首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Based upon the Fermi blazars sample, the radio and γ-ray emissions are compiled for a sample of 74 γ-ray loud blazars to calculate the radio to γ-ray effective spectrum index α R γ. The correlations between α R γ and γ-ray luminosity, and between radio and γ-ray luminosity are also investigated.  相似文献   

2.
Two of the main components of nuclear fusion processes which occur in stars are the radiative capture of deuteron-alpha and its inverse reaction during which helium transforms into larger elements. One of the reactions occuring is the production of 6Li through the d(α, γ)6Li reaction that is supported by the Big Bang model. The process of radiation in the energy region 0.07 MeV ≤ Ecm ≤ 0.41 MeV has been studied in the framework of Effective Field Theory (EFT) at low energy. Further, within the EFT framework deuteron is assumed as a dibaryon and the coulomb effect between deuteron and alpha is ignored. The reaction amplitude for the P-wave initial states 3P2, 3P0 and 2P3/2 and the astrophysical S-factor for sum of E1 and E2 transitions are found in the framework of EFT up to NLO. The results of this model for the astrophysical S-factor at low energies are comparable with the available experimental data and those of other theoretical models.  相似文献   

3.
We consider the modulation of nonthermal gyrosynchrotron emission from solar flares by the ballooning and radial oscillations of coronal loops. The damping mechanisms for fast magnetoacoustic modes are analyzed. We suggest a method for diagnosing the plasma of flare loops that allows their main parameters to be estimated from peculiarities of the microwave pulsations. Based on observational data obtained with the Nobeyama Radioheliograph (17 GHz) and using a technique developed for the event of May 8, 1998, we determined the particle density n≈3.7×1010 cm?3, the temperature T≈4×107 K, and the magnetic field strength B≈220 G in the region of flare energy release. A wavelet analysis for the solar flare of August 28, 1999, has revealed two main types of microwave oscillations with periods P1≈7, 14 s and P2≈2.4 s, which we attribute to the ballooning and radial oscillations of compact and extended flare loops, respectively. An analysis of the time profile for microwave emission shows evidence of coronal loop interaction. We determined flare plasma parameters for the compact (T≈5.3×107 K, n≈4.8≈1010 cm?3, B≈280 G) and extended (T≈2.1≈107 K, n≈1.2≈1010 cm?3, B≈160 G) loops. The results of the soft X-ray observations are consistent with the adopted model.  相似文献   

4.
A sample of 48 observations of coronal mm-wave (off-limb) sources (CMMSs) has been analysed in order to check relationships to cm-wave bursts and to study the emission process. CMMSs appear to be related to gradual and/or stronger microwave bursts with post-burst increase which start up to a few hours prior to the time of the mm-wave observations. The lifetime of CMMSs is much larger than that of these bursts. The interpretation of the mm-wave emission by optically thick bremsstrahlung at the temperature Tb,o ≈ 104 K (which also corresponds to observations in Hα) requires emission measures N2e Δs ≧ 2 · 1028 cm−5 at 37 GHz. On the other hand, optically thin bremsstrahlung at temperatures of Te ≈ 5 · 106–107 K (which are observed in X-rays) can apply to cm-waves. Application of this mechanism to mm-waves, too, would require source sizes much smaller than the half-power beam width (HPBW) of the radio telescopes (so that in this case the presently observed brightness temperatures Tb,o would be underestimated).  相似文献   

5.
《New Astronomy》2003,8(2):141-153
In many GRB inner engine models the highly relativistic GRB jets are engulfed by slower moving matter. This could result in different beaming for the prompt γ-ray emission and for the lower energy afterglow. In this case we should expect that some observer will see on-axis orphan afterglows: X-ray, optical and radio afterglows within the initial relativistic ejecta with no preceding GRB; the prompt γ-ray emission is pointing elsewhere. We show that the observations of the WFC on BeppoSAX constrain with high certainty the prompt X-ray beaming factor to be less than twice the prompt γ-ray beaming. The results of Ariel 5 are consistent with this interpretation. The RASS from ROSAT and HEAO-1 constrain the X-ray beaming factor at 400 and 20 min after the burst, respectively, to be comparable and certainly not much larger than the γ-ray beaming factor. There is no direct limit on the optical beaming. However, we show that observations of several months with existing hardware could result in a useful limit on the optical beaming factor of GRB afterglows.  相似文献   

6.
The dependence of the occurrence probabilities of ionosonde sporadic-E parameters f0Es and fbEs on probing frequency is analyzed for wintertime for day and night for two Southern Hemisphere stations. The ionosonde data indicate that significant changes have taken place over the period 1958–1983 suggesting that Es has become increasingly dense and also less patchy.  相似文献   

