首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Strong evidence that Io's sodium emission is due to resonant scattering is given by our observations which show a monotonic increase of emission intensity with residual solar intensity. In addition we detected no emission during three eclipse observations of Io. We propose a resonant scattering model with two spacial components comprising an optically thick atmosphere extending 103 km above Io's surface surrounded by an optically thin cloud which forms a partial torus around Jupiter. In this model a flux of 107 cm?2 sec?1 sodium atoms are sputtered from Io's surface by heavy energetic ions which are accelerated in a plasma sheath around Io. The atoms sputtered from the surface collide with atoms in Io's atmosphere so the equipartition of kinetic energy is established. The total sodium abundance is about 3 × 1013 cm?2. During Io's day, sodium and other atmospheric constituents are ionized, giving rise to the ionosphere observed by Pioneer 10. Atoms escape by means of Jeans escape from the critical level, which is at the top of the atmosphere and the base of the cloud. We have observed sodium emission 6arcsec (6 Io diameters) above and below Io's orbital plane and 23arcsec toward Jupiter in Io's orbital plane. No emission was detected at maximum elongation 180° from Io. We interpret these results to mean that atoms escaping from Io form a partial torus whose thickness is about 12 arcsec and whose length is at least one-fifth of Io's orbital circumference.  相似文献   

2.
L. Trafton  W. Macy 《Icarus》1978,33(2):322-335
We investigate the contribution of scattering in the telescope to our measurements of the size of Io's sodium cloud and to the distribution of emission intensity in the cloud. The brightest regions, within 30″ of Io near opposition and along the equatorial plane, are relatively undistorted but regions further than 45″ away and not close to the equatorial plane are very likely to consist of mainly scattered light. Portions of the cloud in the vicinity of the magnetic equator are also mostly scattered light when Io is near extreme magnetic latitude. The equatorial torus, however, extends up to 20 arcmin from Jupiter. The large size of the cloud is thus confirmed. High-resolution line profile shapes indicate that sodium streams from Io preferentially in the forward direction with velocities distributed up to 18 km sec?1. The observed wavelength shifts of the peak intensities from Io's rest frame are compatible with a cloud streaming through a bound atmospheric component but they could also be caused by a velocity distribution peaked at very low velocities.  相似文献   

3.
We find that faint sodium emission originating in the middle Jupiter magnetosphere has two distinct kinematical components. The “normal” signature of atoms on bound orbits with large apojoves seems always to be present, and we suggest these atoms are an extension of the bright, near-Io sodium cloud. The “fast” signature, with speeds up to at least 100 km sec?1, is seen only occasionally, and we suggest it is due to an interaction of the near-Io sodium cloud with the corotating, heavy-ion plasma. Both elastic and charge-exchange collisions seem consistent with the observed kinematical and temporal signatures. Elastic collisions seem marginally more capable of producing the high observed sodium atom speeds. We predict observable occurences of the fast component in the hours following passage of the Io sodium cloud through the plasma centrifugal symmetry surface if Io is at a favorable orbital longitude. Between 10 and 20 RJ we find an atomic sodium density ~10?2 cm?3. If the photoionization lifetime applies, an Io source of at least 1026 sodium atoms sec? is required to maintain this remote sodium population.  相似文献   

4.
W. Macy  L. Trafton 《Icarus》1980,41(1):131-141
Models for the distribution of sodium in Io's vicinity and in a disk in Io's orbital plane, compared with observational data, support arguments (1) that Io is the source of the sodium, (2) that sodium is ejected from the inside hemisphere and most of the high velocity sodium which is observed is ejected from the leading inside quadrant, (3) that most of the sodium leads Io in Io's vicinity but follows Io at distances of more than 7Rj from Jupiter, (4) that a significant fraction of the sodium flux is ejected at large angles with respect to Io's orbital plane, (5) that the source velocity distribution has a pronounced high-velocity tail, and (6) that impact ionization by electrons is significant at large distances from Io.  相似文献   

5.
The Stokes parameters of resonance radiation scattered by a Na atom with the angular momentum F aligned by directed unpolarized radiation in a magnetic field H ~ 10?5?10?1 Oe are presented. An influence of the orientation of the magnetic field on these parameters are studied; the intensity ratio I(D2)I(D1) changes within ±5%, and the polarization degree P(D2) within ±25%. Measurements of I(D2)I(D1) and P(D2), if the geometry of scattering is known, may give information on the direction of the magnetic field in the sodium atmospheres of comets, as well as Io's sodium cloud or man-made cosmic clouds.  相似文献   

