首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparison of two separate MM5 land-use datasets (i.e., ‘US Geological Survey (USGS)’ and ‘Pollutants in the Atmosphere and their Transport over Hong Kong (PATH)’, each with different parameter values and different spatial distributions) was performed to understand the importance of land-surface processes and land-atmosphere interactions in the evolution of mesoscale weather phenomena during a high pollution episode in Hong Kong from 28 December 1999 through 1 January 2000. Also, a series of high resolution mesoscale numerical experiments was performed to investigate the possible roles of various surface characteristics or land-use parameters in this high pollution episode. Specifically, the relative importance of six land-use parameters including the roughness length, thermal inertia, soil moisture availability, albedo, surface heat capacity and surface emissivity are studied. Results from this study suggest that the soil moisture availability is the most important controlling parameter on the flow pattern and on surface fluxes. Sensitivity tests also show that the general flow pattern is insensitive to the other five land-use parameters  相似文献   

2.
Land surface and climate processes possess dynamics and heterogeneities across a wide range of scales. This study explores the utility of, and procedures for, using local scale measurements to obtain large-scale information. An aggregation scheme is proposed to bridge the scale gap between the scale of measurements including remote sensors and climate and mesoscale models. The proposed scheme derives a set of effective parameters which obeys the energy balance equation exactly and partitions the surface fluxes accurately at different scales. It produces a unique set of aggregated land surface parameters that are easily measurable through remote sensing and have sound mathematical and physical basis. It is shown that aggregated ground heat flux, emissivity and albedo may be obtained by simple areally weighted averaging while temperature, aerodynamic and surface resistances require more involved aggregation operators. The effective surface temperature, although it requires a complicated operator involving subgrid-scale temperature and surface emissivity, is easily measurable through remote sensing. The proposed scheme was compared and contrasted with existing effective parameter approaches. It was shown that several effective parameters of the previous schemes can be easily derived from the proposed scheme by introducing additional assumptions and simplifications.  相似文献   

3.
Numerical Modelling of Urban Heat-Island Intensity   总被引:1,自引:0,他引:1  
A three-dimensional, non-hydrostatic, high-resolution numerical model was used toanalyse urban heat-island (UHI) intensity in an idealised but realistic configuration.The urban area was 20 km square and lay on flat land at about latitude 50° Nin a maritime climate. In the model the urban area was represented by anomalies ofalbedo, anthropogenic heat flux, emissivity, roughness length, sky-view factor (SVF),surface resistance to evaporation (SRE) and thermal inertia. A control simulationincluded all these factors and the resultant UHI structure, energetics and intensitywere validated against observations. The results also compared favourably withearlier simulations.A series of experiments was conducted in which successively one of the anomaliesthat represented the urban area was omitted from the control simulation so as toprovide the basis for an assessment of its effect. In daytime the individual effectsdue to albedo, anthropogenic heat, emissivity, SVF and thermal inertia ranged from0.2 to 0.8 °C. In common with albedo, anthropogenic heat, emissivity andSVF, the SRE aided the formation of a UHI; it was also the most important factorin increasing its intensity. The roughness length had the opposite effect. At nightemissivity, roughness length, SVF and SRE had effects ranging from 0.3 to0.75 °C, but the largest effect (2 °C) was due to the anthropogenicheat. These results showed a difference in the causes of daytime and nighttime UHIs.In daytime the roughness length and SRE were the most important factors affectingUHI intensity; at night the anthropogenic heat was the most important. The simulationssuggested that the size of the urban area had a minimal effect on UHI intensity.  相似文献   

4.
绿洲-沙漠复合地表条件下的局地和有效粗糙度   总被引:11,自引:0,他引:11  
地表空气动力学粗糙度是研究水平非均匀条件下陆面过程的基础,文中对黑河试验区各不同下垫面上地表空气动力学粗糙度进行了估算和分析,分别得到了地表空气动力学粗糙度z0m的有效值和局地值,发现各不同典型下垫面的局地z0m值明显不同,尤其在有作物存在时,绿洲的局地z0m值比沙漠、戈壁的值明显要大;而对同一测站,有效空气动力学粗糙度比局地空气动力学粗糙度值明显要大,运用应力分解理论对这种差异进行了解释,认为有效空气动力学粗糙度与复合表面的总应力有关,其代表了较大水平尺度内的表面和较高障碍物的综合作用,当涉及对陆表通量参数化问题时,必须首先确定水平尺度及相应的地表粗糙度参数  相似文献   

