首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 566 毫秒
1.
Urban sprawl and regional climate variability are major stresses on surface water resources in many places. The Lake Simcoe watershed (LSW) Ontario, Canada, is no exception. The LSW is predominantly agricultural but is experiencing rapid population growth because of its proximity to the Greater Toronto area. This has led to extensive land use changes that have impacted its water resources and altered run‐off patterns in some rivers draining to the lake. Here, we use a paired‐catchment approach, hydrological change detection modelling and remote sensing analysis of satellite images to evaluate the impacts of land use change on the hydrology of the LSW (1994 to 2008). Results show that urbanization increased up to 16% in Lovers Creek, the most urban‐impacted catchment. Annual run‐off from Lovers Creek increased from 239 to 442 mm/year in contrast to the reference catchment (Black River at Washago) where run‐off was relatively stable with an annual mean of 474 mm/year. Increased annual run‐off from Lovers Creek was not accompanied by an increase in annual precipitation. Discriminant function analysis suggests that early (1992–1997; pre‐major development) and late (2004–2009; fully urbanized) periods for Lovers Creek separated mainly based on model parameter sets related to run‐off flashiness and evapotranspiration. As a result, parameterization in either period cannot be used interchangeably to produce credible run‐off simulations in Lovers Creek because of greater scatter between the parameters in canonical space. Separation of early and late‐period parameter sets for the reference catchment was based on climate and snowmelt‐related processes. This suggests that regional climatic variability could be influencing hydrologic change in the reference catchment, whereas urbanization amplified the regional natural hydrologic changes in urbanizing catchments of the LSW. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Hepatic microsomal 7-ethoxyresorufin O-deethylase (EROD) activities (indicative of exposure to polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs)) were measured in eel Anguilla anguilla from the Thames Estuary. Fish were collected from up to 13 sites during November 1997, May and August 1998 and October 1999. Throughout this period no clear seasonal variation could be identified at every site along the Thames. However, during the summer months, fish sampled from sites in the middle to the upper estuary (Woolwich, Greenhithe and West Thurrock) reported up to 3-fold higher EROD activities compared to sites either at the upper reaches (Richmond and Brentford) at the same time of the year, or fish sampled in winter, along the entire length of the estuary. A laboratory exposure experiment demonstrated a 3-fold elevation of EROD activity 2 days after injection with β-naphthoflavone (β-NF). However, higher levels of activity could be determined in fish sampled from the Weston canal near the Merseyside. The lowest levels of A. anguilla EROD activity were observed in fish sampled from the upper reaches of the River Tamar, Devon, and were comparable to activities determined in fish from the Wear and Humber estuaries. A. anguilla sampled along the Thames, Tyne and Tees estuaries reported between 2.5- and 7-fold higher EROD activities compared to fish collected from the Tamar. These results indicate that a low to moderate induction of A. anguilla CYP1A had occurred (indicative of low to moderate exposure to PAHs and planar PCBs) in fish collected from the Thames, Tyne, Wear, Tees, Humber and Tamar estuaries. However, the highest level of EROD activity was observed in fish from the Weston Canal (Merseyside).  相似文献   

3.
Streamwater samples were collected during 1987–1988 from two adjacent gauged watersheds, the subalpine-alpine East St. Louis and the Fool Creek Alpine, in the Fraser Experimental Forest, Colorado. The study objective was to compare the relationships between streamwater discharge and ion concentration in alpine and alpine-subalpine watersheds at a site receiving low inputs of atmospheric contaminants. Streamwater discharge accounts for much of the variation in ion concentration. Trajectories of time, discharge, and ion concentration suggest that patterns of nutrient flux are controlled primarily by the magnitude of streamwater discharge, and seasonal differences in the relative contributions of snowmelt and soil water. In the subalpine catchment, increased streamwater discharge accounted for most of the decline in concentration of ions, with high concentrations in soil water relative to precipitation. This relationship was not seen in the alpine catchment, probably because of the influence of large diurnal variation in the ratio of snowmelt to soil water. In both catchments, ions with comparatively high concentrations in precipitation and the snowpack relative to soil water showed less concentration decline with increased streamwater discharge. The recurring nature of the trajectories, especially in the subalpine catchment, suggests that the time, discharge, and ion concentration patterns may represent a general characteristic in moderate-sized, undisturbed Rocky Mountain catchments which do not receive high inputs of airborne contaminants.  相似文献   

