首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. Kumar  D.M. Hunten  J.B. Pollack 《Icarus》1983,55(3):369-389
Nonthermal escape processes responsible for the escape of hydrogen and deuterium from Venus are examined for present and past atmospheres. Three mechanisms are important for the escape of hydrogen from the present atmosphere: (a) charge exchange of plasmaspheric H+ with exospheric H, (b) impact of exospheric hot O atoms on H, and (c) ion molecule reactions involving O+ and H2. However, in the past when the H abundance was higher, the charge-exchange mechanism would be the strongest. The H escape flux increases rapidly with increasing hydrogen abundance in the upper atmosphere and saturates at a value of 1 × 1010 cm?2 sec?1 emerging primarily from the day side when the H mixing ratio at the homopause is 2 × 10?3. This corresponds to an H2O mixing ratio of 1 × 10?3 at the cold trap and ~15% at the surface. Deuterium would also escape by the charge-exchange mechanism and a D/H enrichment by a factor of ~1000 over the nonthermal escape regime is expected, which could have lasted over the last 3 billion years. Coincidentally, the onset of hydrodynamic flow leading to efficient H escape occurs just at the H2O mixing ratio at which the charge-exchange escape flux saturates. Thus it is possible that Venus has lost an Earth-equivalent ocean of water over geologic time. If so, either the D/H enrichment has been kept low by modest outgassing of juvenile water or Venus started out with a D/H ratio of ~4.0 × 10?6.  相似文献   

2.
Glenn S. Orton 《Icarus》1975,26(2):142-158
Observations of Jovian limb structure at 8.11 and 8.45 microns are reported. These are used along with other limb structure and spectral data in the 8–14 micron region to derive a model of the thermal and cloud structure within the 1.0-0.01 bar pressure regime. The model is generally consistent with models derived from Pioneer 10 infrared radiometer data reported by Orton (1975b). The temperature is about 165K at 1.00 bar, 108K at 0.01 bar, and 143K at 0.03 bar. In zones, an optically opaque cloud of NH3 exists near the 143K (0.60 bar) level. A partly transparent haze of solid NH3 particles overlies the cloud. Belts are free of the cloud and have a much lower abundance of NH3 haze than the zones. The data are consistent with an NH3 gas abundance defined by saturation equilibrium, with a mixing ratio of 1.5 × 10?4 deep in the atmosphere, and with a CH4 mixing ratio of 2 × 10?3, about three times the currently accepted value.  相似文献   

3.
The abundances of PH3, CH3D, and GeH4 are derived from the 2100- to 2250-cm?1 region of the Voyager 1 IRIS spectra. No evidence is seen for large-scale variations of the phosphine abundance over Jovian latitudes between ?30 and +30°. In the atmospheric regions corresponding to 170–200°K, the derived PH3/H2 value is (4.5 ± 1.5) × 10?7 or 0.75 ± 0.25 times the solar value. This result, compared with other PH3 determinations at 10 μm, suggests than the PH3/H2 ratio on Jupiter decreases with atmospheric pressure. In the 200–250°K region, we derive, within a factor of 2, CH3D/H2 and GeH4/H2 ratios of 2.0 × 10?7 and 1.0 × 10?9, respectively. Assuming a C/H value of 1.0 × 10?3, as derived from Voyager, our CH3D/H2 ratio implies a D/H ratio of 1.8 × 10?5, in reasonable agreement with the interstellar medium value.  相似文献   

4.
P. Drossart  T. Encrenaz 《Icarus》1982,52(3):483-491
The abundance of H2O is derived from the 1900- to 2100-cm?1 region of the Voyager 1 IRIS spectra. Scale variations of about a factor of 2 are seen in the water abundance between the North and South Equatorial Belts. Averaged over the full disk, the mixing ratio is H2OH2=(4.0±1.0) × 10?6, if H2O is uniformly mixed in the atmospheric region having temperatures of 230 to 270°K; this result implies a solar depletion by a factor of 100 in this region. In the belts, the best agreement is obtained for a H2O/H2 mixing ratio of 4.0 × 10?6 in the NEB and 7.2 × 10?6 in the SEB, assuming a constant mixing ratio.  相似文献   

