首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
使用中尺度数值模式WRF-ARW,针对2010年6月发生在中国东北地区一例伴随对流层高空西风急流(位于~9 km高度)演变过程出现的平流层重力波活动特征开展了数值模拟. 事件发生期间,对流层区域环流处在一个东北冷涡系统的控制之下. 模拟结果再现了该东北冷涡的发展和维持过程,以及与之相伴的高空急流的特征. 模拟结果揭示出在急流区域上空的平流层中存在显著重力波活动现象. 分析结果显示,重力波活动与急流存在紧密联系,在水平方向上,重力波呈显著的二维结构,出现在急流出口区上部并逆背景流向西传播. 功率谱分析结果表明盛行波动具有~700 km水平尺度、9~12 h时间尺度以及4~5 km垂直波长. 由于急流的存在,造成其与平流层中下部之间存在显著的水平风速垂直切变,与切变相伴的耗散使得上传的重力波动量通量数值随着高度升高而递减. 同时,在18~20 km高度间出现的西风-东风转换带极大地抑制了波动在垂直方向的传播,形成显著动量通量沉积效应. 估算结果表明,在11~20 km高度之间,这种效应的整体作用相当于对该层背景流施加强度为0.86 m·s-1·day-1的动力阻曳.  相似文献   

2.
Characterization of gravity wave(GW)parameters for the stratosphere is critical for global atmospheric circulation models.These parameters are mainly determined from measurements.Here,we investigate variation in inertial GW activity with season and latitude in the lower stratosphere(18-25 km)over China,using radiosonde data with a high vertical resolution over a 2-year period.Eight radiosonde stations were selected across China,with a latitudinal range of 22°-49°N.Analyses show that the GW energy in the lower stratosphere over China has obvious seasonal variation and a meridional distribution,similar to other regions of the globe.The GW energy is highest in winter,and lowest in summer;it decreases with increasing latitude.Velocity perturbations with longitude and latitude are almost the same,indicating that GW energy is horizontally isotropic.Typically,85%of the vertical wavelength distribution is concentrated between elevations of 1 and 3 km,with a mean value of 2 km;it is almost constant with latitude.Over 80%of all the horizontal wavelengths occur in the range 100-800 km,with a mean value of 450km;they show a weak decrease with increasing latitude,yielding a difference of about 40 km over the 22°-49°N range.The ratio of horizontal wavelength over vertical wavelength is about 200:1,which implies that inertial GWs in the lower stratosphere propagate along nearly horizontal planes.Ratios of their intrinsic frequency to the Coriolis parameter decrease with increasing latitude;most values are between 1 and 2,with a mean value of 1.5.Study of the propagation directions of GW energy shows that upward fractions account for over 60%at all stations.In contrast,the horizontal propagation direction is significantly anisotropic,and is mainly along prevailing wind directions;this anisotropy weakens with increasing latitude.  相似文献   

3.
利用2011年秋季无线电探空数据,采用矢端曲线法首次分析了新疆库尔勒地区下平流层重力波特征参量,得到36组准单色重力波的结果.结果统计显示:库尔勒秋季下平流层重力波垂直波长、水平波长平均值分别为2.8 km和580 km,固有频率平均值为1.74f.垂直传播方向以上传为主,约占78%,其中下传重力波水平波长较短,固有频率较高.水平传播方向以西北和东南为主,各占1/3,其中上传(下传)重力波水平传播方向以西北(东南)居多,这与热带低纬站点和其他中纬站点观测结果不同.与其他站点比较,库尔勒地区ŵ/f最小,中高纬地区水平波长、垂直波长随纬度增加大致有减小的趋势,库尔勒地区偏离这一趋势,波长偏大.  相似文献   

