首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The H observations of a selected sample of bright Be stars are presented. The available infrared observations at K band (2.2 m) of these stars have been used to find the infrared excess emission. The analysis of the combined data show thatL H, the luminosity of the H emission line, is proportional toL IR, the luminosity of the infrared excess emission. The linear correlation betweenL IR andL H shows that both the infrared excess and the H line originate in a common region. It is also detected that the infrared excess emission is produced throughout the whole envelope whereas the H is emitted in some defined region of the circumstellar (CS) envelope.  相似文献   

2.
We present evidence for Ly pumping of the Lyman band system of molecular hydrogen in Herbig-Haro 7 and the bipolar outflow DR 21. For this study we have measured several vibrational-rotational emission lines of H2 whose energy levels are widely spaced and ranging from 6000 (v = 1) to 25000 Kelvin (v = 4). We show that the near-infrared H2 emission from the shocked gas in HH 7 can be well described by a bow C-type shock. The enhanced emission observed from the higher energy levels (v > 3) can be well modelled by employing the Ly pumping mechanism.In the DR 21 outflow the multi-line study showed that different physical conditions exist in the eastern and western emission lobes. The higher H2 line ratios measured in the eastern lobe suggests a higher Ly pump rate which may be locally produced in the fast bowshocks. The FUV radiation field emanating from the central HII regions may in addition be exciting the Lyman and Werner bands of H2 in the molecular lobes.We show that the observed H2 emission can be interpreted in terms of a simple model consisting of a C-type bowshock, which produces the low excitation H2 emission, and a FUV radiation field with enough Ly line radiation to produce the high excitation H2 emission through fluorescence.  相似文献   

3.
H. Zirin 《Solar physics》1978,58(1):95-120
I have studied a number of flares for which good X-ray and optical data were available. An average lag of 5.5 s between hard X-ray (HXR) start and H start, and HXR peak and Ha peak was found for 41 flares for which determination was possible. Allowing for time constants the time lag is zero. The peak H lasts until 5–6 keV soft X-ray (SXR) peak. The level of H intensity is determined by the SXR flux.Multiple spikes in HXR appear to correspond to different occurrences in the flare development. Flares with HXR always have a fast H rise. Several flares were observed in the 3835 band; such emission appears when the 5.1–6.6 keV flux exceeds 5 × 104 ph cm-2 s-1 at the Earth. Smaller flares produce no 3835 emission; we conclude that coronal back conduction cannot produce the bright chromospheric network of that wavelength.The nearly simultaneous growth of H emission at distant points means an agent travelling faster than 5 × 103 km s-1 is responsible, presumably electrons.In all cases near the limb an elevated Ha source is seen with the same time duration as HXR flux; it is concluded that this H source is almost always an elevated cloud which is excited by the fast electrons. A rough calculation is given. Another calculation of H emission from compressed coronal material shows it to be inadequate.In several cases homologous flares occur within hours with the same X-ray properties.Radio models fit, more or less, with field strengths on the order of 100G. A number of flares are discussed in detail.  相似文献   

4.
In the present paper, H-evolutive curves of chromospheric events are compared with flux evolutive curves of X-ray events observed at the same time in different spectral regions. A correspondence between the emissions E(I H/I chr)'s at higher and higher H-intensity levels, and the X-ray fluxes F()'s in harder and harder -ranges is shown. Further, the present observations seem to indicate the existence of a single triggering mechanism during the flash-phase of a flare. It is also shown that these results may be in agreement with Brown's model for chromospheric flares.  相似文献   

5.
This is a quantitative investigation of the electron beam effect on the hydrogen line profiles and continuum intensity distribution during the impulsive phase of flares. The flaring atmosphere is suggested to be a hydrogenic one and its physical condition corresponds to the gas dynamics problem solution. The radiative transfer, steady-state and particle conservation equations are solved for the three-level hydrogen model atoms with continua. Return-current losses were neglected. Hydrogen line profiles are found to be slightly sensitive to nonthermal impacts with beam electrons in the cores and more sensitive in the wings. With the initial energy flux,F 0, rising and energy spectral index, , decreasing, the wing intensities begin to increase, and the H lines are shown to have rather extended wings as is often observed. The hydrogen continua are shown to be strongly affected by nonthermal impacts. The bigger the value ofF 0 and the smaller the value of , the greater absolute intensities of the hydrogen continua heads. This effect is more noticeable for the Balmer and Paschen continua. The head intensity slopes of them can be used for determination of these electron beam parameters on depths of the hydrogen emission origin and their following comparison with the same parameters for the coronal heights from the X-ray observations.  相似文献   