5.
6.
Transient experiments for the Eemian (128–113 ky BP) were performed with a complex, coupled earth system model, including atmosphere, ocean, terrestrial biosphere and marine biogeochemistry. In order to investigate the effect of land surface parameters (background albedo, vegetation and tree fraction and roughness length) on the simulated changes during the Eemian, simulations with interactive coupling between climate and vegetation were compared with additional experiments in which these feedbacks were suppressed. The experiments show that the influence of land surface on climate is mainly caused by changes in the albedo. For the northern hemisphere high latitudes, land surface albedo is changed partially due to the direct albedo effect of the conversion of grasses into forest, but the indirect effect of forests on snow albedo appears to be the major factor influencing the total absorption of solar radiation. The Western Sahara region experiences large changes in land surface albedo due to the appearance of vegetation between 128 and 120 ky BP. These local land surface albedo changes can be as much as 20%, thereby affecting the local as well as the global energy balance. On a global scale, latent heat loss over land increases more than 10% for 126 ky BP compared to present-day.  相似文献   

7.
8.
In atmospheric models, the roughness length for momentum, heat and moisture are often taken equal, and tuned to the momentum budget problem. In this paper, it is shown that the roughness lengths have considerable impact on the evaporation in winter. One-column simulations of the land-surface scheme are driven with a long time series of observations for Cabauw in The Netherlands. It is shown that with the operational roughness lengths for this location (as in use at ECMWF in May 1993), evaporation in January, February and March is overestimated by more than a factor 2. More realistic parameters, as documented for this site, virtually eliminate the error. This study shows the importance of the surface roughness lengths in determining evaporation from wet surfaces. It also illustrates the strength of long observational time series in identifying model deficiencies.  相似文献   

9.
This study describes the first order impacts of incorporating a complex land-surface scheme, the bare essentials of surface transfer (BEST), into the Australian Bureau of Meteorology Research Centre (BMRC) global atmospheric general circulation model (GCM). Land seasonal climatologies averaged over the last six years of integrations after equilibrium from the GCM with BEST and without BEST (the control) are compared. The modeled results are evaluated with comprehensive sources of data, including the layer-cloud climatologies from the international satellite cloud climatology project (ISCCP) data from 1983 to 1991 and the surface-observed global data of Warren et al., a five-year climatology of surface albedo estimated from earth radiation budget experiment (ERBE) top-of-the-atmosphere (TOA) radiatioe fluxes, global grid point datasets of precipitation, and the climatological analyses of surface evaporation and albedo. Emphasis is placed on the surface evaluation of simulations of landsurface conditions such as surface roughness, surface albedo and the surface wetness factor, and on their effects on surface evaporation, precipitation, layer-cloud and surface temperature. The improvements due to the inclusion of BEST are: a realistic geographical distribution of surface roughness, a decrease in surface albedo over areas with seasonal snow cover, and an increase in surface albedo over snow-free land. The simulated reduction in surface evaporation due, in part, to the biophysical control of vegetation, is also consistent with the previous studies. Since the control climate has a dry bias, the overall simulations from the GCM with BEST are degraded, except for significant improvements for the northern winter hemisphere because of the realistic vegetation-masking effects. The implications of our results for synergistic developments of other aspects of model parameterization schemes such as boundary layer dynamics, clouds, convection and rainfall are discussed.  相似文献   