4.
本文利用AIM卫星搭载的CIPS云图反照率和冰晶粒径数据,从中提取了2007/08南半球和2008年北半球共6489个小尺度重力波活动(波长5~150km范围)个例,对重力波区域与背景云层冰晶粒径谱进行对比分析,从而研究重力波对冰晶平均半径和谱宽的影响规律.结果表明,北半球重力波区域冰晶的平均半径和谱宽分别比背景云层小2.5nm和6.1nm,南半球则分别减小1.1nm和7.9nm.在随纬度的分布上,小于80°时,南北半球的平均半径扰动值均为负值,绝对值随纬度增大而减小,而大于80°时,负扰动转变为正扰动,且绝对值增加;谱宽扰动的绝对值也随着纬度增加而减小,但均为负值.在季节内随时间的分布上,南北半球重力波对冰晶平均半径和谱宽的扰动在始末阶段以负值为主,且绝对值较大,而在中期阶段正负值相当,且绝对值较小.这一特征与重力波引起冰晶粒径变化的振幅在纬度和时间上的分布趋势一致.重力波的波长均随纬度升高而减小,在季节的始末阶段较大,中期小,且南半球的平均波长和变化幅度都要明显大于北半球的,粒径扰动振幅随波长的变化率为南半球0.207nm·km-1,北半球的0.163nm·km-1.根据分析推断,重力波自身的扰动振幅应与其影响区域内的谱参数相对于背景云层的变化量有直接关系,且振幅越大,平均半径和谱宽的负扰动就越大.  相似文献   

5.
Nonlinear interactions between gravity waves and tides   总被引:1,自引:0,他引:1  
In this study, we present the nonlinear interactions between gravity waves (GWs) and tides by using the 2D numerical model for the nonlinear propagation of GWs in the compressible atmosphere. During the propagation in the tidal background, GWs become instable in three regions, that is z = 75―85 km, z = 90―110 km and z = 115―130 km. The vertical wavelength firstly varies gradually from the initial 12 km to 27 km. Then the newly generated longer waves are gradually compressed. The longer and shorter waves occur in the regions where GWs propagate in the reverse and the same direction of the hori-zontal mean wind respectively. In addition, GWs can propagate above the main breaking region (90—110 km). During GWs propagation, not only the mean wind is accelerated, but also the amplitude of tide is amplified. Especially, after GWs become instable, this amplified effect to the tidal amplitude is much obvious.  相似文献   

6.
梁晨  薛向辉  陈廷娣 《地球物理学报》2014,57(11):3668-3678
本文利用2007年1月至2012年12月的COSMIC卫星温度剖线,从中提取了垂直波长在3~10 km的重力波扰动信息,进而分析了全球平流层大气重力波的分布特征.赤道地区低平流层重力波表现出明显的准两年变化,这种变化与风场的准两年变化具有明显的相关性,向下发展速度约为1 km/月;赤道地区高平流层(35 km以上区域)的重力波活动则存在明显的半年变化.中高纬度重力波活动主要表现为冬季强夏季弱.在南极地区存在着与急流的时间、空间以及强度变化密切相关的重力波分布特征,这说明在南极极夜急流是非常重要的一个重力波源;而在北极极夜急流的作用则没有那么强.此外,通过考察不同高度的重力波活动特征,我们发现:30 km以下重力波活动较强区域主要在赤道地区且与强对流区分布基本吻合,地形诱发的以及与天气系统相关的强重力波活动在该高度范围内同样出现;而在30 km以上的区域重力波活动强度分布则会出现与平流层爆发性增温以及极夜急流有关的变化.  相似文献   

7.
In this paper we consider a vertical wavenumber spectrum of vertically propagating gravity waves impinging on a rapid increase in atmospheric stability. If the high-wavenumber range is saturated below the increase, as is usually observed, then the compression of vertical scales as the waves enter a region of higher stability results in that range becoming supersaturated, that is, the spectral amplitude becomes larger than the saturation limit. The supersaturated wave energy must then dissipate in a vertical distance of the order of a wavelength, resulting in an enhanced turbulent energy dissipation rate. If the wave spectrum is azimuthally anisotropic, the dissipation also results in an enhanced vertical divergence of the vertical flux of horizontal momentum and enhanced wave drag in the same region. Estimates of the enhanced dissipation rates and radar reflectivities appear to be consistent with the enhancements observed near the high-latitude summer mesopause. Estimates of the enhanced mean flow acceleration appear to be consistent with the wave drag that is needed near the tropopause and the high-latitude summer mesopause in large-scale models of the atmosphere. Thus, this process may play a significant role in determining the global effects of gravity waves on the large-scale circulation.  相似文献   

