首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Long-Term Sunspot Number Prediction based on EMD Analysis and AR Model   总被引:2,自引:0,他引:2  
The Empirical Mode Decomposition (EMD) and Auto-Regressive model (AR) are applied to a long-term prediction of sunspot numbers. With the sample data of sunspot numbers from 1848 to 1992, the method is evaluated by examining the measured data of the solar cycle 23 with the prediction: different time scale components are obtained by the EMD method and multi-step predicted values are combined to reconstruct the sunspot number time series. The result is remarkably good in comparison to the predictions made by the solar dynamo and precursor approaches for cycle 23. Sunspot numbers of the coming solar cycle 24 are obtained with the data from 1848 to 2007, the maximum amplitude of the next solar cycle is predicted to be about 112 in 2011-2012.  相似文献   

2.
D. Passos  I. Lopes 《Solar physics》2008,250(2):403-410
We present the results of a statistical study of the solar cycle based on the analysis of the superficial toroidal magnetic field component phase space. The magnetic field component used to create the embedded phase space was constructed from monthly sunspot number observations since 1750. The phase space was split into 32 sections (or time instants) and the average values of the orbits on this phase space were calculated (giving the most probable cycle). In this phase space it is shown that the magnetic field on the Sun’s surface evolves through a set of orbits that go around a mean orbit (i.e., the most probable magnetic cycle that we interpret as the equilibrium solution). It follows that the most probable cycle is well represented by a van der Pol oscillator limit curve (equilibrium solution), as can be derived from mean-field dynamo theory. This analysis also retrieves the empirical Gnevyshev – Ohl’s rule between the first and second parts of the solar magnetic cycle. The sunspot number evolution corresponding to the most probable cycle (in phase space) is presented.  相似文献   

3.
Magnetic fields give rise to distinctive features in different solar atmospheric regimes. To study this, time variations of the flare index, sunspot number and sunspot area, each index arising from different physical conditions, were compared with the solar composite irradiance throughout cycle 23. Rieger-type periodicities in these time series were calculated using Fourier and wavelet transforms (WTs). The peaks of the wavelet power of these periodicities appeared between the years 1999 and 2002. We found that the solar irradiance oscillations are less significant than those in the other indices during this cycle. The irradiance shows non-periodic fluctuations during this time interval. The peaks of the flare index, sunspot number and sunspot total area were seen around 2000.4, 1999.9 and 2001.0, respectively. These periodicities appeared intermittently and were not simultaneous in different solar activity indices during the three years of the maximum phase of solar cycle 23.  相似文献   

4.
Rigozo  N.R.  Echer  E.  Vieira  L.E.A.  Nordemann  D.J.R. 《Solar physics》2001,203(1):179-191
A reconstruction of sunspot numbers for the last 1000 years was obtained using a sum of sine waves derived from spectral analysis of the time series of sunspot number R z for the period 1700–1999. The time series was decomposed in frequency levels using the wavelet transform, and an iterative regression model (ARIST) was used to identify the amplitude and phase of the main periodicities. The 1000-year reconstructed sunspot number reproduces well the great maximums and minimums in solar activity, identified in cosmonuclides variation records, and, specifically, the epochs of the Oort, Wolf, Spörer, Maunder, and Dalton Minimums as well the Medieval and Modern Maximums. The average sunspot number activity in each anomalous period was used in linear equations to obtain estimates of the solar radio flux F 10.7, solar wind velocity, and the southward component of the interplanetary magnetic field.  相似文献   

5.
Usoskin  I.G.  Mursula  K. 《Solar physics》2003,218(1-2):319-343
The sunspot number series forms the longest directly observed index of solar activity and allows one to trace its variations on the time scale of about 400 years since 1610. This time interval covers a wide range from seemingly vanishing sunspots during the Maunder minimum in 1645–1700 to the very high activity during the last 50 years. Although the sunspot number series has been studied for more than a century, new interesting features have been found even recently. This paper gives a review of the recent achievements and findings in long-term evolution of solar activity cycles such as determinism and chaos in sunspot cyclicity, cycles during the Maunder minimum, a general behaviour of sunspot activity during a great minimum, the phase catastrophe and the lost cycle in the beginning of the Dalton minimum in 1790s and persistent 22-year cyclicity in sunspot activity. These findings shed new light on the underlying physical processes responsible for sunspot activity and allow a better understanding of such empirical rules as the Gnevyshev–Ohl rule and the Waldmeier relations.  相似文献   