6.
A spectrum of the disk of Jupiter was obtained in January 1978 from the Kuiper Airborne Observatory, covering the 100- to 300-cm?1 spectral range at a resolution corresponding to 1.65 cm?1. Although taken more than a year before the Voyager 1 Jupiter encounter, this spectrum serves to extend the Voyager IRIS experiment coverage down from its lower limit of 200 cm?1. Analysis of the spectrum provides information on global mean properties of ammonia gas and an ammonia ice haze. A vertical distribution indistinguishable from saturation equilibrium, with a sharp depletion near the temperature minimum, matches the observed shape of the rotational line absorption best. Constraints on the total optical thickness of the ammonia ice haze can be made, but other properties, such as particle size or vertical scale height, cannot be distinguished clearly from our data in this spectral region. Nevertheless, all models of the haze produce a “continuum” thermal emission between the NH3 line manifolds which is much lower than that produced by the H2 collision-induced dipole opacity.  相似文献   

7.
It is shown that Titan's surface and plausible atmospheric thermal opacity sources—gaseous N2, CH4, and H2, CH4 cloud, and organic haze—are sufficient to match available Earth-based and Voyager observations of Titan's thermal emission spectrum. Dominant sources of thermal emission are the surface for wavelenghts λ ? 1 cm, atmospheric N2 for 1 cm ? λ ? 200 μm,, condensed and gaseous CH4 for 200 μm ? λ ? 20 μm, and molecular bands and organic haze for λ ? 20 μm. Matching computed spectra to the observed Voyager IRIS spectra at 7.3 and 52.7° emission angles yields the following abundances and locations of opacity sources: CH4 clouds: 0.1 g cm? at a planetocentric radius of 2610–2625 km, 0.3 g cm?2 at 2590–2610 km, total 0.4 ± 0.1 g cm–2 above 2590 km; organic haze: 4 ± 2 × 10?6, g cm, ?2 above 2750 km; tropospheric H2: 0.3 ± 0.1 mol%. This is the first quantitative estimate of the column density of condensed methane (or CH4/C2H6) on Titan. Maximum transparency in the middle to far IR occurs at 19 μm where the atmospheric vertical absorption optical depth is ?0.6 A particle radius r ? 2 μm in the upper portion of the CH4 cloud is indicated by the apparent absence of scattering effects.  相似文献   

8.
L. Trafton 《Icarus》1976,27(3):429-437
If sputtering provides the sodium in Io's extended cloud, then other elements abundant in Io's surface layer should also be present in this cloud. We present spectra in the range from 3100 Å to 8700 Å of a portion of this cloud where Io's scattered continuum is weak but where the sodium emission is still strong. Aluminum and calcium are found to be underabundant relative to sodium. Upper limits are set to some other cosmically abundant elements. In addition, we detected the 10 830 Å feature over various parts of the cloud but found it to have an intensity comparable to that observed elsewhere in the night sky. There is no indication that helium emission brighter than 200 Rayleighs occurs from the cloud itself.  相似文献   

9.
Dark paterae on the jovian satellite Io are evidence of recent volcanic activity. Some paterae appear to be entirely filled with dark volcanic material, while others have only partially darkened floors. Dark paterae have area and heat flow longitudinal distributions that are bimodal as well as anti-correlated with the longitudinal distribution of mountains on Io at a global scale. As part of our study of Io’s total heat flow, we have examined the darkest paterae and quantified their thermal emission in order to assess their contribution. This is the first time that the areas of the dark material in these paterae have been measured with such precision and correlated with their thermal emission. Dark paterae yield a significantly larger contribution to Io’s heat flow than dark volcanic fields. Dark paterae (including Loki Patera) yield at least ∼4 × 1013 W or ∼40% of Io’s total heat flow. In comparison, dark flow fields yield ∼1013 W or ∼10% of Io’s total heat flow. Of the total heat loss from dark paterae, Loki Patera alone yields ∼1013 W or ∼10% of Io’s total thermal emission.  相似文献   