6.
K X-ray line emission from S, Ar, Ca and Fe is calculated for conditions likely to exist in solar flares. We consider both the non-thermal and thermal phases of flares as indicated by X-ray observations. Impulsive non-thermal events seen at the onset of a flare at photon energies > 20 keV generally give rise to small K line fluxes (<250 photons cm-2 s-1) on the basis of data presented by Kane and Anderson. The amount of S K radiation in particular depends sensitively on the lower-energy bound of the non-thermal electron distribution giving rise to the impulsive burst, offering a possible means of determining this. Thermal K emission is significant for only Fe ions. For S, Ar and Ca, the temperatures required for a sizeable number of electrons with energies greater than the K-ionization potential will also strip these elements to ionization stages too high for K transitions to be possible. Comparison of thermal K emission from iron during an intense solar flare leads to a very high emission measure on the basis of these calculations, but such a value seems to be compatible with an analysis of the 1–3 Å continuum during the same event.NAS/NRC Resident Research Associate.Visiting Scientist, High Altitude Observatory, NCAR, Boulder, Colo. 80302.  相似文献   

7.
The spectral energy distribution of the Seyfert type-2 galaxy Mk 348 is analyzed based on IUE observations and published data. It is found that most of the optical and near-IR flux comes from the underlying galaxy bulge population. The rest of the emission can be fitted by a power law of the formF v v with =0.6. In order to explain the X-ray emission this power law requires either a change of slope or a cutoff before 2 keV. The possibility that the emission originates in a young star cluster is discussed and a simple population synthesis model for the continuum of the galaxy is presented.  相似文献   

8.
D3 and H pictures of prominences were obtained with a 21-in. Lyot coronograph and a Fabry-Perot etalon used as a narrow band filter. The monochromatic images of quiescent, quasiquiescent and loop-prominences were studied. The comparison of the isophotes of quiescent and quasi-quiescent prominences in D3 with those in H shows the similarity of the prominence structure at both wavelength, although there is a strong tendency for an increase in the intensity ratio D3/H in the upper region of prominences. It seems that it is due to lower temperature in the upper regions of prominences. Probably, the relaxation processes establishing ionization equilibrium play some role. Measurements of the knot intensities of the loop-prominence show strong variations of the intensity ratio D3/H (more than one order of magnitude).  相似文献   

9.
Leka  K.D.  Skumanich  A. 《Solar physics》1999,188(1):3-19
This investigation centers upon the quantifying magnetic twist by the parameter , commonly defined as (×Bh)z/Bz=0Jz/Bz, and its derivation from vector magnetograph data. This parameter can be evaluated at each spatial point where the vector B is measured, but one may also calculate a single value of to describe the active region as a whole, here called 'AR'. We test three methods to calculate such a parameter, examine the influence of data noise on the results, and discuss the limitations associated with assigning such a quantity. The three methods discussed are (1) to parameterize the distribution of (x,y) using moments of its distribution, (2) to determine the slope of the function Jz(x,y)=ARBz(x,y) using a least-squares fit and (3) to determine the value of for which the horizontal field from a constant- force-free solution most closely matches the observed horizontal magnetic field. The results are qualitatively encouraging: between methods, the resulting value of the ARparameter is often consistent to within the uncertainties, even though the resulting ARcan differ in magnitude, and in some cases in sign as well. The worst discrepancies occur when a minimal noise threshold is adopted for the data. When the calculations are restricted to detections of 3 or better, there is, in fact, fair quantitative agreement between the three methods. Still, direct comparison of different active regions using disparate methods must be carried out with caution. The discrepancies, agreements, and overall robustness of the different methods are discussed. The effects of instrumental limitations (spatial resolution and a restricted field-of-view) on an active-region AR, and quantifying the validity of AR, are addressed in Paper II (Leka, 1999).  相似文献   