8.
In this paper we present an extension for the 2D (zonal mean) version of our numerical spectral mode (NSM) that incorporates Hines’ Doppler spread parameterization (DSP) for small-scale gravity waves (GW). This model is applied to describe the seasonal variations and the semi-annual and quasi-biennial oscillations (SAO and QBO). Our earlier model reproduced the salient features of the mean zonal circulation in the middle atmosphere, including the QBO extension into the upper mesosphere inferred from UARS measurements. The model is extended to reproduce the upwelling at equatorial latitudes that is associated with the Brewer–Dobson circulation — which affects significantly the dynamics of the stratosphere as Dunkerton had pointed out. In the presence of GW, this upwelling is produced in our model with tropospheric heating, which generates also zonal jets outside the tropics similar to those observed. The resulting upward vertical winds increase the period of the QBO. To compensate for that, one needs to increase the eddy diffusivity and the GW momentum flux, bringing the latter closer to values recommended in the DSP. The QBO period in the model is 30 months (mo), which is conducive to synchronize this oscillation with the seasonal cycle of solar forcing. Associated with this QBO are interannual and interseasonal variations that become increasingly more important at higher altitudes — and this variability is interpreted in terms of GW filtering that effectively couples the dynamical components of the mesosphere. The computed temperature amplitudes for the SAO and QBO are in substantial agreement with observations at equatorial and extra-tropical latitudes. At high latitudes, however, the observed QBO amplitudes are significantly larger, which may be a signature of propagating planetary waves not included in the present model. The assumption of hydrostatic equilibrium not being imposed, we find that the effects from the vertical Coriolis force associated with the equatorial oscillations are large for the vertical winds and significant for the temperature variations even outside the tropics, but the effects are small for the zonal winds.  相似文献   

9.
The correlation between atmospheric gravity waves(GWs) and Transient Luminous Events(TLEs) has been poorly studied using both synchronous observations and numerical simulations. To investigate the modulation effects of GWs on TLEs,a troposphere-mesosphere quasi-electrostatic field model is developed in three-dimensional Cartesian coordinates, and the effects of GW perturbations on the initiation and optical emissions of sprite halos are simulated using the model. Simulation results indicate that the atmospheric density at lower ionosphere altitudes becomes inhomogeneous due to GW perturbations, and sprite halos tend to initiate in the GW troughs due to the lower electric breakdown threshold. GW perturbations cause the deformation of sprite halos, strong luminous regions distribute mainly along the GW troughs while optical intensities along the GW peaks is relatively weak. Larger GW perturbations lead to more pronounced deformation of sprite halos, however, stronger lightning discharges in the troposphere result in less optical perturbations of sprite halos. The observed luminous intensities and optical morphology of sprite halos are also affected by the observing orientations and the lightning polarities.  相似文献   

10.
It is generally accepted that small-scale gravity waves (GW) produce the observed reversals in the zonal circulation and temperature variations of the upper mesosphere (e.g., Lindzen, 1981). There is evidence that GW also play an important role in the quasi-biennial oscillation (QBO) of the lower stratosphere, which can be generated by planetary waves (Lindzen and Holton, 1968). In the present paper, we summarize the modeling studies with the mechanistic numerical spectral model (NSM), which incorporates the Doppler spread parameterization for GW (Hines, 1997a, Hines, 1997b). Our studies illuminate the importance of GW filtering and momentum deposition associated with critical level absorption and wave braking. Numerical results from the 2D and 3D versions of the NSM show how these wave interactions generate in the zonal-mean: (a) annual and semi-annual oscillations, (b) QBO with related semi-decadal oscillation and solar cycle effects, and (c) monthly intra-seasonal oscillations.  相似文献   

