首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
13C of 367 C3 herbaceous plants was measured in loess area in northern China. Their δ13C values vary between −21.7%. and −30.0%., with a mean of −26.7%.. In the center of Loess Plateau (semimoist area) with annual precipitation of 400–600 mm, the δ13 C values of C3 herbaceous plants range from −24.4%. to −28.5%., with a mean of −27.5%.. In the west of Loess Plateau (semiarid and arid area) with annual precipitation less than 400 mm, they range between −21.7%. and −30.0%., with a mean of −26.2%.. Annual precipitation is the main factor that makes δ13C values of C3 herbaceous plants in the west greater than those in the central Loess Plateau. The composition of δ13C in C3 plants increases with deceasing annual precipitation, and the mean change is −49%./100 mm.  相似文献   

2.
Variations in carbon isotopic ratios (δ 13C) of C3 plants and distribution of C4 plants were investigated along an altitudinal transect on the eastern slope of Mount Gongga, and the environmental effects on them were discussed. It is shown that plants with C4 photosynthetic pathway mainly occur at altitudes below 2100 m a.s.l., suggesting that the low summer temperature is responsible for the distributional pattern. In addition, δ 13C of C3 plants increases with elevation at the region above 2000 m a.s.l. with the characteristics of humid climate, and the increase rate in δ 13C for C3 plants is about 1.3% per kilometer. Temperature determines the altitudinal trend of δ 13C.  相似文献   

3.
The carbon isotopic compositions of individual lip-ids can provide the genetic information about sedi-mentary lipids so that it has extensively applied pros-pects in geochemically studied field[1―8]. However, this applied research relies heavily on the accumula-tion of studied data in the genetic relationships between carbon isotopic compositions of individual lipids and their biological precursors in different sedi-mentary environments. Recently, the useful δ 13C data of individual lipids f…  相似文献   

4.
We describe analytical details and uncertainty evaluation of a simple technique for the measurement of the carbon isotopic composition of CO2 in volcanic plumes. Data collected at Solfatara and Vulcano, where plumes are fed by fumaroles which are accessible for direct sampling, were first used to validate the technique. For both volcanoes, the plume-derived carbon isotopic compositions are in good agreement with the fumarolic compositions, thus providing confidence on the method, and allowing its application at volcanoes where the volcanic component is inaccessible to direct sampling. As a notable example, we applied the same method to Mount Etna where we derived a δ13C of volcanic CO2 between −0.9 ± 0.27‰ and −1.41 ± 0.27‰ (Bocca Nuova and Voragine craters). The comparison of our measurements to data reported in previous work highlights a temporal trend of systematic increase of δ13C values of Etna CO2 from ~ −4‰, in the 1970’s and the 1980’s, to ~ −1‰ at the present time (2009). This shift toward more positive δ13C values matches a concurrent change in magma composition and an increase in the eruption frequency and energy. We discuss such variations in terms of two possible processes: magma carbonate assimilation and carbon isotopic fractionation due to magma degassing along the Etna plumbing system. Finally, our results highlight potential of systematic measurements of the carbon isotopic composition of the CO2 emitted by volcanic plumes for a better understanding of volcanic processes and for improved surveillance of volcanic activity.  相似文献   