10.
11.
针对京津冀高温模拟,综合运用卫星和地面气象观测数据、参数敏感性试验等技术方法,确定了耦合了多层城市冠层模型的中尺度数值模式(WRF/BEP/BEM)的地表反照率、比辐射率和人为热等参数的本地化配置。数值对比试验表明,参照试验中优化地表反照率、比辐射率和人为热(通过本地优化BEM输入参数来实现)等参数后,模式对京津冀高温模拟的效果均有显著提高,65%及以上的城市站点,参照试验比敏感性试验模拟误差降低0.5℃以上。经参数优化的WRF/BEP/BEM,较好地模拟了2010年以来京津冀地区5次极端高温过程,模拟结果与观测的标准差分别为1.4°C、0.8°C、0.9°C、1.0°C和0.7°C,分别较ERA5与观测的标准差减小26.3%、61.9%、40.0%、41.2%和36.3%。参数本地优化的WRF/BEP/BEM,可进一步应用于京津冀极端高温的相关研究,特别是城市化对极端高温作用机理的研究。  相似文献   

12.
干旱区天气、气候数值模拟的研究进展   总被引:5,自引:0,他引:5  
干旱区的气候模拟有着很强特殊性。气候模式是研究和探讨干旱区形成物理机制的有效手段和工具。介绍了近年来国内外干旱气候数值模拟和试验的研究与进展.总结和评述了陆面过程中地表反照率、土壤湿度、植被状况的参数化和对气候的影响.讨论和阐述陆面过程在气候模拟中的重要性。对干旱区的气候和天气灾害的数值模式模拟研究作了一些评述,并对干旱区数值模拟的有关问题进行了讨论和展望。指出干旱区陆面过程的深入研究和干旱区陆面参数的标定,是改进干旱区气候模拟的重要途径。  相似文献   

13.
We tested three atmospheric surface-layer parameterization schemes (Mellor-Yamadalevel 2, Paulson, and modified Louis), both ina 1-D mode in the new NCEP land-surface scheme against long-term FIFE and HAPEX observations, and in a coupled 3-D mode withthe NCEP mesoscale Eta model. The differences inthese three schemes and the resulting surface exchange coefficients do not, in general, lead to significant differences in model simulated surface fluxes, skin temperature, andprecipitation, provided the same treatment of roughness length for heat is employed.Rather, the model is more sensitive to the choice of the roughness length for heat. To assess the latter, we also tested two approaches to specifythe roughness length for heat: 1) assuming the roughness length for heat is a fixed ratio of the roughness length for momentum, and 2) relating this ratio to the roughness Reynolds number as proposed by Zilitinkevich.Our 1-D column model sensitivity tests suggested that the Zilitinkevich approach can improve the surface heat fluxand skin temperature simulations. A long-term test with the NCEP mesoscaleEta model indicated that this approach can also reduce forecast precipitation bias. Based on these simulations, in January 1996 we operationally implemented the Paulsonscheme with the new land-surface scheme of the NCEP Eta model, along with the Zilitinkevich formulation to specify the roughness length for heat.  相似文献   

14.
The relationship of surface albedo with the solar altitude angle and soil moisture is analyzed based on two-year (January 2002 to December 2003) observational data from the AWS (Automatic Weather Station) at MS3478 in the northern Tibetan Plateau during the experimental period of CEOP/CAMP-Tibet (Coordinated Enhanced Observing Period Asia-Australia Monsoon Project on the Tibetan Plateau). As a double-variable (solar altitude angle and soil moisture) function, surface albedo varies inconspicuously with any single factor. By using the method of approximately separating the double-variable function into two, one-factor functions (product and addition), the relationship of albedo with these two factors presents much better. The product and additional empirical formulae of albedo are then preliminarily fitted based on long-term experimental data. By comparison with observed values, it is found that the parameterization formulae fitted by using observational data are mostly reliable and their correlation coefficients are both over 0.6. The empirical formulae of albedo though, for the northern Tibetan Plateau, need to be tested by much more representative observational data with the help of numerical models and the retrieval of remote sensing data. It is practical until it is changed into effective parameterization formulae representing a grid scale in models.  相似文献   