4.
Distinction between active and legacy sources of nutrients is needed for effective reduction of waterborne nutrient loads and associated eutrophication. This study quantifies main typological differences in nutrient load behaviour versus water discharge for active and legacy sources. This quantitative typology is used for source attribution based on monitoring data for water discharge and concentrations of total nitrogen (TN) and total phosphorous (TP) from 37 catchments draining into the Baltic Sea along the coastline of Sweden over the period 2003–2013. Results indicate dominant legacy source contributions to the monitored loads of TN and TP in most (33 of the total 37) study catchments. Dominant active sources are indicated in 1 catchment for TN, and mixed sources are indicated in 3 catchments for TN, and 4 catchments for TP. The TN and TP concentration contributions are quantified to be overall higher from the legacy than the active sources. Legacy concentrations also correlate well with key indicators of human activity in the catchments, agricultural land share for TN (R2 = 0.65) and population density for TP (R2 = 0.56). Legacy-dominated nutrient concentrations also change more slowly than in catchments with dominant active or mixed sources. Various data-based results and indications converge in indicating legacy source contributions as largely dominant, mainly anthropogenic, and with near-zero average change trends in the present study of catchments draining into the Baltic Sea along the coastline of Sweden, as in other parts of the world. These convergent indications emphasize needs to identify and map the different types of sources in each catchment, and differentiate strategies and measures to target each source type for possible achievement of shorter- and longer-term goals of water quality improvement.  相似文献   