5.
The fundamental assumption of 210Pb sediment dating is the stable flux of 210Pbex, which was derived from atmosphere and then transferred into sediments via lake water. When the sedimentation rate is relatively constant, the 210Pbex activity in sediments will be exponentially reduced with sedimentation age. 210Pbex in lake water is incorporated into sediments mainly via organic particulates. If the sedimentation flux of organic matter in lake water is suddenly increased, 210Pbex will be significantly deposited and then transferred into sediments. On the one hand such sudden purification effect is obviously unfit for the fundamental assumption of 210Pb dating; on the other hand, the sudden enhancement of 210Pbex flux would be indicative of the conspicuous variation of primary productivity of lake water. This problem will be discussed in accordance with the variation trend of 210Pbex in the vertical profile of recent sediments of Lake Chenghai, Yunnan Province. The sediment core was collected from the deep-water area of Lake Chenghai in June 1997. The vertical profile of 137Cs activity is characterized by a tree-peak pattern. This profile gave reliable ages, and also showed the stability of sediment accumulation in the recent ten years. The vertical profile of 210Pbex activity displays a specific distribution of peaks, and is similar to the vertical profile of Corg. This phenomenon seems to be related to the mechanism of constraining the transfer of 210Pbex into lake sediments. The average atomic ratios of Horg/Corg and Corg/Norg in Lake Chenghai sediments are 5.51 and 7.04, respectively, indicating that the organic matter was predominantly derived from the remains of endogenic algae. In terms of the three-stage evolutionary characteristics of organic matter in sediments, i.e., “deposition-de-composition-accumulation”, the sedimentation fluxes (F(Corg)) of organic carbon (Corg) since 1970 were calculated by modeling. The sedimentation fluxes of 210Pbex (F(210Pbex)) in different years display good synchronous relations with the sedimentation flux of organic carbon (F(Corg)), especially in the years of 1972–1974 and 1986–1989. The variation of F(Corg) led to the variation of F(210Pbex); the variation of F(210Pbex) reflects, to some extent, the historical variation of lake productivity.  相似文献   

6.
We report on the concentration and compositional features of n-alkanes of natural and anthropogenic origins in the snow samples collected from the Qiyi glacier in the Qilian Mountains, the Yuzhufeng glacier in eastern Kunlun Mountains, the Xiaodongkemadi glacier in the Tanggula Mountains, and the Gurenhekou glacier in the Nyainqêntanglha Range. The results indicate a decrease in the total n-alkane concentration (T-HCs) from the northeast to the south over the Tibetan Plateau. The T-HCs in these studied areas were close to those in the Belukha and Sofiyskiy glacier, Russian Alati Mountains and the Dasuopu glacier in the Himalaya but were much higher than those in the Greenland ice sheet, suggesting that the mountain glaciers in the Asian continent may receive a higher loading of n-alkanes than the Greenland ice core. Moreover, the compositional characteristics of n-alkanes indicated that the n-alkanes in the studied areas were probably originated from the plant waxes as well as the fossil-fuel combustion exhaust, whereas the contribution from the lower organisms was small. In addition, the plant wax (Cn(wax)) and anthropogenic (non-Cn(wax)) contributions revealed that fast industrialization may have significant effects on the organic pollutant composition in glacier over the Tibetan Plateau and its circumference environment. Particularly, except for the Yuzhufeng glacier, the ΣnC21 /ΣnC22 + and (nC15+nC17+nC19)/(nC27+nC29+nC31) ratio decreased from the Qiyi glacier to the Gurenhekou glacier over the Tibetan Plateau, while the carbon preference index (CPI) values increased. These results indicate a decrease in terrigenous input while an increase in marine input from the northeast to the south over the Tibetan Plateau. These two ratios can be used as the climatic and environmental change indicators.  相似文献   

7.
The sorption of Eu species onto nano-size silica-water interfaces is investigated at pH range of 1―8.5 and the initial Eu concentrations (CEu) of 2×10−5, 2×10−4 and 2×10−3 M using fluorescence spectroscopy. The sorption rate of Eu is initially low, but significantly increases at pH > 4. For the initial CEu of 2×10−5, 2×10−4 and 2×10−3 M, the dissolved Eu species are completely sorbed onto silica-water interfaces at pH = 4.75, −5.8 and 6.6, respectively, with the respective sorption densities of −1.58×10−8, 1.58×10−7 and 1.58×10−6 mol/m2. The sorbed Eu species at pH < 6 is aquo Eu3+, which is sorbed onto silica-water interfaces as an outer-sphere complex at pH < 5, but may be sorbed as an inner-sphere bidentate complex at 5 < pH < 6, due to the decrease of the NH2O to −6 at pH = 6. At pH = 6 – 8, Eu(OH)2+, Eu(CO3)+and Eu(CO3)2 form in the solutions, and Eu(CO3)+is dominant at pH = −7.5. These ions may be sorbed onto silica-water interfaces as inner-sphere bidentate complexes or multi-nuclear pre-cipitates.  相似文献   

