capability of identifying the priority of the input parameters can change GT to a useful and technical test for input variables pre-processing to forecast the amount of suspended sediments.  相似文献   

6.
Rock masses are commonly used as the underlying layer of important structures such as bridges, dams and transportation constructions. The success of a foundation design for such structures mainly depends on the accuracy of estimating the bearing capacity of rock beneath them. Several traditional numerical approaches are proposed for the estimation of the bearing capacity of foundations resting on rock masses to avoid performing elaborate and expensive experimental studies. Despite this fact, there still exists a serious need to develop more robust predictive models. This paper proposes new nonlinear prediction models for the ultimate bearing capacity of shallow foundations resting on non-fractured rock masses using a novel evolutionary computational approach, called linear genetic programming. A comprehensive set of rock socket, centrifuge rock socket, plate load and large-scaled footing load test results is used to develop the models. In order to verify the validity of the models, the sensitivity analysis is conducted and discussed. The results indicate that the proposed models accurately characterize the bearing capacity of shallow foundations. The correlation coefficients between the experimental and predicted bearing capacity values are equal to 0.95 and 0.96 for the best LGP models. Moreover, the derived models reach a notably better prediction performance than the traditional equations.  相似文献   

7.
This paper describes the application of multi-layer perceptron (MLP), radial basis network and adaptive neuro-fuzzy inference system (ANFIS) models for computing dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD) levels in the Karoon River (Iran). Nine input water quality variables including EC, PH, Ca, Mg, Na, Turbidity, PO4, NO3 and NO2, which were measured in the river water, were employed for the models. The performance of these models was assessed by the coefficient of determination R 2, root mean square error and mean absolute error. The results showed that the computed values of DO, BOD and COD using both the artificial neural network and ANFIS models were in close agreement with their respective measured values in the river water. MLP was also better than other models in predicting water quality variables. Finally, the sensitive analysis was done to determine the relative importance and contribution of the input variables. The results showed that the phosphate was the most effective parameters on DO, BOD and COD.  相似文献   

8.
To carry out an efficient and effective exploitation of a slate mine, it is necessary to have detailed information about the production potential of the site. To assist us in estimating the quality of slate from a small set of drilling data within an unexploited portion of the mine, the following estimation techniques were applied: kriging, regularization networks (RN), multilayer perceptron (MLP) networks, and radial basis function (RBF) networks. Our numerical results for the test holes show that the best results were obtained using an RN (kriging) which takes into account the known anisotropy. Differing deposit configurations were obtained, depending on the method applied. Variations in the form of pockets were obtained when using a radial pattern with RBF, RN, and kriging models while a stratified pattern was obtained with the MLP model. Pockets are more suitable for a slate mine, which indicates that the selection of a technique should take account of the specific configuration of the deposit according to mineral type.  相似文献   

9.
Due to the limitations of hardware sensors for online measurement of the water quality parameters such as 5-day biochemical oxygen demand (BOD5), the recent research efforts have focused on the software sensors for the rapid prediction of such parameters. The main objective in this research is to develop a reduced-order support vector machine (ROSVM) model based on the proper orthogonal decomposition to solve the time-consuming problem of the BOD5 measurements. The performance of the newly developed methodology is tested on the Sefidrood River Basin, Iran. Subsequently, the predicted values of BOD5, resulted from the selected developed ROSVM model, are compared with the results of support vector machine (SVM) model. According to the obtained results, selected ROSVM model seems to be more accurate, showing Person correlation coefficient (R) and root mean square error (RMSE) equal to 0.97 and 6.94, respectively. Further, the investigations based on developed discrepancy ratio (DDR) statistic for selection of the optimum model between the best accurate ROSVM and SVM models are carried out. Results of DDR statistic indicated superior performance of the selected ROSVM model comparing to the SVM technique for online prediction of BOD5 in the Sefidrood River.  相似文献   