5.
Simultaneous field monitoring of runoff and suspended sediment loads from a 30 ha, artificially‐drained, mixed‐agricultural catchment in Herefordshire, UK indicates field drains are the dominant pathway for the transfer of runoff and sediment to the stream. Surface runoff pathways draining 6·2% of the catchment area transported around 1% of the catchment sediment load, while subsurface runoff in field drains draining 26·5% of the catchment transported around 24% of the sediment load. The explanations offered here for the dominance of drainflow—the spatial limitation of surface runoff generation and low hillslope‐stream connectivity of surface runoff compared with subsurface runoff—are also likely to apply to other artificially‐drained lowland agricultural catchments in the UK. These catchments are usually on poorly‐drained soils, and land management can have a considerable effect on the operation of runoff pathways and the transfer of sediment from hillslope to stream. As a result, subsurface inputs may also dominate sediment transfers in other underdrained catchments. The focus on sediment and pollutant losses via surface runoff pathways means that pollution inputs from subsurface, preferential pathways have been unfairly neglected, and it may be more important to focus on subsurface sediment and sediment‐associated pollution inputs for mitigation rather than inputs from surface pathways. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The relationship between stream water DOC concentrations and soil organic C pools was investigated at a range of spatial scales in subcatchments of the River Dee system in north‐east Scotland. Catchment percentage peat cover and soil C pools, calculated using local, national and international soils databases, were related to mean DOC concentrations in streams draining small‐ (<5 km2), medium‐ (12–38 km2) and large‐scale (56–150 km2) catchments. The results show that, whilst soil C pool is a good predictor of stream water DOC concentration at all three scales, the strongest relationships were found in the small‐scale catchments. In addition, in both the small‐ and large‐scale catchments, percentage peat cover was as a good predictor of stream water DOC concentration as catchment soil C pool. The data also showed that, for a given soil C pool, streams draining lowland (<700 m) catchments had higher DOC concentrations than those draining upland (>700 m) catchments, suggesting that disturbance and land use may have a small effect on DOC concentration. Our results therefore suggest that the relationship between stream water DOC concentration and catchment soil C pools exists at a range of spatial scales and this relationship appears to be sufficiently robust to be used to predict the effects of changes in catchment soil C storage on stream water DOC concentration. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
Utilising newly available instrumentation, the carbon balance in two small tropical catchments was measured during two discharge events at high temporal resolution. Catchments share similar climatic conditions, but differ in land use with one draining a pristine rainforest catchment, the other a fully cleared and cultivated catchment. The necessity of high resolution sampling in small catchments was illustrated in each catchment, where significant chemical changes occurred in the space of a few hours or less. Dissolved and particulate carbon transport dominated carbon export from the rainforest catchment during high flow, but was surpassed by degassing of CO2 less than 4 h after the discharge peak. In contrast, particulate organic carbon dominated export from the cleared catchment, in all flow conditions with CO2 evasion accounting for 5–23% of total carbon flux. Stable isotopes of dissolved inorganic carbon (DIC) in the ephemeral rainforest catchment decreased quickly from ~1.5 ‰ to ~ ?16 ‰ in 5 h from the flood beginning. A two‐point mixing model revealed that in the initial pulse, over 90% of the DIC was of rainwater origin, decreasing to below 30% in low flow. In the cultivated catchment, δ13CDIC values varied significantly less (?11.0 to ?12.2 ‰) but revealed a complex interaction between surface runoff and groundwater sources, with groundwater DIC becoming proportionally more important in high flow, due to activation of macropores downstream. This work adds to an increasing body of work that recognises the importance of rapid, short‐lived hydrological events in low‐order catchments to global carbon dynamics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
9.
The impacts of land use intensity, here defined as the degree of imperviousness, on stormwater volumes, runoff rates and their temporal occurrence were studied at three urban catchments in a cold region in southern Finland. The catchments with ‘High’ and ‘Intermediate’ land use intensity, located around the city centre, were characterized by 89% and 62% impervious surfaces, respectively. The ‘Low’ catchment was situated in a residential area of 19% imperviousness. During a 2‐year study period with divergent weather conditions, the generation of stormwater correlated positively with catchment imperviousness: The largest annual stormwater volumes and the highest runoff coefficients and number of stormwater runoff events occurred in the High catchment. Land use intensity also altered the seasonality of stormwater runoff: Most stormwater in the High catchment was generated during the warm period of the year, whereas the largest contribution to annual stormwater generation in the Low catchment took place during the cold period. In the two most urbanized catchments, spring snow melt occurred a few weeks earlier than in the Low catchment. The rate of stormwater runoff in the High and Intermediate catchments was higher in summer than during spring snow melt, and summer runoff rates in these more urbanized catchments were several times higher than in the Low catchment. Our study suggests that the effects of land use intensity on stormwater runoff are season dependent in cold climates and that cold seasons diminish the differences between land use intensities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The contribution from agricultural catchments to stream nitrogen and phosphorus concentrations was assessed by evaluation of the chemical composition of these nutrients in agricultural runoff for both surface and subsurface flow pathways. A range of land uses (grazed and ungrazed grassland, cereals, roots) in intensive agricultural systems was studied at scales from hillslope plots (0.5 m2) to large catchment (>300 km2). By fractionating the total nutrient load it was possible to establish that most of the phosphorus was transported in the unreactive (particulate and organic) fraction via surface runoff. This was true regardless of the scale of measurement. The form of the nitrogen load varied with land use and grazing intensity. High loads of dissolved inorganic nitrogen (with >90% transported as NH4-N) were recorded in surface runoff from heavily grazed land. In subsurface flow from small (2 km2) subcatchments and in larger (>300 km2) catchments, organic nitrogen was found to be an important secondary constituent of the total nitrogen load, comprising 40% of the total annual load.  相似文献   

11.
Organochlorine pesticides were widely used in the Australian sugarcane industry from the early 1950s until the late 1980s. Erosion of sugarcane soils and subsequent transport of sediment bound contaminants in river run-off to the Great Barrier Reef lagoon is a growing concern as the cane industry continues to expand. Organochlorine pesticide residues can be used as tracers to examine the worst-case scenario of the spatial extent to which currently used, though less persistent, organic agricultural pesticides might extend. The coastal alluvial flood-plains of the Herbert and Burdekin Rivers in North Queensland have sugarcane growing as the major coastal land-use. Sediment cores and surface sediment samples were collected from near-shore coastal regions of the Herbert and Burdekin Rivers. In addition, soil samples from cane-fields in the two catchments were collected. Analyses of the marine surface sediment samples and three sediment cores revealed the absence of detectable concentrations of organochlorine pesticides (<5 pg/g). However, easily detectable concentrations were found in the sugarcane soil samples (0.01–45 ng/g).  相似文献   

