首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The analysis of discrete radio sources spectra in the range 10–5000 MHz reveals that deviations from a power law in the low-frequency region may be due to distortion of differential energy spectra of relativistic electrons at low energies. An empirical expression for an energy-spectrum law was found to be in a good agreement with most of the radio spectra measured. The main physical parameters of 92 sources are evaluated. It is concluded that a low-energy electron excess exists with respect to the lawE in most of the discrete sources which radiate non-linear low-frequency spectra.The forms of radio and energy spectra are further considered in a logarithmic scale.  相似文献   

2.
The radio observations of the coronal streamers obtained using Clark Lake radioheliograph at 73.8, 50.0, and 38.5 MHz during a period of minimum activity in September 1986 are presented. Streamers appear to correlate with two prominent disk sources whose intensities fluctuated randomly. The variations in half-power diameter of the radio Sun are found to correspond with the variations in the white-light extents of the coronal streamers. It appears that the shape of the radio Sun is not a function of the phase of the solar cycle; instead it depends on the relative positions of the streamers in the corona. The observed peak brightness temperatures,T B , of the streamers are found to be very low, being 6 × 104 K.We compute the brightness temperature distribution along the equator by tracing the rays in the coronal plasma. The rays are deflected away by the streamers before reaching the critical density level, whereas they penetrate deeper into the coronal hole for small angles between the line of sight and the streamer axis. As a consequence, it is found that the streamers and coronal holes appear in the calculated equatorial brightness distribution as irregular brightness depressions and enhancements, respectively. The fine structures are found to disappear when the scattering due to small-scale density inhomogeneities is included in the ray-tracing calculations. The required relative level of density fluctuations, 1 = N/N, is found to be greater than 12% to reduce the peak brightness temperature from 106 K to 6 × 104 K for all the three frequencies.On leave from Indian Institute of Astrophysics, Bangalore 560034, India.  相似文献   

3.
It is shown that inelastic proton collisions in extragalactic radio sources can account for their radio and -ray emissions. The proton Lorentz-factor p responsible for -ray emission is estimated to lie between 1.4 and 86. But for the radio emission (with e ~ 103-104) the estimated p values lie between 7 to 300. The estimates of total particle and magnetic energy for a typical radio source is in agreement with equipartition theory.  相似文献   

4.
5.
An analysis of radio and FIR emission in over 1500IRAS selected galaxies produces a good linear correlationbetween radio and FIR luminosity, indicating that star formationin normal field galaxies dominates the infrared luminosityin the local volume. Galaxies with clear radio-excess (definedas having at least5 times larger radio flux over expected from FIR) are identified as hosting a radio AGN, and they account for onlyabout 1% of the whole sample. This fraction increases to 10% among themore luminous galaxies with L 1.4GHz 1023 W Hz-1 (equivalently L 60m 1011 L), however. The characteristic mid-IR excess of a Seyfert nucleus is ubiquitously present amongthe radio-excess objects, suggesting that mid-IR excess isa robust tracer of an AGN despite the high mid-IR opacity.We conclude that about 30% of the luminous infrared galaxies(L 60m 1011 L) host an AGN based on themid-IR excess, and about 40% of the mid-IR excess AGNs alsohost a radio AGN. A VLA imaging survey of a distance limited sample of IR luminousgalaxies has revealed the presence of 100 kpc scale giant radioplumes in 3 out of 9 cases (Mrk 231, Mrk 273, NGC 6240). Theirlarge spatial extent, energetics, and presence of a powerful AGN in each case suggests that an AGN is the power source. Such plumesare not detected in other ultraluminous infrared galaxies which lack clear evidence for an AGN, such as Arp 220.  相似文献   