10.
The compression index (Cc) is a necessary parameter for the settlement calculation of clays. However, determination of the compression index from oedometer tests takes a relatively long time and leads to a very demanding experimental working program in the laboratory. Therefore, geotechnical engineering literature involves many studies based on indirect methods such as multiple regression analysis (MLR) and soft computing methods to determine the compression index. This study is aimed to predict the compression index by using extreme learning machine (ELM), Bayesian regularization neural network (BRNN), and support vector machine (SVM) methods. The selected variables for each method are the natural water content (wn), initial void ratio (e0), liquid limit (LL), and plasticity index (PI) of clay samples. Many trials were carried out in order to get the best prediction performance with each model. The application results obtained from the models were also compared based on the correlation coefficient (R), coefficient of efficiency (E), and mean squared error (MSE). The results indicate that the BRNN method has better success on estimation of the compression index compared to the ELM and SVM methods.  相似文献   

11.
In the predicting of geological variables, artificial neural networks (ANNs) have some drawbacks including possibility of getting trapped in local minima, over training, subjectivity in the determining of model parameters and the components of its complex structure. Recently, support vector machines (SVM) has been found to be popular in prediction studies due to its some advantages over ANNs. Because the least squares SVM (LS‐SVM) provides a computational advantage over SVM by converting quadratic optimization problem into a system of linear equations, LS‐SVM method is also tried in study. The main purpose of this study is to examine the capability of these two SVM algorithms for the prediction of tensile strength of rock materials and to compare its performance with ANN and linear regression (MLR) models. Total porosity, sonic velocity, slake durability index and aggregate impact value were used as input in modeling applications. Favorite performance evaluation measures were employed to assess developed models. The results determined in study indicate that the SVM, LS‐SVM and ANN methods are successful tools for prediction of tensile strength variable and can give good prediction performances than MLR model. Although these three methods are powerful artificial intelligence techniques, LS‐SVM makes the running time considerably faster with the higher accuracy. In terms of accuracy, the LS‐SVM model resulted in error reductions relative to that of the other models. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Landslide susceptibility and hazard assessments are the most important steps in landslide risk mapping. The main objective of this study was to investigate and compare the results of two artificial neural network (ANN) algorithms, i.e., multilayer perceptron (MLP) and radial basic function (RBF) for spatial prediction of landslide susceptibility in Vaz Watershed, Iran. At first, landslide locations were identified by aerial photographs and field surveys, and a total of 136 landside locations were constructed from various sources. Then the landslide inventory map was randomly split into a training dataset 70 % (95 landslide locations) for training the ANN model and the remaining 30 % (41 landslides locations) was used for validation purpose. Nine landslide conditioning factors such as slope, slope aspect, altitude, land use, lithology, distance from rivers, distance from roads, distance from faults, and rainfall were constructed in geographical information system. In this study, both MLP and RBF algorithms were used in artificial neural network model. The results showed that MLP with Broyden–Fletcher–Goldfarb–Shanno learning algorithm is more efficient than RBF in landslide susceptibility mapping for the study area. Finally the landslide susceptibility maps were validated using the validation data (i.e., 30 % landslide location data that was not used during the model construction) using area under the curve (AUC) method. The success rate curve showed that the area under the curve for RBF and MLP was 0.9085 (90.85 %) and 0.9193 (91.93 %) accuracy, respectively. Similarly, the validation result showed that the area under the curve for MLP and RBF models were 0.881 (88.1 %) and 0.8724 (87.24 %), respectively. The results of this study showed that landslide susceptibility mapping in the Vaz Watershed of Iran using the ANN approach is viable and can be used for land use planning.  相似文献   