7.
We work on the reconstruction scenario of pilgrim dark energy (PDE) in f(T,T G ). In PDE model it is assumed that a repulsive force that is accelerating the Universe is phantom type with (w DE f(T,T G ) models and correspondingly evaluate equation of state parameter for various choices of scale factor. Also, we assume polynomial form of f(T,T G ) in terms of cosmic time and reconstruct H and w DE in this manner. Through discussion, it is concluded that PDE shows aggressive phantom-like behavior for s=?2 in f(T,T G ) gravity.  相似文献   

8.
E. Kirsch 《Solar physics》1973,28(1):233-246
Solar neutron emission during large flares is investigated by using neutron monitor data from the mountain stations Chacaltaya (Bolivia), Mina Aguilar (Argentine), Pic-du-Midi (France) and Jungfraujoch (Switzerland). Registrations from such days on which large flares appeared around the local noon time of the monitor station are superimposed with the time of the optical flare as reference point.No positive evidence for a solar neutron emission was found with this method, However, by using an extrapolation of the neutron transport functions given by Alsmiller and Boughner a rough estimation of mean upper limits for the solar neutron flux is possible. The flux limits are compared with Lingenfelter's model calculations.From the Chacaltaya measurements it follows: N 02.8 × 10–3 N cm–2 s–1 per proton flare, E > 50 MeV, if P0 = 125 MV N 01.4 × 10–2 N cm–2 s–1 per proton flare, E > 50 MeV, if P 0 = 60 MV and from Pic-du-Midi measurements: N 06.7 × 10–3 N cm–2 s–1 per proton flare, E > 50 MeV, if P 0 = 125 MV N 04 × 10–2 N cm–2 s–1 per proton flare, E > 50 MeV, if P 0 = 60 MV P 0 = characteristic rigidity of the producing proton spectrum on the Sun.The flux limits estimated for some special proton flares are consistent with Lingenfelter's predictions for the acceleration phase but are too small for the slowing down phase. Therefore it is believed that Lingenfelter's assumption of isotropic proton emission from the flare region is not fulfilled.  相似文献   

9.
The diffusion of electrons through interstellar space, and the energy dependence of the diffusion coefficient are considered. Apart from the caseD=const the spectral index for electrons with spectral index γ0 changes according to γ0+μ→γ0+½μ+½→γ0+1 (D(E)=D0(E/E0)μ) for μ<1; for μ>1 to γ0+1→γ0+½μ+½→γ0+μ. We consider the radio emission spectrum in such a case. From a comparison with observations the limit μ≤0.4 is obtained.  相似文献   

10.
11.
GRBs are the most energetic combination of jets and disks in the Universe. Observations made using Swift reveal a complex temporal and spectral behaviour. We propose that this behaviour can be used to refine the GRB classification scheme and align it better with progenitor types. The early (prompt) X-ray light curve can be well described by an exponential which relaxes into a power law. The transition time between the exponential and the power law gives a well-defined timescale, T p , for the burst duration which we use with the spectral index of the prompt emission, β p , and the prompt power law decay index, α p to define four classes of burst: short, slow, fast and soft. Short bursts tend to decline more gradually than long bursts. Most GRBs display a second “afterglow” component which can be fitted in a similar way to the early emission. During the decay of this second component, few GRBs show jet breaks in accord with pre-Swift predictions. However, the start time of the final afterglow decay, T a , correlates with the peak of the prompt γ-ray emission spectrum, E peak, in an analogous way to the Ghirlanda relation found between optical “jet-break” times, t j , and E peak. These data are inconsistent with simple achromatic jet-break models casting doubt on the reliability of using late temporal breaks to determine the jet collimation.  相似文献   

12.
Using γ-ray band data detected by Fermi Large Area Telescope (LAT) and X-ray band data for 78 blazars, we find a medium correlation between X-ray flux and γ-ray flux in all states. A medium correlation is also found between X-ray (1 keV) mean spectral index α x and γ-ray mean spectral index α γ for BL Lacertae objects (BL Lacs), and there is no correlation for Flat Spectrum Radio Quasars (FSRQs). From these results, we suggest that the most likely radiation mechanism for the high energy gamma-rays would be synchrotron self-Compton (SSC), and that the gamma-ray emission mechanism may be somewhat different for BL Lacs and FSRQs.  相似文献   