12.
This paper focuses on the problem of quantifying real world catchment response using a distributed model and discusses the ability of the model to capture that response. The rainfall–runoff responses of seven small agricultural catchments in the eastern wheatbelt region of south-western Australia are examined. The variability in runoff generation and the factors that contribute to that variability (i.e. rainfall intensity, soil properties and topography) are investigated to determine if their influence can be captured in a mathematical model. The spatially distributed rainfall–runoff model used in this study is based on the TOPMODEL concepts of Beven and Kirkby (1979), and simulates runoff generation by both the infiltration excess and saturation excess mechanisms. Simulations with the model revealed the highly complex nature of catchment response to rainfall events. Runoff generation was highly heterogeneous in both space and time, with the runoff response being governed by the spatial variability of soil properties and topography, and by the temporal variation in rainfall intensity. Although the model proved capable of simulating catchment response for many events, the investigation has demonstrated that not all aspects of the variability associated with agricultural catchments (particularly the effects of land management) can be captured using this relatively simple model. © 1997 by John Wiley & Sons, Ltd  相似文献   

13.
A suite of biomarkers were measured in barramundi (Lates calcarifer) from five North Queensland estuaries along a perceived pollution gradient. The biomarkers selected were 7-ethoxyresorufin-O-deethylase (EROD), cytochrome P450, fluorescent aromatic compounds (FACs), DNA integrity, RNA:DNA ratio, cholinesterase activity (ChE), condition factor and hepatosomatic index. The resulting database was subjected to uni- and multi-variate analyses in order to assess the most suitable biomarkers to assess pollution in North Queensland estuaries and to classify the environmental quality of the sites. Principal components analysis (PCA) on the biochemical markers revealed that EROD, EROD/P450, DNA damage and to a lesser extent ChE and FACs were found to be responsive to contaminants in the environment while cytochrome P450, condition factor and the hepatosomatic index were found to be less responsive biomarkers. This study has demonstrated the utility of applying a multibiomarker approach in conjunction with traditional analysis of contaminants in providing valuable information in environmental risk assessment.  相似文献   

14.
Tracing suspended sediment and particulate phosphorus sources in catchments   总被引:4,自引:0,他引:4  
Information on suspended sediment and particulate P (PP) sources is an important requirement in many catchment-based diffuse source pollution studies, in order to assist with model validation and to provide information to support the development of effective sediment and phosphorus control strategies. Such information is, however, frequently unavailable or difficult to assemble. In the study reported, source fingerprinting procedures were successfully used to assemble this information for seven sub-catchments in the Hampshire Avon catchment and five sub-catchments in the Middle Herefordshire Wye catchment. The results provide important new information on the relative importance of the contributions from surface and channel/subsurface sources to the suspended sediment and PP fluxes from the catchments. In the Wye sub-catchments channel/subsurface sources contributed 40–55% of the overall suspended sediment flux and 21–43% of the PP flux from the catchments. Equivalent values for the Avon were 1–41% and 1–54%, respectively. Combination of the information on the relative importance of surface and channel/subsurface sources with measured suspended sediment fluxes has provided the first estimates of the specific fluxes of sediment and PP attributable to channel/subsurface sources for UK catchments. The former are as high as 15–20 t km−2 year−1 in some of the Wye sub-catchments, whereas the latter exceeded 0.1 kgP ha−1 year−1 in the same sub-catchments. The results emphasize the need to take account of potential contributions from channel/subsurface sources when using measured suspended sediment and PP flux data to validate predictions derived from models incorporating only surface contributions.  相似文献   

15.
Likangala River catchment in Zomba District of Southern Malawi is important for water resources, agriculture and provides many ecosystem services. Provisioning ecosystem services accrued by the populations within the catchment include water, fish, medicinal plants and timber among others. In spite of its importance, the River catchment is under threat from anthropogenic activities and land use change. This paper studies land uses and land cover change in the catchment and how the changes have impacted on the ecosystem services. Landsat 5 and 8 images (1984, 1994, 2005 and 2013) were used to map land cover change and subsequent inventorying of provisioning ecosystem services. Participatory Geographic Information Systems and Focus group discussions were conducted to identify provisioning ecosystems services that communities benefit from the catchment and indicate these on the map.Post classification comparisons indicate that since 1984, there has been a decline in woodlands from 135.3 km2 in 1984 to 15.5 km2 in 2013 while urban areas increased from 9.8 km2 to 23.8 km2 in 2013. Communities indicated that provisioning ecosystems services such as forest products, wild animals and fruits and medicinal plants have been declining over the years. In addition, evidence of catchment degradation through waste disposal, illegal sand mining, deforestation and farming on marginal lands were observed. Population growth, urbanization and demand for agricultural lands have contributed to this land use and land cover change. The study suggests addressing catchment degradation through integrated method where an ecosystems approach is used. Thus, both the proximate and underlying driving factors of land-use and land cover change need to be addressed in order to sustainably reduce ecosystem degradation.  相似文献   