6.
Forecasting the solar cycle is of great importance for weather prediction and environmental monitoring, and also constitutes a difficult scientific benchmark in nonlinear dynamical modeling. This paper describes the identification of a model and its use in the forecasting the time series comprised of Wolf’s sunspot numbers. A key feature of this procedure is that the original time series is first transformed into a symmetrical space where the dynamics of the solar dynamo are unfolded in a better way, thus improving the model. The nonlinear model obtained is parsimonious and has both deterministic and stochastic parts. Monte Carlo simulation of the whole model produces very consistent results with the deterministic part of the model but allows for the determination of confidence bands. The obtained model was used to predict cycles 24 and 25, although the forecast of the latter is seen as a crude approximation, given the long prediction horizon required. As for the 24th cycle, two estimates were obtained with peaks of 65±16 and of 87±13 units of sunspot numbers. The simulated results suggest that the 24th cycle will be shorter and less active than the preceding one.  相似文献   

7.
By using the sunspot time series as a proxy, we have made a detailed analysis of the mean solar magnetic field over the last two and half centuries, by means of a reconstruction of its phase space. We find evidence of a long-term trend variation of some of the solar physical processes (over a few decades) that might be responsible for the apparent erratic behaviour of the solar magnetic cycle. The analysis is done by means of a careful study of the axisymmetric dynamo model equations, where we show that the temporal counterpart of the magnetic field can be described by a self-regulated two-dimensional dynamic system, usually known as a Van der Pol–Duffing oscillator. Our results suggest that during the last two and half centuries, the velocity of the meridional flow, v p, and the efficiency of the α mechanism responsible for the conversion of toroidal magnetic field into poloidal magnetic field might have suffered variations that can explain the observed variability in the solar cycle.  相似文献   

8.
In the present study we address the issue of discerning between deterministic and stochastic paradigms in order to understand the behavior of the solar cycle. To this end we show the degree of correlation between the instantaneous amplitude and frequency in the sunspot number time series by the use of the Gabor analytic signal. We compare this correlation with those arising from two theoretical models: (a) the Barnes model of widespread use in the literature and (b) a spatial truncation of the MHD equations. We show that comparisons between the correlation observed in the sunspot time series with those arising from theoretical models can be used to refute one of the models.  相似文献   

9.
Data of sunspot groups at high latitude (35°), from the year 1874 to the present (2000 January), are collected to show their evolutional behaviour and to investigate features of the yearly number of sunspot groups at high latitude. Subsequently, an evolutional pattern of sunspot group number at high latitude is given in this paper. Results obtained show that the number of sunspot groups of a solar cycle at high latitude rises to a maximum value about 1 yr earlier than the time of the maximum of sunspot relative numbers of the solar cycle, and then falls to zero more rapidly. The results also show that, at the moment, solar activity described by the sunspot relative numbers has not yet reached its minimum. In general, sunspot groups at high latitude have not appeared on the solar disc during the last 3 yr of a Wolf solar cycle. The asymmetry of the high latitude sunspot group number of a Wolf solar cycle can reflect the asymmetry of solar activity in the Wolf solar cycle, and it is suggested that one could further use the high latitude sunspot group number during the rising time of a Wolf solar cycle, maximum year included, to judge the asymmetry of solar activity over the whole solar cycle.  相似文献   

10.
The time series of the relative sunspot number is interpreted as a sequence of physical cycles of sunspot activity overlapping in the minimum. The cycle periodicity, i.e., the time interval between neighboring cycles, can be considered as a quantitative characteristic of the sequence. Estimates of this interval have been obtained for 11 and 22-year cycles. In the growth phase and in the century cycle maximum, the 22-year cycles follow one another with an interval of 21 ± 0.4 years, and in the decline phase, 23 ± 0.3 years. This division of intervals into two groups depending on the century cycle phase should be taken into consideration when developing a theory of solar activity cycles.  相似文献   

11.
本文首先分析指出第22太阳周前半周的太阳活动所具有的特点:(1)有最高的起始极小值;(2)上升速度快;(3)升段时间最短;(4)峰期长,可能有双峰;(5)个别时段活动水平极高.然后对第22周后半周的活动情况做了预计:在后半周将可能观测到大约2800个活动区,28000个耀斑,210个X级X射线爆发和大约80次太阳质子事件.最后,应用本文给出的太阳周参量关系式.预报第23周太阳黑子数月均平滑值的峰值为119,位于2001.6年.  相似文献   