10.
Jupiter's innermost Galilean satellite Io is regarded as a fairly good conductor (σ > 10?5 Ω?1m?1). The trapping of magnetic field lines by Io and their deformation is described. A neutral point forms in the vicinity of the satellite. The magnetic field annihilation in the neutral point is enhanced by the emission of low frequency hmd waves. The power carried away by these waves may be as high 1015 W. The characteristic frequency of the wave and its variation while Io orbits around Jupiter is determined.  相似文献   

11.
A clue towards a retrieval of the zodiacal brightness gathering along a line of sight in the ecliptic plane consists in introducing the other intersection of that line with the terrestrial orbit (Fig. 1). The distribution of the elemental contribution to the brightness, or of the local quantity D [directional scattering coefficient, i.e. cross-section of the unit-volume, which gives very simple expressions (1), (2) for the brightness integral] can then be approached with reduced uncertainty. The assumptions-steady state of the zodiacal cloud; smooth distribution of D—are strongly suggested by the observations, and are much less controversial than the classical assumption of uniform composition and size everywhere.The scattering coefficient may vary along the line of sight as seen in Fig. 3 : an uncertainty bar highly dependent of the abscissa, and considerably reduced in the vicinity of two “nodes”. Both in abscissae and in ordinates, these nodes are conspicuously insensitive to the arbitrary choice of a mathematical model (Table 1).The node exterior to the Earth's orbit (“martian node”) remains at r ? 1.5 a.u. from the Sun (Fig. 4). It gives access to a range of the scattering phase function near Mars' orbit, deconvolved from any radial dependence of that function (Fig. 5). The backscattering effect obtained is a new confirmation of the non-terrestrial origin of the gegenschein.The node interior to the Earth's orbit remains located not far from the middle of each chord (“quasi-radial node”. Fig. 4). It allows to retrieve the radial dependence of D, partly deconvolved from its angular dependence, between 0.5 and 1 a.u. (Fig. 6 and Table 4).The uncertainty bars on D at the two observing locations yield two uncertainty bars of the phase function σ(θ) at 1 a.u. (Fig. 7). At θ = 30°, the forward scattering efficiency (normalized to θ = 90°) cannot exceed 6 and more likely 4. This disagrees with higher values obtained assuming spherical particles, and even obtained in part of the more realistic studies (assuming irregularly shaped particles, or mainly observational) reviewed in Table 5.All of these results are derived, with fair agreement, from three independent observational sources.  相似文献   

12.
Douglas B. Nash 《Icarus》1983,54(3):511-523
The role of adsorbed SO2 on Io's surface particles in producing the observed spectral absorption band near 4 μm in Io's reflectance spectrum is explored. Calculations show that a modest 50% monolayer coating of adsorbed SO2 molecules on submicron grains of sulfur of alkali sulfide, assumed to make up Io's uppermost optical surface (“radialith”), will result in a ν1 + ν3 absorption band near 4 μm with depth ~30% below the adjacent continuum, consistent with the observed strength of the Io band. The precise wavelength position of the ν1 + ν3 band of SO2 in different phase states such as frost, ice, adsorbate, and gas are summarized from the experimental literature and compared with the available telescopic measurements of the Io band position. The results suggest that the 4-μm band in Io's full disk spectrum can best be explained by the presence on Io's surface of widespread SO2 in the form of adsorbate rather than ice or frost.  相似文献   

13.
In March 1979, the spectrum of Venus was recorded in the far infrared from the G.P. Kuiper Airborne Observatory when the planet subtended a phase angle of 62°. The brightness temperature was observed to be 275°K near 110 cm?1, dropping to 230°K near 270 cm?1. Radiance calculations, using temperature and cloud structure formation from the Pioneer Venus mission and including gaseous absorption by the collision-induced dipole of CO2, yield results consistently brighter than the observations. Supplementing the spectral data, Pioneer Venus OIR data at similar phase angles provide the constraint that any additional infrared opacity must be contained in the upper cloud, H2SO4 to the Pioneer-measured upper cloud structure serves to reconcile the model spectrum and the observations, but cloud microphysics strongly indicates that such a high particle density haze (N ? 1.6 × 107cm?3) is implausible. The atmospheric environment is reviewed with regard to the far infrared opacity and possible particle distribution modifications are discussed. We conclude that the most likely possibility for supplementing the far-infrared opacity is a population of large particles (r ? 1 μm) in the upper cloud with number densities less than 1 particle cm?3 which has remained undetected by in situ measurements.  相似文献   