8.
Use of eddy covariance (EC) techniques to map the spatial distribution of diffuse volcanic CO2 fluxes and quantify CO2 emission rate was tested at the Horseshoe Lake tree-kill area on Mammoth Mountain, California, USA. EC measurements of CO2 flux were made during September–October 2010 and ranged from 85 to 1,766 g m−2 day−1. Comparative maps of soil CO2 flux were simulated and CO2 emission rates estimated from three accumulation chamber (AC) CO2 flux surveys. Least-squares inversion of measured eddy covariance CO2 fluxes and corresponding modeled source weight functions recovered 58–77% of the CO2 emission rates estimated based on simulated AC soil CO2 fluxes. Spatial distributions of modeled surface CO2 fluxes based on EC and AC observations showed moderate to good correspondence (R 2 = 0.36 to 0.70). Results provide a framework for automated monitoring of volcanic CO2 emissions over relatively large areas.  相似文献   

9.
Based on GC-MS testing data of many saturated hydrocarbon samples, 17α(H)-C30 diahopanes (C30 *) are extensively distributed in the lacustrine hydrocarbon source rocks of the Yanchang Formation in Ordos Basin, but show remarkable differences in relative abundance among various source rocks. Generally, Chang 7 high-quality source rock (oil shale) developed in deep lake anoxic environment shows lower C30 * content, whereas Chang 6–9 dark mudstone developed in shallow to semi-deep lake, sub-oxidizing environment shows relatively high to high C30 * value. Particularly, Chang 7 and Chang 9 black mudstones in Zhidan region in the northeast of the lake basin show extremely high C30 * value. A comparative analysis was made based on lithology, organic types and various geochemical parameters indicative of redox environment, and the results indicate that environmental factors such as redox settings and lithology are key factors that control the C30 * relative abundance, while organic types and maturity may be minor factors. High to extremely high C30 * values are indicative of sub-oxidizing environment of fresh-brackish water and shallow to semi-deep lake. Therefore, research on C30 * relative content and distribution in lacustrine hydrocarbon source rocks in the Yanchang Formation, especially on the difference in C30 * between Chang 7 high-quality source rocks (oil shale) and Chang 6–91 source rocks (dark mudstone), will provide an important approach for classification of Mesozoic lacustrine crudes and detailed oil-source correlation in the basin. Supported by National Natural Science Foundation of China (Grant No. 40773028)  相似文献   

10.
The source parameters of the M W = 7.6 Olyutorskii earthquake were estimated using the moments of the slip rate function with degrees 1 and 2. The moments were estimated from broadband P-wave records at 52 stations of the worldwide network. The first step was to find a function S(t) for each station; this function is an apparent source time function, i.e., the P-wave slip as radiated by the source toward a station under consideration. The method of empirical Green’s functions was used to estimate S(t). The next step was to calculate the moments of S(t) of degrees 1 and 2 over time and to set up relevant equations to be solved by least squares for the unknown source moments. The horizontal linear source was used as a nonparametric model for calculating the source moments. Haskell’s parametric model was used for further interpretation of the source moments. The resulting estimates are as follows: the source centroid was 13–25 km southwest of the epicenter, the source was 105–120 km long, the source strike was 222°–228°, the rupture velocity was 2.7–3.0 km/s, and the total radiation duration was 24–27 s. These estimates indicate a bilateral rupture dominated by a southwestward sense of rupture propagation. The source characteristics are consistent with the aftershock area geometry and with the focal mechanism, as well as with surface breakage as observed by geologists in the field.  相似文献   