12.
Bravo  S.  Stewart  G. A. 《Solar physics》1997,173(1):193-198
We have shown in previous papers that a close relationship exists between the evolution of polar coronal hole area, estimated from K-coronameter observations, and the Wolf sunspot number, with a time lag of about half a solar cycle. In this paper we study the same relationship, but with the total coronal hole area at the base of the corona as obtained from a potential field model of the coronal magnetic field, which provides a more complete series of about three solar cycles. We confirm the relationship for the two last cycles and find that the forward time shift in the coronal hole area for the best correlation with sunspot number is almost the same for cycles 21 and 22, and this shift is also the time between peaks in both series. We use this result to make an early prediction of the time and size of the sunspot maximum for solar cycle 23, and find that this should occur early in 2001 and have a magnitude of about 190, similar to that of the two previous sunspot cycles.  相似文献   

13.
Statistical behavior of sunspot groups on the solar disk   总被引:1,自引:0,他引:1  
K.J. Li  H.F. Liang  H.S. Yun  X.M. Gu 《Solar physics》2002,205(2):361-370
In the present study we have produced a diagram of the latitude distribution of sunspot groups from the year 1874 through 1999 and examined statistical characteristics of the mean latitude of sunspot groups. The reliability of the observed data set prior to solar cycle 19 is found quite low as compared with that of the data set observed after cycle 19. A correlation is found between maximum latitude at which first sunspot groups of a new cycle appear and the maximum solar activity of the cycle. It is inferred that solar magnetic activity during the early part of an extended solar cycle may contain some information about the strength of forthcoming solar cycle. A formula is given to describe latitude change of sunspot groups with time during an extended solar cycle. The latitude-migration velocity is found to be largest at the beginning of solar cycle and decreases with time as the cycle progresses with a mean migration velocity of about 1.61° per year.  相似文献   

14.
To understand better the variation of solar activity indicators originated at different layers of the solar atmosphere with respect to sunspot cycles, we carried out a study of phase relationship between sunspot number, flare index and solar radio flux at 2800 MHz from January 1966 to May 2008 by using cross-correlation analysis. The main results are as follows: (1) The flare index and sunspot number have synchronous phase for cycles 21 and 22 in the northern hemisphere and for cycle 20 in the southern hemisphere. (2) The flare index has a noticeable time lead with respect to sunspot number for cycles 20 and 23 in the northern hemisphere and for cycles 22 and 23 in the southern hemisphere. (3) For the entire Sun, the flare index has a noticeable time lead for cycles 20 and 23, a time lag for cycle 21, and no time lag or time lead for cycle 22 with respect to sunspot number. (4) The solar radio flux has a time lag for cycles 22 and 23 and no time lag or time lead for cycles 20 and 21 with respect to sunspot number. (5) For the four cycles, the sunspot number and flare index in the northern hemisphere are all leading to the ones in the southern hemisphere. These results may be instructive to the physical processes of flare energy storage and dissipation.  相似文献   

15.
Longterm Prediction of Solar Activity Using the Combined Method   总被引:2,自引:0,他引:2  
Hanslmeier  Arnold  Denkmayr  Klaus  Weiss  Peter 《Solar physics》1999,184(1):213-218
The Combined Method is a non-parametric regression technique for long-term prediction of smoothed monthly sunspot numbers. Starting from a solar minimum, a prediction of the succeeding maximum is obtained by using a dynamo-based relation between the geomagnetic aa index and succeeding solar maxima. Then a series of predictions is calculated by computing the weighted average of past cycles of similar level. This technique leads to a good prediction performance, particularly in the ascending phase of the solar cycle where purely statistical methods tend to be inaccurate. For cycle 23 the combined method predicts a maximum of 160 (in terms of smoothed sunspot number) early in the year 2000.  相似文献   

16.
R. H. Dicke 《Solar physics》1988,115(1):171-181
It has previously been shown that the statistics of the phase fluctuation of the sunspot cycle are compatible with the assumption that the solar magnetic field is generated deep in the Sun by a frequency stable oscillator and that the observed substantial phase fluctuation in the sunspot cycle is due to variation in the time required for the magnetic field to move to the solar surface (Dicke, 1978, 1979). It was shown that the observed phase shifts are strongly correlated with the amplitude of the solar cycle. It is shown here that of two empirical models for the transport of magnetic flux to the surface, the best fit to the data is obtained with a model for which the magnetic flux is carried to the surface by convection with the convection velocity proportional to a function of the solar cycle amplitude. The best fit of this model to the data is obtained for a 12-yr transit time. The period obtained for the solar cycle is T = 22.219 ± 0.032 yr. It is shown that the great solar anomaly of 1760–1800 is most likely real and not due to poor data.  相似文献   