6.
The conventional interpretation of the cosmic background radiation (CBR) as a relic of the Big Bang assumes that the intergalactic medium is highly transparent to radio frequency radiation. Previous work (Lerner, 1990) used the well-known correlation of IR and radio luminosities of spiral galaxies to test this assumption. That analysis, using 237 Shapley-Ames galaxies showed that radio luminosity (L R ) for a given IR-luminosity, declines with distance, implying that the IGM strongly absorbs radio frequency radiation. That absorption has now been confirmed using a sample of 301 IR-bright galaxies. Using two independent methods of determining the correlation of IR and radio luminosities of spiral and interacting galaxies, the sample shows that for a givenL IR ,L R D –0.32±0.04 over a range of distances from 0.7-300 Mpc. (H 0 = 75 km s–1 Mpc–1). The correlation is significant at the 8 or 10–14 level. Absorption by the IGM is the only reasonable explanation for this correlation. The existence of such absorption implies that neither the isotropy nor the spectrum of the CBR are primordial and that neither is evidence for a Big Bang.  相似文献   

7.
The radio properties ofUhuru X-ray sources with fairly certain extragalactic identifications are described briefly. Radio to X-ray flux ratios are low for rich clusters of galaxies and high for double radio sources. There is some evidence from the Abell 426 (Perseus) and Abell 1367 clusters that a radio galaxy in a rich cluster may be the centre of extended X-ray emission. Nuclei of galaxies have an enormous range in X-ray luminosity; the known range is from 1030 W for our galaxy to 3×1038 W for 3C 273. Unidentified X-ray sources at high galactic latitudes may include new classes of objects with very low radio to X-ray flux ratios or hard X-ray emission.  相似文献   

8.
Using published flux densitiesS at low frequenciesv, radio spectra were constructed for 3C, 4C, and 4CT radio sources in Abell clusters of galaxies, radio galaxies outside Abell clusters, and quasars with known redshifts. About half the sources in rich Abell clusters (richness classesR>-2) have steep spectra between 38 and 178 MHz with spectral indices 38 178 > whereSv . However, radio galaxies outside clusters have values of 38 178 1.2, and no steep spectra were found among 170 quasars. The radio sources in rich clusters are probably confined by intergalactic gas, and the steep spectra develop over a period of 109 yr as relativistic electrons lose energy. The absence of steep spectra among quasars does not necessarily mean that quasars never occur in rich clusters of galaxies, since quasars are probably being observed only in their early high-luminosity phases. The possibility that some quasar events occur in the nuclei of the dominant cD galaxies in clusters is discussed, but quasar events may occur in more than one type of galaxy.  相似文献   

9.
Radio images and spectra of an eruptive prominence were obtained from simultaneous multifrequency observations at 36 GHz, 89 GHz, and 110 GHz on May 28, 1991 with the 45-m radio telescope at Nobeyama Radio Observatory (NRO), the National Astronomical Observatory, Japan (NAOJ). The radio spectra indicated that the optical depth is rather thick at 36 GHz whereas it is thin at 89 and 110 GHz. The H data, taken at Norikura Solar Observatory, NAOJ, suggest that the eruption of an active region filament was triggered by an H flare. The shape and position of the radio prominence generally coincided with those of H images. The radio emission is explained with an isothermal cool thread model. A lower limit for the electron temperature of the cool threads is estimated to be 6100 K. The range of the surface filling factors of the cool threads is 0.3–1.0 after the H flare, and 0.2–0.5 in the descending phase of the eruptive prominence. The column emission measure and the electron number density are estimated to be of the order of 1028 cm–5 and 1010 cm–3, respectively. The physical parameters of a quiescent prominence are also estimated from the observations. The filling factors of the eruptive prominence are smaller than those of the quiescent prominence, whereas the emission measures and the electron densities are similar. These facts imply that each cool thread of the prominence did not expand after the eruption, while the total volume of the prominence increased.  相似文献   