10.
Solar activity changes in amplitude and long-term behavior irregularly. Fractal theory is used to examine the variation of solar activity, using daily solar indices (i.e., sunspot number, 10.7 cm radio flux, the SME L, Fexiv coronal emission, and the total solar irradiance measured by the ERB (Earth Radiation Budget) on the NIMBUS-7. It can handle irregular variations quantitatively. The fractal dimension of 10.7 cm radio fluxes in cycle 21 for periods of 7 days or less was 1.28, 1.3 for periods longer than 272 days, and 1.86 for periods between them, for example. Fractal dimensions for other solar indices show similar tendencies. These results suggest that solar activity varies more irregularly for time scales that are longer than several days and shorter than several months. Yearly values of fractal dimensions and bending points do not change in concert with the solar cycle.  相似文献   

11.
We use the Cerenkov line emission mechanism to give a new explanation of the observed intensity ratios, particularly the L/H ratio, of the emission lines of quasars. We give equations that restrict the choice of the parameter values. The parameters are the characteristic energy of the relativistic electrons, the number density of neutral hydrogen and its relative level populations. With reasonable choice of the parmaeters, we can obtain calculated L/H, H/H, P/H ratios in agreement with observed values. Our estimate for the gas density in the broad line region of quasars is 1015 cm–3, very different from previous estimates. Unlike previous theories, such a high density causes no difficulties with the Cerenkov line emission.  相似文献   

12.
We analyze the emission component of galaxy nuclei at very low intensity levels (W(H)2Å). This emission level is considerably lower than that of classical LINERS like NGC 1052. We have access to weaker emission lines by averaging spectra with similar line ratios for H [NII], and [SII]. From the resulting spectrum for very low level emission nuclei, the [SII] 6717, 6731/[SIII] 9069, 9532 line ratio criterion (Diazet al., 1985a) unambiguously shows that shock-wave heating is the mechanism responsible for the ionization in such objects.  相似文献   

13.
We have compared the structures seen on X-ray images obtained by a flight of the NIXT sounding rocket payload on July 11, 1991 with near-simultaneous photospheric and chromospheric structures and magnetic fields observed at Big Bear. The X-ray images reflect emission of both Mgx and Fexvi, formed at 1 × 106 K and 3 × 106 K, respectively. The brightest H sources correspond to a dying sub-flare and other active region components, all of which reveal coronal enhancements situated spatially well above the H emission. The largest set of X-ray arches connected plages of opposite polarity in a large bipolar active region. The arches appear to lie in a small range of angle in the meridian plane connecting their footpoints. Sunspots are dark on the surface and in the corona. For the first time we see an emerging flux region in X-rays and find the emission extends twice as high as the H arches. Many features which we believe to correspond to X-ray bright points (XBPs) were observed. Whether by resolution or spectral band, the number detected greatly exceeds that from previous work. All of the brighter XBPs correspond to bipolar H features, while unipolar H bright points are the base of more diffuse comet-like coronal arches, generally vertical. These diverge from individual features by less than 30°, and give a good measure of what the canopies must do. The H data shows that all the H features were present the entire day, so they are not clearly disappearing or reappearing. We find a new class of XBPs which we call satellite points, elements of opposite polarity linked to nearby umbrae by invisible field lines. The satellite points change rapidly in X-ray brightness during the flight. An M1.9 flare occurred four hours after the flight; examination of the pre-flare structures reveals nothing unusual.  相似文献   

14.
We find that the profile changes observed for the UV emission lines L,Civ 1549, and MgIII 2798, in the Seyfert 1 galaxy Fairall 9 occur mainly near the line centre for L andCiv and in the wings for MgIII. These results indicate that the broad line region (BLR) has a complex structure, possibly with non-spherical components.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   