5.
The u.v. spectrometer polarimeter on the Solar Maximum Mission has been utilized to measure mesospheric ozone vs altitude profiles by the technique of solar occultation. Sunset data are presented for 1980, during the fall equinoctal period within ± 20° of the geographic equator. Mean O3, concentrations are 4.0 × 1010 cm?3at 50 km, 1.6 × 1010 cm?3 at 55 km. 5.5 × 109 cm?3 at 60 km and 1.5 × 109 cm?3 at 65 km. Som profiles exhibit altitude structure which is wavelike. The mean ozone profile is fit best with the results of a time-dependent model if the assumed water vapor mixing ratio employed varies from 6 ppm at 50 km to 2–4 ppm at 65 km.  相似文献   

6.
G. Paubert  D. Gautier  R. Courtin 《Icarus》1984,60(3):599-612
The flux emitted by Titan's disk in millimeter lines of HCN, HC3N, CH3CN, and CO is calculated by means of a radiative transfer formulation which takes into account the sphericity of the atmosphere. It is demonstrated that the plane-parallel approximation for radiative transfer is no longer valid, especially in the core of emission lines, when Titan is not spatially resolved. The antenna temperatures which would be measured by large radiotelescopes observing Titan at frequencies of (1?0) and (2?1) transitions of CO, of (1?0), (2?1), and (3?2) transitions of HCN, and of selected transitions of HC3N and CH3CN in the range 80–300 GHz are calculated. The observability of these transitions is investigated. It is concluded that there is the possibility of inferring the vertical stratospheric distribution of these species from line shape measurements to be achieved with existing or forthcoming radioastronomical instrumentation. The determination of the CO abundance by D. O. Muhleman, G. L. Berge, and R. T. Clancy (1984, (Science (Washington, D.C.), 223, 393–396) from measurements at 115.3 GHz in two 200 MHz bands, is reinterpreted by means of this radiative transfer formulation. A CO mixing ratio between 3 × 10?5 and 18 × 10?5, with a most plausible value of 7.5 × 10?5, is found.  相似文献   

7.
Simultaneous measurements of NO and NO2 in the stratosphere leading to an NOx determination have been performed by means of i.r. absorption spectrometry using the Sun as a source in the 5·2 μm band of NO and in the 6·2 μm band of NO2. The observed abundance of NOP peaks at 26 km where it is equal to (4·2 ± 1) × 109 cm?3. The volume mixing ratio of NOp was observed to vary from 1·3 × 10?9 at 20 km to 1·3 × 10?8 at 34 km.  相似文献   

8.
J.T. Trauger  J.I. Lunine 《Icarus》1983,55(2):272-281
The abundances of molecular oxygen in the atmospheres of Venus and Mars are sensitive to fundamental photochemical processes. A new upper limit is reported for the molecular oxygen mixing ratio (O2/CO2 < × 10?7) in the integrated column above the visible cloud tops of Venus, based on spectroscopic observations carried out in early spring, 1982. During the same observing period, an O2 column abundance of 8.5 cm-am for the atmosphere of Mars was measured, slightly below the O2 abundances measured a decade earlier.  相似文献   

9.
Oxidation of CH4 provides the major source for atmospheric H2 which is removed mainly by reaction with OH. Biological activity at the Earth's surface appears to represent at most a minor sink for H2. Anthropogenic activity is a significant source for both H2 and CO in the present atmosphere and may be expected to exert a growing influence in the future. Models are presented which suggest a rise in the mixing ratio of H2 from its present value of 5.6 × 10?7 to about 1.8 × 10?6 by the year 2100. The mixing ratio of CO should grow from 9.7 × 10?8 to 2.3 × 10?7 over the same time period and there should be a rise in CH4 by about a factor of 1.5 associated with anthropogenically induced reductions in tropospheric OH.  相似文献   

10.
Spectra of Saturn in the spectral region 10.0–10.7 μm are presented which confirm the presence of PH3. Comparison to synthetic spectra indicates a PH3 mixing ratio of at least 2 × 10?6. No spectral features due to NH3 or C2H4 were observed.  相似文献   