17.
We have obtained new consistent versions of the 400-yr time series of the Wolf sunspot number W, the sunspot group number G, and the total sunspot area S (or the total sunspot magnetic flux Φ). We show that the 11-yr cycle did not cease during the Maunder minimum of solar activity. The characteristics of the extrema of individual 11-yr cycles in 1600–2005 have been determined in terms of the total sunspot area index. We provide arguments for using alternating (“magnetic”) time series of indices in investigating the solar cyclicity.  相似文献   

18.
Series of 110 years of sunspot numbers and indices of geomagnetic activity are used with 17 years of solar wind data in order to study through solar cycles both stream and shock event solar activity. According to their patterns on Bartels diagrams of geomagnetic indices, stable wind streams and transient solar activities are separated from each other. Two classes of stable streams are identified: equatorial streams occurring sporadically, for several months, during the main phase of sunspot cycles and both polar streams established, for several years, at each cycle, before sunspot minimum. Polar streams are the first activity of solar cycles. For study of the relationship between transient geomagnetic phenomena and sunspot activity, we raise the importance of the contribution, at high spot number, of severe storms and, at low spot number, of short lived and unstable streams. Solar wind data are used to check and complete the above results. As a conclusion, we suggest a unified scheme of solar activity evolution with a starting point every eleventh year, a total duration of 17 years and an overlapping of 6 years between the first and the last phase of both successive series of phenomena: first, from polar field reversal to sunspot minimum, a phase of polar wind activity of the beginning cycle is superimposed on the weak contribution of shock events of the ending cycle; secondly, an equatorial phase mostly of shock events is superimposed on a variable contribution of short lived and sporadic stable equatorial stream activities; and thirdly a phase of low latitude shock events is superimposed on the polar stream interval of the following cycle.  相似文献   

19.
The paper focus on the variation character of sunspot number and solar cycles based on the new version sunspot number (SSN) data. According to seven main variables describing solar cycles, including peak value, the length of cycle, the length of ascending phase, the ratio of the ascending time to the descending time, slope, half width, and area under the curve of solar cycle, clustering, principal component and factor analysis, are applied to analyze variation characteristic and patterns of the 24 solar cycles. We cluster these 24 cycles to find groups in these solar cycles, and search for the main factor determining strength, length and occurrence time of the peak, and the furthest cycle from the average. The cycles within a cluster will be similar or related to one another and different from or unrelated to the cycles in other clusters. These results could help us search for similar cycles conveniently, obtain the understanding of the characteristics of solar cycle variation and analysis of sunspot number change and evolution characteristics, and analyze the origin and the variation mechanism of solar cycle.  相似文献   

20.
In order to explore the mechanism of the solar cycle luminosity change observed by the Active Cavity Radiometer Irradiance Monitor (ACRIM) I experiment on board of the spacecraft Solar Maximum Mission, we examined running mean time profiles of the daily ACRIM data from the declining phase of solar cycle 21 to the rising phase of solar cycle 22. By comparing them with those of the daily sunspot number, integrated surface magnetic field flux, integrated He I 10830 Å line equivalent width data, and two kinds of data sets of the daily integrated Ca II K line index as indices of the surface magnetic activities, we found (i) that the running mean time profiles of the six independent data sets have several peaks and valleys in common in one solar cycle with time intervals on the order of a few hundreds of days, and (ii) that the peaks and valleys of the ACRIM data profiles followed the peaks and valleys of all the other five indices of the surface activities by 40 to 60 days. This time delay phenomenon suggests (i) that the luminosity modulation was not directly caused by dark and bright features of the surface magnetic activities that the other five indices represent, and (ii) that the missing sunspot radiative flux which was blocked by sub-surface magnetic flux tubes of sunspots and sunspot groups should be re-radiated 40 to 60 days after the surface emergence of the magnetic flux tubes. The concept of the time delay resolves the enigma of the missing sunspot radiative flux and the enigma of the ACRIM experiment that the luminosity dropped when a sunspot or a sunspot group appeared on the surface while the yearly mean of the luminosity decreased and increased along with the decrease and increase of the yearly sunspot number of the 11-year solar cycle. A model of the mechanism to understand these phenomena is presented and its application to other stars is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号