11.
Temperature profiles provided by the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) global positioning system (GPS) satellite constellation were used to study an eight-year series (2007 to 2015) of gravity wave (GW) potential energy in the stratosphere (18–30 km) around the Tibetan Plateau (TP). We found that with increasing altitude, the GW potential energy (E p) values in the stratosphere caused by convection decreases. The importance of GWs that are stimulated by topography is enhanced in this area. In the TP, which was considered to lack strong topographical GW activity, clear activity existed in the spring and winter of all studied years. Based on the latitudinal zone of the TP, the distribution of GW potential energy is highly consistent with the elevation of the local topography. The activities of topographical GWs are strongly filtered as they propagate upward to the area of zero speed wind. The analysis indicates that in the TP, clear orographic GW excitation exists and propagates upward to the upper stratosphere, where it is greatly influenced by the wind.  相似文献   

12.
AIRS观测的东亚夏季平流层重力波特征   总被引:7,自引:4,他引:3       下载免费PDF全文
对流性重力波对中层大气环境有显著影响.重力波活动及重力波源的地理和季节性变化等信息是理解和模拟重力波效应的基础.卫星高光谱红外大气垂直探测器AIRS的4μm和15μm波段可用于识别30~40km高度范围和41km高度附近的重力波,其11μm通道可同步观测对流层深对流.观测个例表明,海面和陆面上空的平流层扰动影响范围均可达1000km,不同高度的扰动强度分布也存在差异.基于2007年6月至8月的AIRS观测资料,分析了东亚区域的对流层深对流活动和平流层的重力波,得到了深对流和重力波发生频率的水平分布.统计结果表明,东亚区域夏季夜间的深对流活动明显少于白天,但AIRS观测到的平流层重力波发生频率和扰动强度均显著大于白天,揭示了夜间对流层深对流诱发的平流层重力波在强度、范围等方面可能与白天存在显著差异.进一步对比分析表明,AIRS观测的平流层扰动高值区与深对流高值区明显不同.平流层重力波与对流层深对流之间的相关分析表明,在36°N以南的区域,41km高度上AIRS观测的重力波中,深对流云诱发的重力波的比例约为30%~100%.在10°N至36°N区间,90%的深对流均可诱发平流层重力波.分析得到的30~40km高度区间和41km高度附近的重力波水平分布对比表明,后一高度上的扰动强度明显大于前一高度,且前一高度在东南亚区域存在强扰动中心而在后一高度则没有.最后,给出了AIRS观测的几种典型形态的东亚区域平流层波动,表明了该区域平流层环境波动形态的复杂性和多样性.  相似文献   

13.
Aerodynamic roughness length is an important physical parameter in atmospheric numerical models and micrometeorological calculations, the accuracy of which can affect numerical model performance and the level of micrometeorological computations. Many factors influence the aerodynamic roughness length, but formulas for its parameterization often only consider the action of a single factor. This limits their adaptive capacity and often introduces considerable errors in the estimation of land surface momentum flux(friction velocity). In this study, based on research into the parameterization relations between aerodynamic roughness length and influencing factors such as windflow conditions, thermodynamic characteristics of the surface layer, natural rhythm of vegetation growth, ecological effects of interannual fluctuations of precipitation, and vegetation type, an aerodynamic roughness length parameterization scheme was established. This considers almost all the factors that affect aerodynamic roughness length on flat land surfaces with short vegetation. Furthermore, using many years' data recorded at the Semi-Arid Climate and Environment Observatory of Lanzhou University, a comparative analysis of the application of the proposed parameterization scheme and other experimental schemes was performed. It was found that the error in the friction velocity estimated by the proposed parameterization scheme was considerably less than that estimated using a constant aerodynamic roughness length and by the other parameterization schemes. Compared with the friction velocity estimated using a constant aerodynamic roughness length, the correlation coefficient with the observed friction velocity increased from 0.752 to 0.937, and the standard deviation and deviation decreased by about 20% and 80%, respectively. Its mean value differed from the observed value by only 0.004 ms~(-1) and the relative error was only about 1.6%, which indicates a significant decrease in the estimation error of surface-layer momentum flux. The test results show that the multifactorial universal parameterization scheme of aerodynamic roughness length for flat land surfaces with short vegetation can offer a more scientific parameterization scheme for numerical atmospheric models.  相似文献   