13.
The propagation and modulation of electrons in the heliosphere play an important part in improving our understanding and assessment of the modulation processes. A full three-dimensional numerical model is used to study the modulation of galactic electrons, from Earth into the inner heliosheath, over an energy range from 10 MeV to 30 GeV. The modeling is compared with observations of 6–14 MeV electrons from Voyager 1 and observations at Earth from the PAMELA mission. Computed spectra are shown at different spatial positions. Based on comparison with Voyager 1 observations, a new local interstellar electron spectrum is calculated. We find that it consists of two power-laws: In terms of kinetic energy E, the results give E ?1.5 below ~500 MeV and E ?3.15 at higher energies. Radial intensity profiles are computed also for 12 MeV electrons, including a Jovian source, and compared to the 6–14 MeV observations from Voyager 1. Since the Jovian and galactic electrons can be separated in the model, we calculate the intensity of galactic electrons below 100 MeV at Earth. The highest possible differential flux of galactic electrons at Earth with E=12 MeV is found to have a value of 2.5×10?1 electrons m?2?s?1?sr?1?MeV?1 which is significantly lower (a factor of 3) than the Jovian electron flux at Earth. The model can also reproduce the extraordinary increase of electrons by a factor of 60 at 12 MeV in the inner heliosheath. A lower limit for the local interstellar spectrum at 12 MeV is estimated to have a value of (90±10) electrons m?2?s?1?sr?1?MeV?1.  相似文献   

14.
From the analysis of 119 low-frequency (LF) burst spectra observed onboard the Wind spacecraft, we propose an interpretation of the frequency-time characteristics including the low frequency cutoff of the LF burst spectra, and we use these characteristics to sound the bow shock structure at large tailward distances from Earth. When observed from within the solar wind, LF bursts appear to be made of two spectral components. The high frequency one is bursty and observed above twice the solar wind plasma frequency fpsw. The low frequency one is diffuse (ITKR) and its spectrum extends from about 2fpsw to a cutoff frequency fc not much higher than fpsw; its onset time δt(f) increases as the frequency f decreases. For each of the 119 events observed from near the Lagrange point L1, the solar wind density variations were measured and the variations of the density jump across the shock calculated from plasma data all along a shock model over more than 2000RE. But, except for a few events, neither the solar wind overdensities nor the shock density barrier can prevent waves with frequencies below fc from reaching the spacecraft. Scattering on plasma density inhomogeneities was then introduced to account for the propagation of the LF burst waves in the magnetosheath, from near Earth to their escape point through the bow shock at a frequency-dependent distance |Xesc(f)| (GSE), and then in the solar wind to the spacecraft. In such media, at frequencies between 2fpsw and fpsw, the bulk speed of the scattered waves decreases rapidly as f decreases, and this accounts for the observed variations of the onset time δt(f). Angular scattering can also account for the observed cutoff at fc if the distance |Xesc(f)| increases exponentially when f/fpsw decreases. As the shock model we used meets that requirement, we consider that this model is valid, which implies that the bow shock still exists beyond 1000RE from the Earth. The observed decrease of the average spectral intensity of the LF burst between about 1.5fpsw and 2fpsw can also be explained by the scattering in the solar wind if we take into account the angular distribution of the rays when they leave the bow shock.  相似文献   

15.
Based on spectropolarimetric observations Seyfert 2 (Sy2) galaxies are generally divided into two populations. Some Sy2s show polarized broad emission lines (PBLs) which is an evidence for the hypothesis of the Unified model while others do not. In order to determine the properties of these two apparently different populations we compiled a sample of 66 Sy2 objects with and without detected PBLs. We used a (J − H) − (H − Ks) diagram based on 2MASS J, H, Ks magnitudes in 14 arcsec aperture, the F[OIII] emission line flux and the infrared emission flux FKs using the Ks filter. From the (J − H) − (H − Ks) diagram we determined that one third of the Sy2 objects with PBLs have a power-law infrared component which could be a result of both a non-thermal AGN component scattered by free electrons (or dust) and emission from hot dust near its sublimation temperature. The rest of the objects (with PBLs) are significantly dominated by a dust thermal re-emission. The Sy2s without PBLs show infrared emission dominated by a host galaxy stellar component and also by thermal dust re-emission. The Sy2s with PBLs tend to have a few times larger L[OIII] luminosities than those without. Following the median values of F[OIII]/FKs, it seems that this ratio is sensitive enough to separate our sample of Sy2 galaxies into two types - with and without PBLs. There are no Sy2s with PBLs having Eddington ratio below 10−3 which confirms the results of Nicastro et al. (2003).  相似文献   

16.
Observations of solar protons at energies from 1 MeV to 360 MeV are examined in relation to the information that these particles give about the magnetosphere, magnetotail and magnetopause. Trajectory integrations in a realistic model of the geomagnetic field out to 25RE and a tail field model fitted to observations from 15RE to 80RE are used to obtain a better understanding of the particle motion. The mean free path of protons in the tail is found to be 700RE and 200RE for 100 MeV and 1 MeV protons respectively, which indicates that trajectory calculations in a static field model are valid.  相似文献   