13.
Deep excavation during the construction of underground systems can cause movement on the ground, especially in soft clay layers. At high levels, excessive ground movements can lead to severe damage to adjacent structures. In this study, finite element analyses (FEM) and the hardening small strain (HSS) model were performed to investigate the deflection of the diaphragm wall in the soft clay layer induced by braced excavations. Different geometric and mechanical properties of the wall were investigated to study the deflection behavior of the wall in soft clays. Accordingly, 1090 hypothetical cases were surveyed and simulated based on the HSS model and FEM to evaluate the wall deflection behavior. The results were then used to develop an intelligent model for predicting wall deflection using the functional linked neural network (FLNN) with different functional expansions and activation functions. Although the FLNN is a novel approach to predict wall deflection; however, in order to improve the accuracy of the FLNN model in predicting wall deflection, three swarm-based optimization algorithms, such as artificial bee colony (ABC), Harris’s hawk’s optimization (HHO), and hunger games search (HGS), were hybridized to the FLNN model to generate three novel intelligent models, namely ABC-FLNN, HHO-FLNN, HGS-FLNN. The results of the hybrid models were then compared with the basic FLNN and MLP models. They revealed that FLNN is a good solution for predicting wall deflection, and the application of different functional expansions and activation functions has a significant effect on the outcome predictions of the wall deflection. It is remarkably interesting that the performance of the FLNN model was better than the MLP model with a mean absolute error (MAE) of 19.971, root-mean-squared error (RMSE) of 24.574, and determination coefficient (R2) of 0.878. Meanwhile, the performance of the MLP model only obtained an MAE of 20.321, RMSE of 27.091, and R2 of 0.851. Furthermore, the results also indicated that the proposed hybrid models, i.e., ABC-FLNN, HHO-FLNN, HGS-FLNN, yielded more superior performances than those of the FLNN and MLP models in terms of the prediction of deflection behavior of diaphragm walls with an MAE in the range of 11.877 to 12.239, RMSE in the range of 15.821 to 16.045, and R2 in the range of 0.949 to 0.951. They can be used as an alternative tool to simulate diaphragm wall deflections under different conditions with a high degree of accuracy.  相似文献   

14.
水环境非线性时序预测的高精度RBF网络模型   总被引:6,自引:0,他引:6       下载免费PDF全文
为提高水环境非线性时序预测模型的精度,用自相关技术分析水环境时间序列的延迟特性,确定径向基函数(RBF)网络的输入、输出向量,建立了水环境时间序列预测的高精度RBF网络模型.用32年海洋水温时间序列实测资料来训练和检验网络并用于预测.用该模型对长江流域望江楼站8年总硬度、高锰酸盐指数、五日生化需氧量、氨氮、溶解氧、挥发酚、镉、氯化物、硫酸盐等9种水环境要素时间序列进行预测.实例分析表明,所建模型预测误差均较小,好于门限自回归模型,BP神经网络模型和ELMAN神经网络模型.所建模型不仅精度高,而且收敛速度快.  相似文献   

15.
为探究青藏高原工程走廊带昆仑山地区冻融土导热系数基本特征,采用瞬态平面热源法对钻取的349组冻土试样和245组融土试样导热系数进行了测试,分析了五类土导热系数分布特征及天然含水率、干密度与导热系数的偏相关性,并以两者为变量因素建立了经验公式拟合、支持向量回归(SVR)和径向基(RBF)神经网络导热系数预测模型。结果表明:冻融土导热系数整体均呈粗颗粒土大于细颗粒土特征,且冻土和融土导热系数随土性分布规律存在差异;天然含水率、干密度与导热系数均呈正相关性,不同土类偏相关性结果差异明显,典型土导热系数二元经验回归方程表现为非线性拟合结果。对比三种预测模型下各典型土冻融土导热系数预测结果,全风化千枚岩、角砾及砾砂三种预测模型效果整体较佳,粉土的SVR及RBF神经网络预测精度较好;融土导热系数预测效果整体略优于冻土,SVR及RBF神经网络模型下角砾、粉土及全风化千枚岩融土导热系数预测精度较高。综合导热系数模型预测效果和误差结果分析可得,SVR和RBF神经网络模型预测效果显著优于经验方程拟合,后者针对部分土性拟合效果相对较好,可满足一般工程估算需求;SVR和RBF神经网络预测模型针对不同土性导热系数预测效果呈差异性变化,整体预测效果相当,且预测精度更高、应用土性范围更广。  相似文献   

16.
Snow avalanches,which are widely and frequently developed at high elevations,seriously threatens the built traffic corridors in the Tibetan Plateau. Susceptibility evaluation of snow avalanche via machine learning model with a high forecast accuracy can be appled to quickly and effectively assess the regional avalanche risk. This paper took the central Shaluli Mountain region as the study area,in which the snow avalanche inventory was established through remote sensing interpretation and field investigation verification. We quantitatively extracted 17 evaluation factors via GIS-based analysis,and these factors were selected through the variance expansion factor(VIF). Four machine learning models containing SVM,DT,MLP and KNN were used to compile the susceptibility index map of snow avalanches,and kappa coefficient and ROC curve were used to verify the accuracy. The results suggested that the susceptibility indexes obtained from SVM,DT,MLP and KNN were in the range of[0,0. 964],[0,815],[0,0. 995]and[0,1],respectively. The accuracy test results show that these four models all have good prediction accuracy. Among them,the SVM model is the best. The results also indicated that the areas with the high snow avalanche susceptibility mainly distributed in Genie Mountain and Rigong Mountain,most of which were above the planation surface of the Tibetan Plateau. The average altitude of the extremely high snow-avalanche-prone areas is 4 939 m,while the average altitude of the high snow avalanche-prone areas is 4 859 m. The snow avalanche has low perniciousness on the Sichuan-Tibet Highway and the Sichuan-Tibet Railway in the study area. This study can provide theoretical basis and method reference for disaster prevention and mitigation of snow avalanche along Sichuan-Tibet Railway and other major projects across Shaluli Mountains region. © 2022 Science Press (China).  相似文献   