11.
The model of a presupernova’s carbon-oxygen (C-O) core with an initial mass of 1.33 M , an initial carbon abundance X C (0) =0.27, and a mean rate of increase in mass of 5 × 10?7 M yr?1 through accretion in a binary system evolved from the central density and temperature ρc=109 g cm?3 and T c=2.05 × 108K, respectively, by forming a convective core and its subsequent expansion to an explosive fuel ignition at the center. The evolution and explosion equations included only the carbon burning reaction 12C+12C with energy release corresponding to the complete conversion of carbon and oxygen (at the same rate as that of carbon) into 56Ni. The ratio of mixing length to convection-zone size αc was chosen as the parameter. Although the model assumptions were crude, we obtained an acceptable (for the theory of supernovae) pattern of explosion with a strong dependence of its duration on αc. In our calculations with sufficiently large values of this parameter, αc=4.0 × 10?3 and 3.0×10?3, fuel burned in the regime of prompt detonation. In the range 2.0×10?3≥αc≥3.0×10?4, there was initially a deflagration with the generation of model pulsations whose amplitude gradually increased. Eventually, the detonation regime of burning arose, which was triggered from the model surface layers (with m ? 1.33 M ) and propagated deep into the model up to the deflagration front. The generation of model pulsations and the formation of a detonation front are described in detail for αc=1.0 × 10?3.  相似文献   

12.
We have obtained high-resolution spectra of Uranus and Neptune in the methane transition near 6800 Å, and in particular, the 6818.9Å feature. Calculated equivalent widths for this line using recently proposed models of the atmospheres of these two planets indicate that the C/H ratio is greater than or equal to 5 × 10?3 below the CH4 saturation level. This value is 12 times the solar mixing ratio. The half-widths of the computed line profiles are in agreement with the observed half-widths. Therefore, it is unnecessary to introduce an unidentified constituent with an abundance comparable to H2, postulated recently by Belton and Hayes, and by Bergstrahl, to account for the observed line broadening.  相似文献   

13.
In an updating of energy characteristics of lightnings on Venus obtained from Venera-9 and -10 optical observations, the flash energy is given as 8 × 108 J and the mean energy release of lightnings is 1 erg cm?2 s which is 25 times as high as that on the Earth. Lightnings were observed in the cloud layer. The stroke rate in the near-surface atmosphere is less than 5 s?1 over the entire planet if the light energy of the stroke exceeds 4 × 105 J and less than 15 s?1 for (1–4) × 105 J.The average NO production due to lightnings equals 5 × 108 cm?2 s?1, the atomic nitrogen production is equal to 7 × 109 cm?2s?1,the N flux toward the nightside is 3.2 × 109 cm?2s?1, the number densities [N] = 3 × 107cm?3 and [NO] = 1.8 × 106cm?3 at 135 km. Almost all NO molecules in the upper atmosphere vanish interacting with N and the resulting NO flux at 90-80 km equals 5 × 105cm?2s?1, which is negligibly small as compared with lightning production. If the predissociation at 80–90 km is regarded as the single sink of NO, its mixing ratio, fNO, is 4 × 10?8, for the case of a surface sink fNO = 0.8 × 10?9 at 50 km. Excess amounts, fNO ? 4 × 10?8, may exist in the thunderstorm region.  相似文献   

14.
Results of the scattered solar radiation spectrum measurements made deep in the Venus atmosphere by the Venera 11 and 12 descent probes are presented. The instrument had two channels: spectrometric (to measure downward radiation in the range 0.45 < γ < 1.17 μm) and photometric (four filters and circular angle scanning in an almost vertical plane). Spectra and angular scans were made in the height range from 63 km above the planet surface. The integral flux of solar radiation is 90 ± 12 W m?2 measured on the surface at the subsolar point. The mean value of surface absorbed radiation flux per planetary unit area is 17.5 ± 2.3 W m?2. For Venera 11 and 12 landing sites the atmospheric absorbed radiation flux is ~15 W m?2 for H >; 43 km and ~45 W m?2 for H < 48 km in the range 0.45 to 1.55 μm. At the landing sites of the two probes the investigated portion of the cloud layer has almost the same structure: it consists of three parts with boundaries between them at about 51 and 57 km. The base of clouds is near 48 km above the surface. The optical depth of the cloud layer (below 63 km) in the range 0.5 to 1 μm does not depend on the wavelength and is ~29 and ~38 for the Venera 11 and 12 landing sites, respectively. The single-scattering albedo, ω0, in the clouds is very close to 1 outside the absorption bands. Below 58 km the parameter (1 ? ω0) is <10?3 for 0.49 and 0.7 μm. The parameter (1 ? ω0) obviously increases above 60 km. Below 48 km some aerosol is present. The optical depth here is a strong function of wavelength. It varies from 1.5 to 3 at λ = 0.49 μm and from 0.13 to 0.4 at 1.0 μm. The mean size of particles below the cloud deck is about 0.1 μm. Below 35 km true absorption was found at λ < 0.55 μm with the (1 ? ω0) maximum at H ≈ 15 km. The wavelength and height dependence of the absorption coefficient are compatible with the assumption that sulfur with a mixing ratio ~2 × 10?8 normalized to S2 molecules is the absorber. The upper limits of the mixing ratio for Cl2, Br2, and NO2 are 4 × 10?8, 2 × 10?11, and 4 × 10?10, respectively. The CO2 and H2O bands are confidently identified in the observed spectra. The mean value of the H2O mixing ratio is 3 × 10?5 < FH2O < 10?4 in the undercloud atmosphere. The H2O mixing ratio evidently varies with height. The most probable profile is characterized by a gradual increase from FH2O = 2 × 10?5 near the surface to a 10 to 20 times higher value in the clouds.  相似文献   