11.
Our two newly obtained high-quality 40Ar/39Ar ages suggest that the high-K volcanic rocks of the Lawuxiang Formation in the Mangkang basin, Tibet were formed at 33.5 ± 0.2 Ma. The tracing of elemental and Pb-Sr-Nd isotopic geochemistry indicates that they were derived from an EM2 enriched mantle in continental subduction caused by transpression. Their evidently negative anomalies in HFSEs such as Nb and Ta make clear that there is an input of continental material into the mantle source. The high-K rocks at 33.5 ± 0.2 Ma in the Mangkang basin may temporally, spatially and compositionally compare with the early one of two-pulse high-K rocks in eastern Tibet distinguished by Wang J. H. et al., implying that they were formed in the same tectonic setting.  相似文献   

12.
We use 576 earthquakes of magnitude, M w, 3.3 to 6.8 that occurred within the region 33° N–42.5° N, 19° E–30° E in the time period 1969 to 2007 to investigate the stability of the relation between moment magnitude, M w, and local magnitude, M L, for earthquakes in Greece and the surrounding regions. We compare M w to M L as reported in the monthly bulletins of the National Observatory of Athens (NOA) and to M L as reported in the bulletins of the Seismological Station of the Aristotle University of Thessaloniki. All earthquakes have been analyzed through regional or teleseismic waveform inversion, to obtain M w, and have measured maximum trace amplitudes on the Wood–Anderson seismograph in Athens, which has been in operation since 1964. We show that the Athens Wood–Anderson seismograph performance has changed through time, affecting the computed by NOA M L by at least 0.1 magnitude units. Specifically, since the beginning of 1996, its east–west component has been recording systematically much larger amplitudes compared to the north–south component. From the comparison between M w and M L reported by Thessaloniki, we also show that the performance of the sensors has changed several times through time, affecting the calculated M L’s. We propose scaling relations to convert the M L values reported from the two centers to M w. The procedures followed here can be applied to other regions as well to examine the stability of magnitude calculations through time.  相似文献   

13.
The characteristics of dayside auroras during the large (16–24 nT) positive values of the IMF B z component, observed on January 14, 1988, during the interaction between the Earth’s magnetosphere and the body of the interplanetary magnetic cloud, have been studied based on the optical observations on Heiss Island. A wide band of diffuse red luminosity with an intensity of 1–2 kilorayleigh (kR) was observed during 6 h in the interval 1030–1630 MLT at latitudes higher than 75° CGL. Rayed auroral arcs, the brightness of which in the 557.7 nm emission sharply increased to 3–7 kR in the postnoon sector immediately after the polarity reversal of the IMF B y component from positive to negative, were continuously registered within the band. Bright auroral arcs were observed at the equatorward edge of red luminosity. It has been found out that the red auroral intensity increases and the band equatorward boundary shifts to lower latitudes with increasing solar wind dynamic pressure. However, a direct proportional dependence of the variations in the auroral features on the dynamic pressure variations has not been found. It has been concluded that the source of bright discrete auroras is located in the region of the low-latitude boundary layer (LLBL) on closed geomagnetic field lines. The estimated LLBL thickness is ∼3 R e . It has been concluded that the intensity of the dayside red band depends on the solar wind plasma density, whereas the position of the position equatorward boundary depends on the dynamic pressure value and its variations.  相似文献   

14.
Solenites vimineus (Phillips) Harris (Ginkgophyta) specimens with well-preserved cuticles were collected from five different beds in the oil shale member of the Middle Jurassic Yaojie Formation in the Yaojie Basin, Gansu Province, northwestern China. Gross morphology and fine structures of the fossil leaves were studied, and stomatal parameters were analyzed, according to which, the paleoatmospheric CO2 concentration can be deduced as 1512–1896 ppm that would have caused an increase in mean temperature of about 6.5–7.4°C. Carbon isotopes from the fossils indicate that the carbon isotopic discrimination and water use efficiency (WUE) of S. vimineus were raised nearly obtaining the ideal physiologic state in increased CO2 concentrations and temperature conditions, suggesting that S. vimineus records the paleoenvironmental information of the Middle Jurassic Yaojie Basin and can be used for environmental reconstruction.  相似文献   