15.
We observed the large post-flare loop system, which developed after the X 3.9 flare of 25 June 1992 at 2011 UT, in H with the Multichannel Subtractive Double Pass Spectrograph at Pic-du-Midi and in X-rays with the it Yohkoh/SXT instrument. Following the long-term development of cool and hot plasmas, we have determined the emission measure of the cool plasma and, for the first time, the temporal evolution of the hot-loop emission measure and temperature during the entire gradual phase. Thus, it was possible to infer the temporal variation of electron densities, leading to estimates of cooling times. A gradual decrease of the hot-loop emission measure was observed, from 4 × 1030 cm–5 at 2300 UT on 25 June 1992 to 3 × 1028 cm–5 at 1310 UT on 26 June 1992. During the same period, the temperature decreased only slowly from 7.2 to 6.0 × 106 K. Using recent results of NLTE modeling of prominence-like plasmas, we also derive the emission measure of cool H loops and discuss their temperature and ionisation degree. During two hours of H observations (11–13 hours after the flare) the averaged emission measure does not show any significant change, though the amount of visible cool material decreases and the volume of the loops increases. The emission measure in H, after correction for the Doppler-brightening effect, is slightly lower than in soft X-rays. Since the hot plasma seems to be more spatially extended, we arrive at electron densities in the range n infe supho n infe supcool 2 × 1010 cm–3 at the time of the H observations.These results are consistent with the post-flare loop model proposed by Forbes, Malherbe, and Priest (1989). The observed slow decrease of the emission measure could be due to an increase of the volume of the loops and a gradual decrease of the chromospheric ablation driven by the reconnection, which seems to remain effective continuously for more than 16 hours. The cooling time for hot loops to cool down to 104 K and to appear in H would be only a few minutes at the beginning of the gradual phase but could be as long as 2 hours at the end, several hours later.  相似文献   

16.
An impulsive flare October 24, 1969 produced two bursts with virtually identical time profiles of 8800 MHz emission and X-rays above 48 keV. The two spikes of hard X-rays correspond in time to the times of sharp brightening and expansion in the H flare. The first burst was not observed at frequencies below 3000 MHz. This cut off is ascribed to plasma cutoff above the low-lying flare.A model of the flare based on H observations at Big Bear shows that the density of electrons with energy above 10 keV is 5 × 107 if the field density is 1011. The observed radio flux would be produced by this electron distribution with the observed field of 200 G. The H emission accompanying the hard electron acceleration is presumed due to excitation of the field atoms by the hard electrons.  相似文献   

17.
In the time period from 1972-1993, the Seyfert 1 galaxy Mrk 509 showed large variations of its optical continuum and broad emission line fluxes. The broad H and H emission lines have approximately the same profiles, which retain their shape during flux variations. The relationship between the continuum and emission line fluxes varies with time. The spectral energy distribution of the variable continuum based on UBVRI data has the form lgF() lg, with the dereddened = -0.60.  相似文献   

18.
We have detected 1.1 mm continuum emission from 24 of 53 Herbig Ae/Be stars surveyed with the JCMT. Survival analysis shows that 1.1 mm luminosity is correlated with bolometric luminosity and with IRAS 25µm luminosity. For those stars that were also detected at 0.45 or 0.8 mm we find a typical flux dependence of the form S #x03BD; 3, which is steeper than that of most classical T Tauri stars.  相似文献   

19.
Large field H observations of the Milky Way between Carina and Aquila were made through a narrow interference filter 15 wide. Characteristic large-scale features of the observed region are extended emission areas in Carina, Norma-Scorpius and Scutum-Sagittarius and some weak isolated nebulosities near the Coal Sac, Centauri and Normae. H photographs, a chart mapping the emission, and a list of identified emission regions are given.  相似文献   

20.
Qiu  J.  Falchi  A.  Falciani  R.  Cauzzi  G.  Smaldone  L. A. 《Solar physics》1997,172(1-2):171-179
We analyze the pre-flare and impulsive phase of an eruptive (two-ribbon) flare at several wavelengths. The total energy (mechanical plus radiative) released by the flare is 8 x 1030 erg, about a factor 6 higher than the free magnetic energy (1.3 1030 erg) estimated from the non-potentiality of the magnetic field configuration in the flare area. During the impulsive phase, we find a very good time coincidence between the hard X-ray light curve and the light curves for 2 small areas ( 4 in size) in the red wing of the H line and in the He-D3 line center. This temporal coincidence is compatible with the interpretation that hard X-ray emission is produced by bremsstrahlung of accelerated electron beams striking these dense areas. For the other regions of the H ribbons we find more gradual light curves, suggesting a different energy transport mechanism such as conduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号