15.
The rates and altitudes for the dissociation of atmospheric constituents of Titan are calculated for solar UV, solar wind protons, interplanetary electrons, Saturn magnetospheric particles, and cosmic rays. The resulting integrated synthesis rates of organic products range from 102–103 g cm?2 over 4.5 × 109 years for high-energy particle sources to 1.3 × 104 g cm?2 for UV at λ < 1550 A?, and to 5.0 × 105 g cm?2 if λ > 1550 A? (acting primarily on C2H2, C2H4, and C4H2) is included. The production rate curves show no localized maxima corresponding to observed altitudes of Titan's hazes and clouds. For simple to moderately complex organic gases in the Titanian atmosphere, condensation occurs below the top of the main cloud deck at 2825 km. Such condensates comprise the principal cloud mass, with molecules of greater complexity condensing at higher altitudes. The scattering optical depths of the condensates of molecules produced in the Titanian mesosphere are as great as ~ 102/(particulate radius, μm) if column densities of condensed and gas phases are comparable. Visible condensation hazes of more complex organic compounds may occur at altitudes up to ~ 3060 km provided only that the abundance of organic products declines with molecular mass no faster than laboratory experiments indicate. Typical organics condensing at 2900 km have molecular masses = 100–150 Da. At current rates of production the integrated depth of precipitated organic liquids, ices, and tholins produced over 4.5 × 109 years ranges from a minimum ~ 100 m to kilometers if UV at λ > 1550 A? is important. The organic nitrogen content of this layer is expected to be ~ 10?1?10?3 by mass.  相似文献   

16.
Aircraft measurements of O2(1Δg) emission made over a 10-yr period provide information on the variation of ozone with latitude and season in the altitude region 50–90 km. Between 50 and 70 km there appears to be little variation (< ± 25%) whereas the abundance between 80 and 90 km exhibits a large seasonal change north of 30°N and much less at lower latitude. At mid and high latitude the column abundance above ~ 80 km changes from ? 1 × 1014 cm?2 in summer to about 3 × 1014 cm?2 in winter. There are occasional enhancements in both the day and twilight airglow which almost always occur in association with auroral activity or, at least, where such activity is statistically most likely. These enhancements appear to reflect a corresponding increase in the ozone mixing ratio in the upper stratosphere. While the gradient in ozone mixing ratio with latitude is generally small at altitudes between 50 and 90km there are occasions when a temporary latitude structure can be seen, particularly above 80 km.  相似文献   

17.
The Mariner 9 infrared spectrometer obtained data over a large part of Mars for almost a year beginning late in 1971. Mars' infrared emission spectrum was measured from 200 to 2000 cm?1 with an apodized resolution of 2.4 cm?1. No significant deviation from terrestrial ratios of carbon (12C/13C) or oxygen (16O/18O; 16O/17O) isotopes was observed on Mars. The 12C/13C isotopic ratio was found to be terrestrial with an uncertainty of 15%. Upper limits have been calculated for several minor constituents. With an effective noise equivalent radiance of 1.2 × 10?9 W cm?2 sr?1/cm?1, new upper limits in centimeter-atmospheres of 2 × 10?5 for C2H2, 4 × 10?3 for C2H4, 3 × 10?3 for C2H6, 2 × 10?4 for CH4, 1 × 10?3 for N2O, 1 × 10?4 for NO2, 4 × 10?5 for NH3, 1 × 10?3 for PH3, 7 × 10?4 for SO2, and 1 × 10?4 for OCS have been derived.  相似文献   