17.
Stability with first time or reactivated landslides depends upon the residual shear strength of soil. This paper describes prediction of the residual strength of soil based on index properties using two machine learning techniques. Different Artificial Neural Network (ANN) models and Support Vector Machine (SVM) techniques have been used. SVM aims at minimizing a bound on the generalization error of a model rather than at minimizing the error on the training data only. The ANN models along with their generalizations capabilities are presented here for comparisons. This study also highlights the capability of SVM model over ANN models for the prediction of the residual strength of soil. Based on different statistical parameters, the SVM model is found to be better than the developed ANN models. A model equation has been developed for prediction of the residual strength based on the SVM for practicing geotechnical engineers. Sensitivity analyses have been also performed to investigate the effects of different index properties on the residual strength of soil.  相似文献   

18.
支持向量机在砂土液化预测中的应用研究   总被引:4,自引:0,他引:4  
介绍了人工智能领域最新的基于结构风险最小化原理的数据挖掘算法——支持向量机算法。根据支持向量机线性分类和可以具有不同核函数的非线性分类两种算法,建立了砂土液化预测模型,并且运用Matlab语言编写了程序。通过试算和分析比较得到了最佳模型,最佳模型的预测结果与实际液化情况基本上一致。认为支持向量机算法无论在学习或者预测精度方面都有很大的优越性,而基于支持向量机理论建立的砂土液化预测模型是可行的,且可以较为准确地实现砂土液化的预测。  相似文献   

19.
准确预测露天矿边坡变形是有效实现边坡临灾预警的重要保证,针对传统边坡变形预测方法无法表征和综合分析边坡变形受多种因素的影响,提出一种露天矿边坡变形的人工蜂群(ABC)算法优化广义回归网络(GRNN)组合预测模型(ABC-GRNN)。在此预测模型中,综合考虑了影响露天矿边坡变形的5个因素:开采扰动、降雨量、降雨持续时间、温度以及湿度。以山西中煤平朔安家岭露天矿为例,通过遗传算法改进BP神经网络(GA-BPNN)、支持向量机(SVM)等人工智能算法与实测变形数据进行预测效果对比分析。结果表明:ABC算法能够快速帮助GRNN寻优获取合适的传递参数,并对变形进行有效的预测。ABC-GRNN组合预测模型,将预测结果的平均绝对误差292.9 mm、平均绝对百分比误差0.691 3%及均方根误差338.9 mm分别降低到25 mm、0.043 3%和29.5 mm,说明该模型具有更高的预测精度;ABC-GRNN模型比其他模型收敛速度快,只经过7步的迭代,即可得到最小的均方误差。与其他预测模型相比较,本文模型的预测精度更高、泛化能力更强、收敛速度更快,有较高的实用价值。  相似文献   

20.
The support vector machine (SVM) is a relatively new artificial intelligence technique which is increasingly being applied to geotechnical problems and is yielding encouraging results. In this paper SVM models are developed for predicting the ultimate axial load-carrying capacity of piles based on cone penetration test (CPT) data. A data set of 108 samples is used to develop the SVM models. These data were obtained from the literature containing pile load tests and each sample contains information regarding pile geometry, full-scale static pile load tests and CPT results. Moreover, a sensitivity analysis is carried out to examine the relative significance of each input variable with respect to ultimate strength prediction. Finally, a statistical analysis is conducted to make comparisons between predictions obtained from the SVM models and three traditional CPT-based methods for determining pile capacity. The comparison confirms that the SVM models developed in this paper outperform the traditional methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号