16.
The catchment of the river Adour (SW France) has been examined in order to analyse spatio-temporal variations in a number of key variables (flow, suspended matter, nitrate and dissolved orthophosphate concentrations) over a 25-year period (1972–1996).

Within the catchment area, it has been possible to discern how hydroclimatic fluctuations have affected the watershed, with dry periods in 1972–1976 and 1983–1993 alternating with wetter phases in 1977–1982 and 1994–1995. The anthropogenic activity, primarily, involving the use of water for agricultural purposes, has also had a major impact during this period, particularly in the downstream areas of the catchment.

Suspended matter fluxes display regular downstream increases with significant erosion being evident in the mountainous region contrasting with retention in the floodplains area downstream. These fluxes exhibit temporal and spatial variations with peaks occurring every 3–5 years, 1975–1977, 1979, 1982, 1985, 1987 and 1992. Some of these peaks are suggested to be related to anthropogenic activity involving river management, including the cutting of meanders and the construction of dykes for flood prevention.

Nitrate concentrations evince a similar pattern to the suspended matter fluxes with enhanced levels of downstream. The confluence of the Adour with the Midouze appears not to have any major impact on the nitrate concentration. In the downstream areas, an uptake of nitrate is registered indicating the activity of the riparian vegetation. For the entire catchment, maximal nitrate concentrations are observed in 1979, 1982, 1987, 1991–1992 and 1995.  相似文献   


17.
Increased sediment and nutrient losses resulting from unsustainable grazing management in the Burdekin River catchment are major threats to water quality in the Great Barrier Reef Lagoon. To test the effects of grazing management on soil and nutrient loss, five 1 ha mini-catchments were established in 1999 under different grazing strategies on a sedimentary landscape near Charters Towers. Reference samples were also collected from watercourses in the Burdekin catchment during major flow events. Soil and nutrient loss were relatively low across all grazing strategies due to a combination of good cover, low slope and low rainfall intensities. Total soil loss varied from 3 to 20 kg ha(-1) per event while losses of N and P ranged from 10 to 1900 g ha(-1) and from 1 to 71 g ha(-1) per event respectively. Water quality of runoff was considered moderate across all strategies with relatively low levels of total suspended sediment (range: 8-1409 mg l(-1)), total N (range: 101-4000 microg l(-1)) and total P (range: 14-609 microg l(-1)). However, treatment differences are likely to emerge with time as the impacts of the different grazing strategies on land condition become more apparent. Samples collected opportunistically from rivers and creeks during flow events displayed significantly higher levels of total suspended sediment (range: 10-6010 mg l(-1)), total N (range: 650-6350 microg l(-1)) and total P (range: 50-1500 microg l(-1)) than those collected at the grazing trial. These differences can largely be attributed to variation in slope, geology and cover between the grazing trial and different catchments. In particular, watercourses draining hillier, grano-diorite landscapes with low cover had markedly higher sediment and nutrient loads compared to those draining flatter, sedimentary landscapes. These preliminary data suggest that on relatively flat, sedimentary landscapes, extensive cattle grazing is compatible with achieving water quality targets, provided high levels of ground cover are maintained. In contrast, sediment and nutrient loss under grazing on more erodable land types is cause for serious concern. Long-term empirical research and monitoring will be essential to quantify the impacts of changed land management on water quality in the spatially and temporally variable Burdekin River catchment.  相似文献   