18.
By using the Mariner 5 temperature profile and a homogeneous cloud model, and assuming that CO2 and cloud particles are the only opacity sources, the wavelength dependence of the Venus cloud opacity is infrared from the infrared spectrum of the planet between 450 and 1250 cm?1. Justification for applying the homogeneous cloud model is found in the fact that numerous polarization and infrared data are mutually consistent within the framework of such a model; on the other hand, dense cloud models are not satisfactory.Volume extinction coefficients varying from 0.5 × 10?5 to 1.5 × 10?5 cm?1, depending on the wavelength, are determined at the tropopause level of 6110 km. By using all available data, a cloud mass mixing ratio of approximately 5 × 10?6 and a particle concentration of about 900 particles cm?3 at this level are also inferred. The derived cloud opacity compares favorably with that expected for a haze of droplets of a 75% aqueous solution of sulfuric acid.  相似文献   

19.
R.T. Clancy  D.O. Muhleman 《Icarus》1985,64(2):157-182
Microwave spectra of carbon monoxide (12CO) in the mesosphere of Venus were measured in December 1978, May and December 1980, and January, September, and November 1982. These spectra are analyzed to provide mixing profiles of CO in the Venus mesosphere and best constrain the mixing profile of CO between ~ 100 and 80 km altitude. From the January 1982 measurement (which, of all our spectra, best constrains the abundance of CO below 80 km altitude) we find an upper limit for the CO mixing ratio below 80 km altitude that is two to three times smaller than the stratospheric (~65 km) value of 4.5 ± 1.0 × 10?5 determined by P. Connes, J. Connes, L.D. Kaplan, and W. S. Benedict (1968, Astrophys. J.152, 731–743) in 1967, indicating a possible long-term change in the lower atmospheric concentration of CO. Intercomparison among the individual CO profiles derived from our spectra indicates considerable short-term temporal and/or spatial variation in the profile of CO mixing in the Venus mesosphere above 80 km. A more complete comparison with previously published CO microwave spectra from a number of authors specifies the basic diurnal nature of mesospheric CO variability. CO abundance above ~ 95 km in the Venus atmosphere shows approximately a factor of 2–4 enhancement on the nightside relative to the dayside of Venus. Peak nightside CO abundance above ~95 km occurs very near to the antisolar point on Venus (local time of peak CO abundance above ~95 km occurs at 0.6?0.6+0.7 hr after midnight on Venus), strongly suggesting that retrograde zonal flow is substantially reduced at an altitude of 100 km in the Venus mesosphere. In contrast, CO abundances between 80 and 90 km altitude show a maximum that is shifted from the antisolar point toward the morningside of Venus (local time of peak CO abundance between 80 and 90 km occurs at 8.5 ± 1.0 hr past midnight on Venus). The magnitude of the diurnal variation of CO abundance between 80 and 90 km is again, approximately a factor of 2–4. Disk-averaged spectra of Venus do not determine the exact form for the diurnal distribution of CO in the Venus mesosphere as indicated by comparison of synthetic spectra, based upon model distributions, and the measured spectra. However, the offset in phase for the diurnal variation for the >95 km and 80–90-km-altitude regions requires an asymmetric (in solar zenith angle) distribution.  相似文献   

20.
G.S. Orton  H.H. Aumann 《Icarus》1977,32(4):431-436
The Q and R branches of the C2H2 ν5 fundamental, observed in emission in an aircraft spectrum of Jupiter near 750 cm?1, have been analyzed with the help of an improved line listing for this band. The line parameters have been certified in the laboratory with the same interferometer used in the Jovian observations. The maximum mixing ratio of C2H2 is found to be between 5 × 10?8 and 6 × 10?9, depending on the form of its vertical distribution and the temperature structure assumed for the lower stratosphere. Most consistent with observations of both Q and R branches are: (1) distributions of C2H2 with a constant mixing ratio in the stratosphere and a cutoff at a total pressure of 100 mbar or less, and (2) the assumption of a temperature at 10?2 bar which is near 155°K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号