10.
We have investigated spectral features of strong radio burst emission for the 21st cycle of solar activity. The maximum daily radio fluxes in 8 frequency ranges are analyzed. For every year, the classification of these daily spectra is obtained by the cluster analysis method.We have shown that strong bursts are characterized by the stable shape of the mean radio emission spectra. For these bursts the total level of radio emission does not depend on the phase of the solar 11-yr cycle and varies with the quasi-period of 4 yr.The basic features of burst spectra can be explained by the gyrosynchrotron radiation of nonthermal electrons and plasma radiation at the second harmonic of plasma frequency. We supposed that in the generation region of centimetric emission, if the strength of the magnetic field B 100 G, the number of microbursts can amount to (6–7) × 103. In the generation region of decimetric emission, the energy of Langmuir waves changes as W l n e 0.4.  相似文献   

11.
H. Zirin 《Solar physics》1976,50(2):399-404
A large surge was observed on September 17, 1971, part of which, after travelling 200 000 km through the corona, returned to the surface to form a filament. The filament lasted about 30 min, then rose up and returned to the source of the surge. We interpret this as the filling of a semi-stable magnetic trap.The energetics of radio, X-ray, and surge expulsion are estimated. The radio spectrum and flux correspond to a thermal source of area 4 (arcmin)2, T 190 000 K, N e 2 V 7 × 1048, which is optically deep at 8800 MHz.The soft X-ray source has T 12 × 106 K, N e 2 V 3 × 1048; and if an equal mass is expelled in the surge, the kinetic energy of the surge is similar to the thermal energy of the X-ray source.  相似文献   

12.
The propagation of cosmic ray electrons in the framework of the Disk-Halo diffusion model in which the diffusion coefficientD z E (wherez is the distance from the galactic plane andE is the energy), and the magnetic fieldHz has been examined by making use of the recently available radio data up to 8 GHz toward the Anticenter (A) and Halo Minimum (M). The following inferences are then made. From the difference in the frequency at which steepening occurs in the radio spectra towardA andH, it is found that the observations are consistent with the magnetic field decreasing withz such that =0.24–0.37. An electron injection spectrum with a single power law down to energies well below 1 GeV cannot explain satisfactorily the observed radio spectra. All observations, however, can be understood in a self consistent way if the observed steepening of the radio spectra, and hence the interstellar electron spectrum, is due partly to the deviation in the power law electron injection spectrum below a few GeV and partly to the first break arising from electron energy losses occurring in the same energy region. In this case, using the value of obtained above and a value of =0.3–0.6, it is found that the spectral index 0 of the injected electrons above a few GeV has a value between 1.9 and 2.3 and the index a value between 0.5 and 1. Further, if the electrons and protons have the same spectral shape at injection, then 0=2.1–2.3.NASA-NRC, Senior Research Associate on leave from Tata Institute of Fundamental Research, Bombay, India.  相似文献   

13.
Multiple moving magnetic structures in the solar corona   总被引:1,自引:0,他引:1  
We report the study of moving magnetic structures inferred from the observations of a moving type IV event with multiple sources. The ejection contains at least two moving radio emitting loops with different relative inclinations. The radio loops are located above multiple H flare loops in an active region near the limb. We investigate the relationship between the two systems of loops. The spatial, temporal and geometrical associations between the radio emission and near surface activities suggest a scenario similar to coronal mass ejection (CME) events, although no CME observations exist for the present event. From the observed characteristics, we find that the radio emission can be interpreted as Razin suppressed optically thin gyrosynchrotron emission from nonthermal particles of energy 100, keV and density 102–105 cm–3 in a magnetic field 2 G.  相似文献   

14.
The coronal hole observed on May 31, 1973 is studied using extreme ultraviolet and radio observations. The EUV line is the Fe xv at = 284 Å and the radio frequencies are 169 and 408 MHz. An unsuccessful attempt to deduce an homogeneous model of the hole from these observations, shows that EUV and radio observations are inconsistent if interpreted in such a frame and if the EUV line intensity measurements in the hole are reliable.Inhomogeneities are therefore required to account for both observations. An inhomogeneous model consisting of hot (T2×106K) elements covering 10% of the hole surface surrounded by regions of colder gas (T8×105K) is able to explain both observations.  相似文献   