14.
Nonlocal fluxes and Stokes drift effects in the K-profile parameterization   总被引:2,自引:0,他引:2  
 The K-profile parameterization of upper-ocean mixing is tested and extended using observations and large eddy simulations of upper-ocean response to a westerly windburst. A nonlocal momentum flux term is added, and the amplitude of the nonlocal scalar flux is recalibrated. Parameterizations of Stokes drift effects are added following recent work by McWilliams and Sullivan (2001). These changes allow the parameterization to produce both realistic gradients of momentum and scalars in the nocturnal boundary layer and enhanced mixing during stable conditions. The revised parameterization is expected to produce improved representations of lateral advection and sea-surface temperature in large-scale models. Received: 31 August 2001 / Accepted: 15 December 2001  相似文献   

15.
As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987, Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, Hines, 1997b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) 10-h global-scale inertio gravity waves. Numerical experiments are discussed, which illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations.  相似文献   

16.
The generation of stratospheric gravity waves(GWs) due to typhoon is simulated by using a meso-scale model(WRF) with a typhoon case,the Matsa in 2005.An 8-day model run that covers the major stages of the Matsa’s development reproduces the key features of the typhoon.For example,good agreements in the typhoon’s track,the intensity,and the spiral clouds,as well as mean state of stratosphere,are seen between the simulation results and the observation.Simulation results clearly show that with typhoon propagates northwestward,pronounced stratospheric GWs are generated continuously in the vicinity of Matsa.The GWs exhibit the typical curve-like wave fronts away from the Typhoon Matsa,and propagate preferentially in the upstream of the background winds.These characteristics reflect that the stratospheric GWs are closely associated with the typhoon,and thus the GWs are referred to as Tropical Cyclone related Gravity Waves(TC-GWs).The results also show that these waves should have a rather large horizontal scale so that the outmost wave fronts can be seen at the distance of ~1000 km to the typhoon center in the horizontal plane of 20 km.This is consistent with the phenomenon of stratospheric TC-GWs with ~1000 km horizontal scale disclosed by the previous observational analysis results.  相似文献   

17.
A new analytical formulation of entrainment and detrainment in the Tiedtke's mass flux cumulus parameterization is presented here in which cloud height is one of the key parameters. The proposed analytical profiles of entrainment and detrainment are tested in GCM for long-term simulation and are evaluated in the light of the results from the original Tiedtke's scheme and another mass flux scheme due to Emanuel. The variations of Indian monsoon rainfall have been examined with these schemes in a general circulation model. Evaluation of the simulated rainfall against observations is done by empirical orthogonal function (EOF) analysis for the Indian Monsoon region. It is noted that the spatial and temporal variations of the all-India monsoon rainfall are sensitive to the formulation of entrainment and detrainment in a mass flux scheme, and that the new formulation can effectively represent the increased dilution with height in deep clouds.  相似文献   

18.
We present the first observational proof that polar mesospheric cloud (PMC) brightness responds to stratospheric gravity waves (GWs) differently at different latitudes by analyzing the Fe Boltzmann lidar data collected from the South Pole and Rothera (67.5°S, 68.0°W), Antarctica. Stratospheric GW strength is characterized by the root-mean-square (RMS) relative density perturbation in the 30–45 km region and PMC brightness is represented by the total backscatter coefficient (TBC) in austral summer from November to February. The linear correlation coefficient (LCC) between GW strength and PMC brightness is found to be +0.09 with a 42% confidence level at the South Pole and ?0.49 with a 98% confidence level at Rothera. If a PMC case potentially affected by a space shuttle exhaust plume is removed from the Rothera dataset, the negative correlation coefficient and confidence level increase to ?0.61 and 99%, respectively. The Rothera negative correlation increases when shorter-period waves are included while no change is observed in the South Pole correlation. Therefore, observations show statistically that Rothera PMC brightness is negatively correlated with the stratospheric GW strength but no significant correlation exists at the South Pole. A positive correlation of +0.74 with a confidence level of 99.98% is found within a distinct subset of the South Pole data but the rest of the dataset exhibits a random distribution, possibly indicating different populations of ice particles at the South Pole. Our data show that these two locations have similar GW strength and spectrum in the 30–45 km region during summer. The different responses of PMC brightness to GW perturbations are likely caused by the latitudinal differences in background temperatures in the ice crystal growth region between the PMC altitude and the mesopause. At Rothera, where temperatures in this region are relatively warm and supersaturations are not as large, GW-induced temperature perturbations can drive subsaturation in the warm phase. Thus, GWs can destroy growing ice crystals or limit their growth, leading to negative correlation at Rothera. Because the South Pole temperatures in the mesopause region are much colder, GW-perturbed temperature may never be above the frost point and have less of an impact on crystal growth and PMC brightness. The observed phenomena and proposed mechanisms above need to be understood and verified through future modeling of GW effects on PMC microphysics and ray modeling of GW propagation over the South Pole and Rothera.  相似文献   