18.
The Great Barrier Reef (GBR) is a World Heritage Area and contains extensive areas of coral reef, seagrass meadows and fisheries resources. From adjacent catchments, numerous rivers discharge pollutants from agricultural, urban, mining and industrial activity. Pollutant sources have been identified and include suspended sediment from erosion in cattle grazing areas; nitrate from fertiliser application on crop lands; and herbicides from various land uses. The fate and effects of these pollutants in the receiving marine environment are relatively well understood. The Australian and Queensland Governments responded to the concerns of pollution of the GBR from catchment runoff with a plan to address this issue in 2003 (Reef Plan; updated 2009), incentive-based voluntary management initiatives in 2007 (Reef Rescue) and a State regulatory approach in 2009, the Reef Protection Package. This paper reviews new research relevant to the catchment to GBR continuum and evaluates the appropriateness of current management responses.  相似文献   

19.
Gravel-filled traps were buried in the beds of streams draining steep logged and unlogged catchments of the Dazzler Range in northern Tasmania, Australia, and removed after storm events, to assess infiltration of fine (less than 1 mm) material into the bed. All stream catchments were geomorphically similar, over similar altitude ranges and had moderately erodible sandy-clay soils on 25–35° slopes. Study catchments were selected to control for aspect, logging treatment and coupe age. Fine sediment infiltration into the stream bed was assessed for 15 tributary ephemeral streams in logged areas and 11 streams in unlogged areas. The logged catchments had been clearfelled in three time periods — 1990–1991, 1988–1989 and 1986–1987 — all by skyline cable logging. Trap yield was also assessed in riffles of the perennial valley floor streams upstream and downstream of the junction of six logged and six unlogged tributaries and upstream and downstream of four old but actively used road crossings. Trap yield was significantly higher in logged than in unlogged ephemeral streams for size fractions ranging from less than 125 to 500 μm, by factors ranging from two to three, but not for sediment between 0.5 and 1.0 mm. Trap yield of organic sediment of less than 125 μm declined with time after logging and burning, whereas inorganic sediment yield showed no clear trend with coupe age. Trap yield of 0.5–1.0 mm organic sediment was also significantly enhanced by logging and by burning. Sediment yield of streams logged in 1986–1987 was not significantly higher than for control streams, whereas inorganic sediment and 0.5–1.0 mm organic sediment yields were highest for recently burnt coupes. A significantly greater number of increases in trap yield occurred between riffle pairs of valley floor streams adjacent to junctions of logged tributaries, when compared with control riffle pairs. Logged tributary junctions were associated with an increase in the organic content of sediment. Road crossings were associated with large increases in infiltration in adjacent riffle pairs, 30–50 years after construction. Current forest practices do not protect ephemeral headwater streams from enhanced sediment inputs, the long-term significance of which is unknown. Recovery of sediment fluxes in these streams to background levels appears to take 5 years or longer.  相似文献   

20.
We used a conceptual modelling approach on two western Canadian mountainous catchments that were burned in separate wildfires in 2003 to explore the potential of using modelling approaches to generalize post‐wildfire catchment hydrology in cases where pre‐wildfire hydrologic data were present or absent. The Fishtrap Creek case study (McLure fire, British Columbia) had a single gauged catchment with both pre‐fire and post‐fire data, whereas the Lost Creek case study (Lost Ck. fire, Alberta) had several instrumented burned and reference catchments providing streamflows and climate data only for the post‐wildfire period. Wildfire impacts on catchment hydrology were assessed by comparing pre‐wildfire and post‐wildfire model calibrated parameter sets for Fishtrap Creek (Fishtrap Ck.) and the calibrated parameters of two burned (South York Ck. and Lynx Ck.) and two unburned (Star Ck. and North York Ck.) catchments for Lost Ck. Model predicted streamflows for burned catchments were compared with unburned catchments (pre‐fire in the case of Fishtrap Ck. and unburned in the case of the Lost Ck.). Similarly, model predicted streamflows from unburned catchments were compared with burned catchments (post‐fire in the case of Fishtrap Ck. and burned in the case of the Lost Ck.). For Fishtrap Ck., different model parameters and streamflow behaviour were observed for pre‐wildfire and post‐wildfire conditions. However, the burned and unburned model results from the Lost Ck. wildfire did not show differing streamflow responses to the wildfire. We found that this hydrological modelling approach is suitable where pre‐wildfire and post‐wildfire data are available but may provide limited additional insights where pre‐disturbance hydrologic data are unavailable. This may in part be because the conceptual modelling approach does not represent the physical catchment processes, whereas a physically based model may still provide insights into catchment hydrological response in these situations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号