15.
两次暴雨过程模拟对陆面参数化方案的敏感性研究   总被引:1,自引:0,他引:1  
陈海山  倪悦  苏源 《气象学报》2014,72(1):79-99
选取发生在江西和福建境内的两次暴雨个例,利用NCEP再分析资料在对暴雨发生前、后的环境场和物理量场进行诊断和对比分析的基础上,采用中尺度模式WRF V3.3,通过数值模拟探讨了陆面过程对两次暴雨过程的可能影响及其相关的物理过程。结果表明,2012年5月12日江西大暴雨主要受大尺度环流和中尺度天气系统影响,具有范围大、持续时间长等特点,属于大尺度降水为主的暴雨;而2011年8月23日福建暴雨发生在副热带高压控制下的午后,局地下垫面强烈的感热和潜热通量使低层大气不稳定性增强,触发了此次对流性降水为主的暴雨。通过资料诊断分析,可以判断陆面过程对福建暴雨个例的影响程度明显强于江西暴雨个例。通过关闭地表通量试验发现,陆面过程对暴雨模拟十分重要,尤其是对于该个例中对流性降水的发生起到关键性的作用。通过陆面参数化方案的敏感性试验发现,两次暴雨过程对陆面参数化方案均较为敏感。江西暴雨对陆面过程的敏感性主要体现在对流降水的模拟上,而福建暴雨则体现在大尺度降水的模拟方面,即福建暴雨对陆面参数化方案的敏感性强于江西暴雨。敏感性产生机制与降水类型关系紧密,大尺度降水对陆面过程的敏感性主要来源于不同参数化模拟的中高空对流系统的差异,而对流降水的敏感性则与不同参数化模拟的地表通量的差异有关。通过陆面参数的扰动试验进一步发现,相比于地表粗糙度和最小叶孔阻抗,土壤孔隙度和地表反照率则是影响对流降水对陆面过程敏感的关键因子,这在本质上与地表通量是否受到扰动有关。地表通量较风场而言,受扰动引起变化的空间范围广、时间响应快,变化具有明显规律性。所得结果可为深入理解陆面过程影响暴雨等天气过程和改进数值模式对暴雨的模拟能力提供一定的参考。  相似文献   

16.
J Polcher  K Laval 《Climate Dynamics》1994,10(4-5):205-219
The present study uses the general circulation model of the Laboratoire de Météorologie Dynamique (LMD-GCM) coupled to the land-surface, vegetation model SECHIBA. The impact of deforestation on climate is discussed. Replacing tropical forests by degraded pastures changes albedo, the roughness length and the hydrological properties of the surface. The experiment was carried out over eleven years using the observed sea surface temperature from 1978 to 1988, which includes two major El Niño events. The discussion of the results in this study is limited to the regional impact of deforestation. The changes found for the surface fluxes in Amazonia, Africa and Indonesia are examined in detail and compared in order to understand the impact on temperature. Special attention is paid to feedback mechanisms which compensate for the surface changes and to the statistical significance of these results within the tropical variability of climate. It is shown that the relatively small regional impact of deforestation in this study is statistically significant and largely independent of the El Niño-Southern Oscillation phenomenon.This paper was presented at the Second International Conference on Modelling of Global Climate Change and Variability (Hamburg, September 1992)  相似文献   

17.
The main goal of this work is to describe the diurnal and seasonal variations of the radiation balance components at the surface in the city of S?o Paulo based on observations carried out during 2004. Monthly average hourly values indicate that the amplitudes of the diurnal cycles of net radiation (Q*), downwelling and upwelling shortwave radiation (SWDW, SWUP), and longwave radiations (LWDW, LWUP) in February were, respectively, 37%, 14%, 19%, 11%, and 5% larger than they were in August. The monthly average daily values indicate a variation of 60% for Q*, with a minimum in June and a maximum in December; 45% for SWDW, with a minimum in May and a maximum in September; 50% for SWUP, with a minimum in June and a maximum in September; 13% for LWDW, with a minimum in July and a maximum in January; and 9% for LWUP, with a minimum in July and a maximum in February. It was verified that the atmospheric broadband transmissivity varied from 0.36 to 0.57; the effective albedo of the surface varied from 0.08 to 0.10; and the atmospheric effective emissivity varied from 0.79 to 0.92. The surface effective emissivity remained approximately constant and equal to 0.96. The albedo and surface effective emissivity for S?o Paulo agreed with those reported for urban areas in Europe and North America cities. This indicates that material and geometric effects on albedo and surface emissivity in S?o Paulo are similar to ones observed in typical middle latitudes cities. On the other hand, it was found that S?o Paulo city induces an urban heat island with daytime maximum intensity varying from 2.6°C in July (16:00 LT) to 5.5°C in September (15:00 LT). The analysis of the radiometric properties carried out here indicate that this daytime maximum is a primary response to the seasonal variation of daily values of net solar radiation at the surface.  相似文献   