15.
The amount of circular polarization of the total solar radio emission at 7 GHz present permanent changes after the occurrence of certain radio bursts associated with larger flares. For isolated S-components, associated with such flares the changes of the polarization degree sranges between 0.004 to 0.1, and appears to be a function of the flare importance. A semi-qualitative interpretation associates swith magnetic field reductions at the S-component, agreeing fairly well with a flare mechanism based on collisionless dissipation of magnetic energy, corresponding to energies in the range of 1030 to 1032 ergs, assuming an average model for the coronal condensations.  相似文献   

16.
T. Takakura 《Solar physics》1979,61(1):161-186
A simulation of normal type III radio bursts has been made in a whole frequency range of about 200 MHz to 30 kHz by the usage of the semi-analytical method as developed in previous papers for the plasma waves excited by a cloud of fast electrons. Three-dimensional plasma waves are computed, though the velocities of fast electrons are assumed to be one-dimensional. Many basic problems about type III radio bursts and associated solar electrons have been solved showing the following striking or unexpected results.Induced scattering of plasma waves, by thermal ions, into the plasma waves with opposite wave vectors is efficient even for a solar electron cloud of rather low number density. Therefore, the second harmonic radio emission as attributed to the coalescence of two plasma waves predominates in a whole range from meter waves to km waves. Fundamental radio emission as ascribed to the scattering of plasma waves by thermal ions is negligibly small almost in the whole range. On the other hand, third harmonic radio emission can be strong enough to be observed in a limited frequency range.If, however, the time integral of electron flux is, for example, 2 × 1013 cm–2 (>5 keV) or more at the height of 4.3 × 1010 cm ( p = 40 MHz) above the photosphere, the fundamental may be comparable with or greater than the second harmonic, but an effective area of cross-section of the electron beam is required to be very small, 1017 cm2 or less, and hence much larger sizes of the observed radio sources must be attributed to the scattering alone of radio waves.The radio flux density expected at the Earth for the second harmonic can increase with decreasing frequencies giving high flux densities at low frequencies as observed, if x-dependence of the cross-sectional area of the electron beam is x 1.5 or less instead of x 2, at least at x 2 × 1012 cm.The second harmonic radio waves are emitted predominantly into forward direction at first, but the direction of emission may reverse a few times in a course of a single burst showing a greater backward emission at the low frequencies.In a standard low frequency model, a total number of solar electrons above 18 keV arriving at the Earth orbit reduces to 12% of the initial value due mainly to the collisional decay of plasma waves before the waves are reabsorbed by the beam electrons arriving later. However, no deceleration of the apparent velocity of exciter appears. A change in the apparent velocity, if any, results from a change in growth rate of the plasma waves instead of the deceleration of individual electrons.Near the Earth, the peak of second harmonic radio flux as emitted from the local plasma appears well after the passage of a whole solar electron cloud through this layer. This is ascribed to the secondary and the third plasma waves as caused in non-resonant regions by the induced scattering of primary plasma waves in a resonant region.  相似文献   

17.
High resolution surveys of the galactic centre suggest the existence of an extended nonthermal source (Bulge) with an intensity much larger than the total background radiation in that direction. In this paper, we have first evaluated the physical conditions existing in this restricted region of space from an analysis of the radio spectrum and shown that if the distribution of matter, magnetic fieldB(r) and cosmic ray densityk(r) in the plane of the Galaxy is of gaussian type then at the centreB (0)=25–30 G andk(0)=25–35 times that in the near interstellar space. It is also found that most of the absorption in the Sagittarius A spectrum at low frequencies takes place in the Bulge and one requires a small additional absorption to take place in the line of sight corresponding to n e 210 cm–6 pc at a temperature typically of clouds 100 K. The gamma ray spectra from the Bulge arising from interactions of cosmic rays with matter and radiation are then calculated in detail. A comparison made with the estimated background gamma ray spectra from the disk reveals that a detector with angular resolution 6° having a threshold of a few times 10–6 photons cm–2 s–1 can detect this source; this bulge is not found to be a good X-ray source for detection. From a comparison of these calculations with the observed flux above 100 MeV, the following inferences have been deduced: (i) the lower limit to the magnetic field strength at the centre is 12 G, (ii) the observed gamma ray flux towards the Anti-centre can be well explained as due to interactions of cosmic rays with matter alone and a similar explanation towards the center reveals that cloud complexes could be more in the inner parts of the Galaxy than in the outer parts, and (iii) the observed flux values are found to be inconsistent with the existence of submillimeter radiation in the galactic scale.  相似文献   