14.
Ground-based optical observations of D1 and D2 line emissions from Jupiter’s sodium nebula, which extend over several hundreds of jovian radii, were carried out at Mt. Haleakala, Maui, Hawaii using a wide field filter imager from May 19 to June 21, 2007. During this observation, the east-west asymmetry of the nebula with respect to the Io’s orbital motion was clearly identified. Particularly, the D1+D2 brightness on the western side of Jupiter is strongly controlled by the Io phase angle. The following scenario was developed to explain this phenomenon as follows: First, more ionospheric ions like NaX+, which are thought to produce fast neutral sodium atoms due to a dissociative recombination process, are expected to exist in Io’s dayside hemisphere rather than in the nightside one. Second, it is expected that more NaX+ ionospheric ions are picked up by the jovian co-rotating magnetic field when Io’s leading hemisphere is illuminated by the Sun. Third, the sodium atom ejection rate varies with respect to Io’s orbital position as a result of the first two points. Model simulations were performed using this scenario. The model results were consistent with the observation results, suggesting that Io’s ionosphere is expected to be controlled by solar radiation just like Earth.  相似文献   

15.
The Io plasma torus, composed of mostly heavy ions of oxygen and sulfur, is sustained by an Iogenic mass loading rate of ∼1030 amu s−1 = 1.6 × 1028 SO2 s−1 or approximately 103 kg s−1(A.L. Broadfoot et al., 1979, Science 204, 979-982). We argue on the basis of available power sources, reanalysis of F. Bagenal (1997, Geophys. Res. Lett. 24, 2111-2114), HST UV remote sensing, and detailed model calculations that at most 20% of this mass leaves Io in the form of ions, i.e., ≤3 × 1027 × (ne,0/3600 cm−3) ions s−1, where ne,0 is the average torus electron density. For the Galileo spacecraft Io pass in December 1995, the ion mass loading rate was ≤3 × 1027 ions s−1, whereas for the Voyager epoch with lower ne,0 (=2000 cm−3), this rate would be ≤1.7 × 1027 ions s−1, consistent with the D.E. Shemansky (1980, Astrophys. J. 242, 1266-1277) mass loading limit of ≤1 × 1027 ions s−1. We investigate the processes that control Io’s large scale electrodynamic interaction and find that the elastic collision rate exceeds the ionization/pickup rate by at least a factor of 5 for all atmospheric column densities considered (1016-1021 m−2) and by a factor of ∼100 for the most realistic column density. Consequently, elastic collisions are mostly responsible for Io’s high conductances and thus generate Io’s large scale electrodynamic interaction such as the generation of Io’s electric current system and the slowing of the plasma flow. The electrodynamic part of Io’s interaction is thus best described as an ionosphere-like interaction rather than a comet-like interaction. An analytic expression for total electron impact rates is derived for Io’s atmosphere, which is independent of any particular model for the 3D interaction of torus electrons with its atmosphere.  相似文献   

16.
The emission spectrum of Callisto was measured between 16 and 38 μm with a spectral resolution λΔλ ≈ 330, using the NASA Kuiper Airborne Observatory on the night of October 30–31, 1975 Within the errors, the observed spectrum is like that of a 155°K blackbody, in both shape and absolute intensity. The infrared emission and diameter of Callisto indicate a bolometric Bond albedo of 0.05±0.14, which is consistent with heating of the surface by absorbed sunlight.  相似文献   

17.
The observed types of nocturnal intensity variations for the OH (9-4) and OH (7-3) bands during IQSY at this Station are further analysed using the theoretical band intensity distribution of Evans and Llewellyn (1972). A considerable agreement is noticed between observed and theoretical intensity ratios, I(9-4)I(7-3), for a major portion of the data (~70%), which has a “continuous decrease” type of noctural intensity variation. This data is thereby satisfactorily explained on the basis of available information.For the remaining portion of the data (~30%), which has “an increase followed by decrease” type of intensity variation and higher intensities, the observed ratios are also systematically higher than the above. A satisfactory explanation is offered, by postulating a second layer of emission, by examining closely several aspects of the other observational results.  相似文献   