17.
We further investigate the two-dimensional hydrodynamic explosion model for rapidly rotating and collapsing supernovae (Aksenov et al. 1997), in which the initial energy release inside a fragmenting low-mass neutron star of critical mass ≈0.1M moving in a circular orbit at a velocity of ≈18000 km s?1 is reduced considerably. This velocity closely corresponds to a pulsar escape velocity of ≈1000 km s?1 (at a total mass of ≈1.9M for the binary of neutron stars). Compared to our previous study (Zabrodina and Imshennik 1999), this energy release was reduced by more than a half. Otherwise, the model in question does not differ from the explosion model with a self-consistent chemical composition of nuclides investigated in the above paper. In particular, the initial energy release was carefully reconciled with a chemical composition. Our numerical solution shows that the reduction in energy release due to the time scales of β processes and neutrino energy losses being finite does not alter the qualitative results of our previous studies (Aksenov et al. 1997; Imshennik and Zabrodina 1999). An intense undamped diverging shock wave (with a total post-shock energy ? 1051 erg at a front radius of ≈10 000 km) is formed; a large asymmetry of explosion with a narrow cone (with a solid angle of ≈π/4) around the leading direction, which coincides with the velocity direction of the low-mass neutron star at the instant of its explosive fragmentation in the two-dimensional model, emerges. A jet of synthesized radioactive nickel, whose mass is estimated by using simple threshold criteria to be M Ni≈(0.02?0.03)M is concentrated inside this cone. This appears to be the integrated parameter that is most sensitive to the specified reduction in initial energy release; it is also reduced by almost a half compared to our previous estimate (Imshennik and Zabrodina 1999). The time of propagation of the shock wave inferred in our model to the presupernova surface was estimated for SN 1987A to be 0.5–1.0 h, in agreement with observations.  相似文献   

18.
The results of JHKLM photometry for Nova Delphini 2013 obtained in the first sixty days after its outburst are analyzed. Analysis of the energy distribution in a wide spectral range (0.36–5 µm) has shown that the source mimics the emission of normal supergiants of spectral types B5 and A0 for two dates near its optical brightness maximum, August 15.94 UT and August 16.86 UT, respectively. The distance to the nova has been estimated to be D ≈ 3 kpc. For these dates, the following parameters have been estimated: the source’s bolometric fluxes ~9 × 10?7 and ~7.2 × 10?7 erg s?1 cm?2, luminosities L ≈ 2.5 × 105 L and ≈2 × 105 L , and radii R ≈ 6.3 × 1012 and ≈1.2 × 1013 cm. The nova’s expansion velocity near its optical brightness maximum was ~700 km s?1. An infrared (IR) excess associated with the formation of a dust shell is shown to have appeared in the energy distribution one month after the optical brightness maximum. The parameters of the dust component have been estimated for two dates of observations, JD2456557.28 (September 21, 2013) and JD2456577.18 (October 11, 2013). For these dates, the dust shell parameters have been estimated: the color temperatures ≈1500 and ≈1200 K, radii ≈6.5 × 1013 and 1.7 × 1014 cm, luminosities ~4 × 103 L and ~1.1 × 104 L , and the dust mass ~1.6 × 1024 and ~1025 g. The total mass of the material ejected in twenty days (gas + dust) could reach ~1.1 × 10?6 M . The rate of dust supply to the nova shell was ~8 × 10?8 M yr?1. The expansion velocity of the dust shell was about 600 km s?1.  相似文献   

19.
In this paper, we search the existence of Bianchi type I cosmological model in f(R,T) gravity, where the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar R and of the trace of the stress-energy tensor T. We obtain the gravitational field equations in the metric formalism, and reconstruct the corresponding f(R,T) functions. Attention is attached to the special case, f(R,T)=f 1(R)+f 2(T) and two examples are assumed for this model. In the first example, we consider the unification of matter dominated and accelerated phases with f(R) gravity in anisotropic universe, and in the second instance, model of f(R,T) gravity with transition of matter dominated phase to the acceleration phase is obtained. In both cases, f(R,T) is proportional to a power of R with exponents depending on the input parameters.  相似文献   

20.
The EGRET observations have confirmed and proposed the new isotropically distributed γ-ray background, but the known objects radiating γ-rays can not supply so much radiation. Meanwhile, EGRET also reveals a population of γ-ray sources with no radio counterparts which are isotropically distributed in the sky, indicating their possible cosmological origins. Wang et al.[13] proposed a new γ-ray radiation process driven by the radiation feedback of AGNs. The energy of the radiation peaks around 1 GeV—0.1 TeV with the typical luminosity of 1042—1043 ergs · s?1. This kind of radiation process in the radio quiet quasars make them the potential γ-ray radiation sources as well as the contributors to the γ-ray background. We consider two cases in which the seed photons in the inverse-Compton processes are from the accretion disks of quasars and cosmic microwave background (CMB), respectively. We find that the former contributes 78%—92% of the background radiation around 1 GeV, while the contribution from the latter is negligible. The radio quiet quasars are highly likely to become the objects which contribute the most energy to the γ-ray background around 1 GeV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号