15.
Soil H2 and CO2 surveys were carried out along seven active faults and around the aftershock region of the 2000 Tottori-ken Seibu earthquake in Japan. Diffuse CO2 effluxes were also measured along one fault and around the 2000 aftershock region. The results show highly variable H2 concentration in space and time and it seems that the maximum H2 concentration at each active fault correlates with fault activity as exemplified by the time of the latest big earthquakes. Even though observed H2 concentrations in four faults were markedly lower than those collected previously in the latter half of the 1970s, it is evident that the higher H2 concentrations in this study are due to the addition of the fault gases. Comparing the chemical composition of trapped gases (H2: 5–20% and CO2/H2: 0.5–12) in fractured rocks of drill cores bored at the Nojima fault, a soil gas sample with the highest H2 concentration showed large amounts of the trapped fault gas, diluted with atmospheric component. The profile experiment across a fracture zone at the Yamasaki fault showed higher H2 concentrations and lower CO2/H2 ratios as was observed in soil gas from the fracture zone. A few days after the 2000 Tottori-kei Seibu earthquake, no CO2 effluxes related to the occurrence of earthquakes were observed at the aftershock region. However, only above the epicenter zone, relatively high H2 concentrations in soil gases were observed.  相似文献   

16.
The seismic waves excited by the M w 7.6 Olyutorskii earthquake that occurred on April 20, 2006 in the Koryak Upland gave rise to water-level changes in five wells situated in continental areas of Kamchatka at hypocentral distances of 750–1150 km. We describe the effects due to seismic waves, as well as the water-level anomalies for February–April 2006 before the earthquake. We used an original technique for the processing of water-level records based on the study of barometric and tidal water-level responses in order to estimate the volume strain in water-saturated rocks during synchronous level variations at two wells. We discuss possible mechanisms for producing anomalous water-level changes due to elastic deformation of monitored groundwater reservoirs and to crack dilatancy in the water-saturated rocks.  相似文献   

17.
Starting from the classical empirical magnitude-energy relationships, in this article, the derivation of the modern scales for moment magnitude M w and energy magnitude M e is outlined and critically discussed. The formulas for M w and M e calculation are presented in a way that reveals, besides the contributions of the physically defined measurement parameters seismic moment M 0 and radiated seismic energy E S, the role of the constants in the classical Gutenberg–Richter magnitude–energy relationship. Further, it is shown that M w and M e are linked via the parameter Θ = log(E S/M 0), and the formula for M e can be written as M e = M w + (Θ + 4.7)/1.5. This relationship directly links M e with M w via their common scaling to classical magnitudes and, at the same time, highlights the reason why M w and M e can significantly differ. In fact, Θ is assumed to be constant when calculating M w. However, variations over three to four orders of magnitude in stress drop Δσ (as well as related variations in rupture velocity V R and seismic wave radiation efficiency η R) are responsible for the large variability of actual Θ values of earthquakes. As a result, for the same earthquake, M e may sometimes differ by more than one magnitude unit from M w. Such a difference is highly relevant when assessing the actual damage potential associated with a given earthquake, because it expresses rather different static and dynamic source properties. While M w is most appropriate for estimating the earthquake size (i.e., the product of rupture area times average displacement) and thus the potential tsunami hazard posed by strong and great earthquakes in marine environs, M e is more suitable than M w for assessing the potential hazard of damage due to strong ground shaking, i.e., the earthquake strength. Therefore, whenever possible, these two magnitudes should be both independently determined and jointly considered. Usually, only M w is taken as a unified magnitude in many seismological applications (ShakeMap, seismic hazard studies, etc.) since procedures to calculate it are well developed and accepted to be stable with small uncertainty. For many reasons, procedures for E S and M e calculation are affected by a larger uncertainty and are currently not yet available for all global earthquakes. Thus, despite the physical importance of E S in characterizing the seismic source, the use of M e has been limited so far to the detriment of quicker and more complete rough estimates of both earthquake size and strength and their causal relationships. Further studies are needed to improve E S estimations in order to allow M e to be extensively used as an important complement to M w in common seismological practice and its applications.  相似文献   