18.
We present a Monte Carlo (MC) model of [OI] 6300 Å and [SII] 6716 Å emission from Io entering eclipse. The simulation accounts for the 3-D distribution of SO2, O, SO, S, and O2 in Io’s atmosphere, several volcanic plumes, and the magnetic field around Io. Thermal electrons from the jovian plasma torus are input along the simulation domain boundaries and move along the magnetic field lines distorted by Io, occasionally participating in collisions with neutrals. We find that the atmospheric asymmetry resulting from varying degrees of atmospheric collapse across Io (due to eclipse ingress) and the presence of volcanoes contributes significantly to the unique morphology of the [OI] 6300 Å emission. The [OI] radiation lifetime of ∼134 s limits the emission to regions that have a sufficiently low neutral density so that intermolecular collisions are rare. We find that at low altitudes (typically <40 km) and in volcanic plumes (Pele, Prometheus, etc.) the number density is large enough (>4 × 109 cm−3) to collisionally quench nearly all (>95%) of the excited oxygen for reasonable quenching efficiencies. Upstream (relative to the plasma flow), Io’s perturbation of the jovian magnetic field mirrors electrons with high pitch angles, while downstream collisions can trap the electrons. This magnetic field perturbation is one of the main physical mechanisms that results in the upstream/downstream brightness asymmetry in [OI] emission seen in the observation by Trauger et al. (Trauger, J.T., Stapelfeldt, K.R., Ballester, G.E., Clarke, J.I., 1997. HST observations of [OI] emissions from Io in eclipse. AAS-DPS Abstract (1997DPS29.1802T)). There are two other main causes for the observed brightness asymmetry. First, the observation’s viewing geometry of the wake spot crosses the dayside atmosphere and therefore the wake’s observational field of view includes higher oxygen column density than the upstream side. Second, the phased entry into eclipse results in less atmospheric collapse and thus higher collisional quenching on the upstream side relative to the wake. We compute a location (both in altitude and latitude) for the intense wake emission feature that agrees reasonably well with this observation. Furthermore, the peak intensity of the simulated wake feature is less than that observed by a factor of ∼3, most likely because our model does not include direct dissociation-excitation of SO2 and SO. We find that the latitudinal location of the emission feature depends not so much on the tilt of the magnetic field as on the relative north/south flux tube depletion that occurs due to Io’s changing magnetic latitude in the plasma torus. From 1-D simulations, we also find that the intensity of [SII] 6716 and 6731 Å emission is much weaker than that of [OI] even if the [SII] excitation cross section is 103 times larger than excitation to [OI]. This is because the density of S+ is much less than that of O and because the Einstein-A coefficient of the [SII] emission is a factor of ∼10 smaller than that of [OI].  相似文献   

19.
Infrared observations of the Io eclipse of 12 April 1980 in five broad bands from 3 to 30 μm define the thermal emission spectrum both during and after eclipse. A substantial fraction of the emitted radiation during eclipse arises from hot spots; the equivalent global average heat flow is 1.5 ± 0.3 W m?2, corresponding to an internal source of (6 ± 1) × 1013 W. The hot spot spectra can be matched by components with color temperatures of 200–600°K covering 1–2% of the surface. Comparison with observations over the past 8 years suggests that, while the flux at the hottest temperatures may be highly variable, there is no evidence for major changes in the total heat flow, which is emitted primarily in the spectral region 10–20 μm. The heating curves of the surface were observed at 10 and 20 μm; when corrected for the hot spot contribution they indicate a typical global thermal inertia for Io of (0.2 ± 0.1) × 10?3cal cm?2sec?12K?1, similar to that of the other Galilean satellites.  相似文献   

20.
Simultaneous measurements of the 6300 Å airglow intensity, the electron density profile, and F-region ion temperatures and vertical ion velocities taken at the Arecibo Observatory in March 1971 are utilized in the height integrated continuity equation to extract the number of photons'of 6300 Å emitted per recombination. After accounting for quenching of O(1D) and the electrons lost via NO+ recombination, the efficiency of O(1D) production by the dissociative recombination of O2+ is determined to be 0.6 ± 0.2 including cascading from the O(1S) state. The uncertainty includes both random measurement errors and estimates of possible systematic errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号