18.
房云龙  孙菽芬  李倩 《大气科学》2010,34(2):290-306
依据干旱区陆地下垫面观测结果, 对陆面过程模式Common Land Model (CoLM) 中反照率、 粗糙度长度和土壤热力性质3个方面的参数进行了优化, 并按照不同的参数组合形式设计了为加深理解干旱区地气相互作用的控制试验和研究重要参数影响的敏感性试验, 对敦煌戈壁2000年5月~2004年7月的陆面过程进行了离线 (off-line) 数值模拟分析。控制试验结果表明: 优化参数的模式在干旱区得到了更好的模拟性能, 对地表和深层土壤温度、 净短波辐射、 净长波辐射以及感热通量的模拟能力较原模式有了明显的提高。敏感性试验的结果表明: 地表温度在全年对反照率都比较敏感, 春季和夏季更为显著; 粗糙度长度和土壤热力性质分别在春夏和秋冬对地表温度有较大影响; 感热通量对反照率和粗糙度长度在夏半年比较敏感, 而土壤热力性质对感热通量的影响并不明显。对敏感性试验的结果进一步分析发现: 原模式在计算地表温度、 净辐射和感热通量的过程中存在不同形式的误差抵消的现象, 这就会掩盖模式的模拟误差, 优化参数的模式可以更好的反映干旱区地气相互作用的物理过程。针对模式输出的感热通量和地表热通量的分析发现: 感热通量的季节变化明显, 全年都有由地表向上的感热通量输送, 夏季尤为显著; 相对于感热通量而言, 潜热通量量级很小可以忽略不计。夏季, 净辐射的能量大部分以感热通量的形式返回大气, 其余的能量以地表热通量的形式进入土壤并贮存, 夏季土壤为热汇; 冬季, 夏季贮存的能量又由土壤返回大气, 此时土壤为热源。  相似文献   

19.
Monthly averages of the surface energy balance are parameterized, resulting in a reduced solar forcing function and a non-dimensional time scale for computing the thermal response at the air/snow interface by numerical forward integration. The climatonomic transform of the balance equation serves to assess surface-temperature perturbations resulting from parameter modifications which simulate effects of dust contamination of a snow surface. Three climatonomical model experiments permit the following conclusions: (1) an albedo reduction increases primarily the summer temperatures; (2) an emissivity decrease raises the temperature of all months nearly uniformly; (3) the thermally induced feedback on submedium structure (if summer melting is instigated) increases the storage capacity and reduces spring and summer temperatures with compensating rise in autumn and winter temperature. Quantitative results are exemplified by assumed modification of conditions known to exist at the South Polar Plateau.  相似文献   

20.
Improving and validating land surface models based on integrated observations in deserts is one of the challenges in land modeling. Particularly, key parameters and parameterization schemes in desert regions need to be evaluated in-situ to improve the models. In this study, we calibrated the land-surface key parameters and evaluated several formulations or schemes for thermal roughness length (z 0h ) in the common land model (CoLM). Our parameter calibration and scheme evaluation were based on the observed data during a torrid summer (29 July to 11 September 2009) over the Taklimakan Desert hinterland. First, the importance of the key parameters in the experiment was evaluated based on their physics principles and the significance of these key parameters were further validated using sensitivity test. Second, difference schemes (or physics-based formulas) of z 0h were adopted to simulate the variations of energy-related variables (e.g., sensible heat flux and surface skin temperature) and the simulated variations were then compared with the observed data. Third, the z 0h scheme that performed best (i.e., Y07) was then selected to replace the defaulted one (i.e., Z98); the revised scheme and the superiority of Y07 over Z98 was further demonstrated by comparing the simulated results with the observed data. Admittedly, the revised model did a relatively poor job of simulating the diurnal variations of surface soil heat flux, and nighttime soil temperature was also underestimated, calling for further improvement of the model for desert regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号