18.
The forthcoming collision by debris of P/Shoemaker-Levy 9 comet with Jupiter during the week of July 18, 1994 has generated considerable scientific and public interest. This collision may release an amount of energy ranging from 1025-1031 ergs in the Jovian atmosphere. Two possible phenomena associated with this event are described in this Letter to the Editor. The first one is the likely display of deformed Jovian magnetic field lines as the comet interacts with the Jovian magnetosphere. The second one is electromagnetic radiation outbursts during comet explosions over a wide frequency range from radio up to gamma ray emissions. If relativistic electrons with energies up to ~ 1000 MeV could be produced during comet explosions, then synchrotron radiations with frequencies from radio up to infrared range could be detectable. Hard X-rays and gamma rays could be produced by bremsstrahlung and inverse Compton processes. Since one cannot exclude the possible transient presence of relativistic electrons with Lorentz factor 2 × 106, synchrotron radiation component might even be extended into gamma ray frequency range during intermittent short time intervals.  相似文献   

19.
A detailed comparison is made between hard X-ray spikes and decimetric type III radio bursts for a relatively weak solar flare on 1981 August 6 at 10: 32 UT. The hard X-ray observations were made at energies above 30 keV with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission and with a balloon-born coarse-imaging spectrometer from Frascati, Italy. The radio data were obtained in the frequency range from 100 to 1000 MHz with the analog and digital instruments from Zürich, Switzerland. All the data sets have a time resolution of 0.1 s or better. The dynamic radio spectrum shows many fast drift type III radio bursts with both normal and reverse slope, while the X-ray time profile contains many well resolved short spikes with durations of 1 s. Some of the X-ray spikes appear to be associated in time with reverse-slop bursts suggesting either that the electron beams producing the radio bursts contain two or three orders of magnitude more fast electrons than has previously been assumed or that the electron beams can trigger or occur in coincidence with the acceleration of additional electrons. One case is presented in which a normal slope radio burst at 600 MHz occurs in coincidence with the peak of an X-ray spike to within 0.1 s. If the coincidence is not merely accidental and if it is meaningful to compare peak times, then the short delay would indicate that the radio signal was at the harmonic and that the electrons producing the radio burst were accelerated at an altitude of 4 × 109 cm. Such a short delay is inconsistent with models invoking cross-field drifts to produce the electron beams that generate type III bursts but it supports the model incorporating a MASER proposed by Sprangle and Vlahos (1983).  相似文献   

20.
The results of observations of the Rosette emission nebula NGC 2237 with the radio telescope UTR-2 at frequencies 12.6, 14.7, 16.7, 20.0 and 25.0 MHz are given in the shape of contours of constant brightness temperature. The half-power beamwidth of the telescope to zenith at 25.0 MHz was 28×38. Density weighted mean values for the non-thermal radio emissivity between the Sun and the source (7.9×10–41 W m–3 Hz–1 ster–1 at 25.0 MHz) and the ratio of the intensity of emissivity generated before the area and the intensity of galactic radio emissivity appearing beyond the area equal to 1.3 have been obtained. The electron temperatureT e=3600 K, the optical depth (about ten at 25 MHz), the measure of emission (ME=3500 cm–6 pc), the electron densityN e=8 cm–3 and the nebular mass 16.6×10+3 M have been determined. A comparison with other observation results has been made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号