18.
Based on kerogen-generated hydrocarbon model, a new method to calculate hydrocarbon yields for coals and coaly samples was put forward by means of pyrolysis technique. At the same time, the empirical criteria suggested by Powell were revised. The threshold value was preliminarily defined as HC yields >30 mg HC per gram TOC for effective gas source rocks and >60 mg HC per gram TOC for effective oil source rocks. Additionally, it was also confirmed that the relative compositions of the three ranges of C1-C5 total hydrocarbons, C6-C14n-alkanes plusn-alkenes and C15+ n-alkanes plusn-alkenes from pyrolysates can be effectively used to distinguish the coal-generated hydrocarbon types.  相似文献   

19.
Due to their slow growth rates, seamount Co-rich crusts are very difficult to date with high resolution and precision. This paper is to test the use of orbital pacing on the growth profile of crusts to determine high-resolution age and growth rate. Crust CB14 from the central Pacific Ocean was selected for this study. We first examined the growth pattern in detail under a reflected-light microscope and ascertained that the growth environment was stable for the sub-layer 1 (0–3 mm). We then used electron microprobe line-scanning to obtain elemental profiles. The pattern of the power spectrum analysis of the Al-profile revealed that there are significant cycles of 113.9, 87.8, 51.5, 42.2 and 25.8 μm. These cycles correspond to the Milankovitch cycles of 53.1, 41, 24, 19.7 and 12 ka, respectively, and yield the growth rate of about 2.14 mm/Ma and an age of about 1.40 Ma for the boundary between the sub-layer 1 and sub-layer 2. We also used a drilling machine with a numerically controlled drive to obtain high-resolution samples at 0.1mm intervals, and used the 230Thex/232Th method to date the samples. For the uppermost 1.3 mm, the growth rate was about 2.15 mm/Ma, and the age for the layer at the depth of 3 mm was about 1.40 Ma, which coincides perfectly with the results obtained from orbital pacing. Thus, it is considered that orbital pacing is a new and effective method to determine the growth rate of the seamount Co-rich crust. This method is applicable for establishing a high-resolution age frame for the crusts of the world’s oceans. Supported by China Ocean Mineral Resources R & P Association (Grant No. DY105-01-01-08) and National Natural Science Foundation of China (Grant Nos. 40106005, 40476050)  相似文献   

20.
High-resolution sampling, measurements of organic carbon contents and 14C signatures of selected four soil profiles in the Haibei Station situated on the northeast Tibetan Plateau, and application of 14C tracing technology were conducted in an attempt to investigate the turnover times of soil organic carbon and the soil-CO2 flux in the alpine meadow ecosystem. The results show that the organic carbon stored in the soils varies from 22.12×104 kg C hm−2 to 30.75×104 kg C hm−2 in the alpine meadow ecosystems, with an average of 26.86×104 kg C hm−2. Turnover times of organic carbon pools increase with depth from 45 a to 73 a in the surface soil horizon to hundreds of years or millennia or even longer at the deep soil horizons in the alpine meadow ecosystems. The soil-CO2 flux ranges from 103.24 g C m−2 a−1 to 254.93 gC m−2 a−1, with an average of 191.23 g C m−2 a−1. The CO2 efflux produced from microbial decomposition of organic matter varies from 73.3 g C m−2 a−1 to 181 g C m−2 a−1. More than 30% of total soil organic carbon resides in the active carbon pool and 72.8%281.23% of total CO2 emitted from organic matter decomposition results from the topsoil horizon (from 0 cm to 10 cm) for the Kobresia meadow. Responding to global warming, the storage, volume of flow and fate of the soil organic carbon in the alpine meadow ecosystem of the Tibetan Plateau will be changed, which needs further research. Supported by the National Natural Science Foundation of China (Grant Nos. 40231015, 40471120 and 40473002) and the Guangdong Provincial Natural Science Foundation of China (Grant No. 06300102)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号