19.
One of the main challenges of the Copernicus Marine Service is the implementation of coupled ocean/waves systems that accurately estimate the momentum and energy fluxes provided by the atmosphere to the ocean. This study aims to investigate the impact of forcing the Nucleus for European Modelling of the Ocean (NEMO) ocean model with forecasts from the wave model of Météo-France (MFWAM) to improve classical air-sea flux parametrizations, these latter being mostly driven by the 10-m wind. Three wave-related processes, namely, wave-state-dependent stress, Stokes drift-related effects (Stokes-Coriolis force, Stokes drift advection on tracers and on mass), and wave-state-dependent surface turbulence, are examined at a global scale with a horizontal resolution of 0.25°. Three years of sensitivity simulations (2014–2016) show positive feedback on sea surface temperature (SST) and currents when the wave model is used. A significant reduction in SST bias is observed in the tropical Atlantic Ocean. This is mainly due to the more realistic momentum flux provided by the wave model. In mid-latitudes, the most interesting impact occurs during the summer stratification, when the wind is low and the wave model produces a reduction in the turbulence linked with wave breaking. Magnitudes of the large-scale currents in the equatorial region are also improved by 10% compared to observations. In general, it is shown that using the wave model reduces on average the momentum and energy fluxes to the ocean in tropical regions, but increases them in mid-latitudes. These differences are in the order of 10 to 20% compared with the classical parametrizations found in stand-alone ocean models.  相似文献   

20.
风云三号卫星微波观测的临近空间大气扰动特征   总被引:1,自引:0,他引:1       下载免费PDF全文
风云三号C星(FY-3C)同时装载有设置了50~60GHz和118.75GHz附近氧气吸收带内通道的微波大气垂直探测器,可以用于监测临近空间下部的大气温度.本文的首要目的是展示FY-3C微波大气垂直探测器在监测临近空间(尤其是平流层)强重力波扰动中的优势特点.在给出平流层强扰动监测结果的基础上,分析了不同波段不同通道监测平流层大气温度扰动的能力.随后,对比分析了FY-3C大气温度探测通道与国外同类仪器在观测平流层扰动中的异同点,并进一步讨论了不同平台相同大气微波探测通道联合分析平流层扰动过程的能力.本文在统计2013年冬季(2012年12月和2013年1、2月)和2014年夏季(2014年6、7、8月)的微波大气垂直探测器观测的全球平流层扰动出现频率分布的基础上,利用FY-3C微波大气温度探测器分析了格陵兰岛附近2014年1月7—11日一次平流层扰动过程.结果表明,FY-3C微波探测器50~60GHz和118.75GHz波段可用于获取平流层不同高度上的大气温度扰动特征,且前一波段的探测能力显著地优于后一波段.随后,针对2014年1月11日拉布拉多半岛附近的平流层强扰动过程,基于FY-3C的MWTS-Ⅱ与METOP-B的AMSU-A的对比观测表明,MWTS-Ⅱ能够揭示平流层波动更细致的水平结构特征.最后,针对2014年8月10日安第斯山脉附近不同平台仪器的相同通道探测结果的分析表明,多平台联合观测可以进一步提高平流层强扰动监测的时间分辨率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号