首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new method for computing the surface transfer coefficients is proposed, based on state-of-the-art empirical flux-profile relationships. The influence of the roughness length ratio is first demonstrated with the classical iterative calculation method. Then a non-iterative algorithm is developed, taking into account the difference between momentum and heat roughness lengths.The new method is validated by comparison with the reference iterative computation. The large gain-in computer processing time (CPU) time gain for the calculation of surface fluxes in Eulerian grid models is finally assessed.  相似文献   

2.
A non-iterative analytical scheme is developed for unstable stratification that parametrizes the Monin–Obukhov stability parameter \(\zeta \) (\({=}z{/}L\), where z is the height above the ground and L is the Obukhov length) in terms of bulk Richardson number (\(Ri_B\)) within the framework of Businger–Dyer type similarity functions. The proposed scheme is valid for a wide range of roughness lengths of heat and momentum. The absolute relative error in the transfer coefficients of heat and momentum is found to be less than 1.5% as compared to those obtained from an iterative scheme for Businger–Dyer type similarity functions. An attempt has been made to extend this scheme to incorporate the similarity functions having a theoretically consistent free convection limit. Further, the performance of the scheme is evaluated using observational data from two different sites. The proposed scheme is simple, non-iterative and relatively more accurate compared to the schemes reported in the literature and can be used as a potential alternative to iterative schemes used in numerical models of the atmosphere.  相似文献   

3.
近地层湍流通量计算对于中尺度数值模式有重要意义, 湍流通量的参数化是当前大气边界层研究的重要课题之一。选择青藏高原东缘大理观象台边界层通量观测系统, 离线测试了WRF区域模式中的两种常用的近地层参数化方案(MM5相似理论非迭代方案A和ETA 相似理论迭代方案B), 并将参数化方案计算结果与边界层铁塔涡动相关法的观测值进行对比分析。在大理观象台观测场不同植被随季节交替的状况下, 根据边界层铁塔4层高度风速拟合, 发现近地层空气动力学粗糙度随季节变化特征明显。将拟合的空气动力学粗糙度输入模式参数化方案进行通量计算。结果表明:稳定度是影响近地层参数化方案精度的重要因素, 在不稳定条件下方案B低估了动量通量, 方案A优于方案B, 而在稳定条件下方案A低估了动量通量, 方案B优于方案A, 两种方案总体来看误差不大。对于大理边界层通量观测场地农田植被交替的环境条件, 不同季节下垫面植被类型的差异, 以及植被的稀疏对近地层参数化方案湍流通量计算结果的精度有显著影响。方案B考虑了空气动力学粗糙度z0和热量粗糙度z0h的差异, 不稳定条件下感热通量计算结果在裸土或稀少植被条件下明显优于方案A。针对方案B不稳定条件下感热通量计算结果在裸土下垫面仍出现高估的现象, 在使用了(Zeng, et al, 1998)提出的对于使用辐射地表温度在裸土下垫面时的订正方法后, 计算结果也有明显改善。  相似文献   

4.
近地层湍流通量计算对于中尺度数值模式有重要意义,湍流通量的参数化是当前大气边界层研究的重要课题之一.选择青藏高原东缘大理观象台边界层通量观测系统,离线测试了WRF区域模式中的两种常用的近地层参数化方案(MM5相似理论非迭代方案A和ETA相似理论迭代方案B),并将参数化方案计算结果与边界层铁塔涡动相关法的观测值进行对比分析.在大理观象台观测场不同植被随季节交替的状况下,根据边界层铁塔4层高度风速拟合,发现近地层空气动力学粗糙度随季节变化特征明显.将拟合的空气动力学粗糙度输入模式参数化方案进行通量计算.结果表明:稳定度是影响近地层参数化方案精度的重要因素,在不稳定条件下方案B低估了动量通量,方案A优于方案B,而在稳定条件下方案A低估了动量通量,方案B优于方案A,两种方案总体来看误差不大.对于大理边界层通量观测场农田植被交替的环境条件,不同季节下垫面植被类型的差异,以及植被的稀疏对近地层参数化方案湍流通量计算结果的精度有显着影响.方案B考虑了空气动力学粗糙度z0和热量粗糙度z0h的差异,不稳定条件下感热通量计算结果在裸土或稀少植被条件下明显优于方案A.针对方案B不稳定条件下感热通量计算结果在裸土下垫面仍出现高估的现象,使用了Zeng等1998年提出的用辐射地表温度订正裸土下垫面感热能量方法后,计算结果也有明显改善.  相似文献   

5.
Various models for calculating the effective or area-averaged roughness length zoe have been tested for a partly forested area. Three types of model are considered: the tile approach for very large scales of inhomogeneity (> 20 km), drag models for very small scales (up to 1 km), and surface-layer methods such as the blending-height method for intermediate scales. Over partly forested areas, where both pressure effects and roughness sub-layer effects may become significant, small-scale models are expected be the most suitable type of model. The various model types were tested against new experimental data that were obtained over the partly forested Sherwood Forest area (UK). The best fit with the data was obtained with the blending-height method, rather than with the different small-scale models. This is remarkable as the surface-layer assumptions of the blending-height method were clearly violated: the calculated blending height was 7 m, as compared to the mean tree height of 20 m. Of the small-scale models, a sparse-canopy approach compared poorly with the experimental data. The drag models overestimated the area-averaged roughness to a lesser degree, but a major point of concern remains the choice of the model parameters. Therefore, suggestions are made for an improved choice of these parameters.  相似文献   

6.
Abstract

A new approach to fetch‐limited wave studies is taken in this paper. Using data from five towers arranged along a line from the eastern shore of Lake St Clair, the differential growth between towers is explored as a function of local wave age. It is argued that this method avoids the usual fetch‐limited pitfall of inhomogeneity over long fetches and, in particular, the changes in wind speed downfetch of an abrupt roughness change. It is found that the growth rate decreases uniformly downfetch as the waves approach full development. This differential method leads to a smooth transition from rapidly growing short fetch waves to the asymptotic invariant state of full development. When the variation in wind speed after an abrupt (land to water) roughness change is taken into account, the idea of a universal fetch‐limited growth curve is called into question.  相似文献   

7.
We tested three atmospheric surface-layer parameterization schemes (Mellor-Yamadalevel 2, Paulson, and modified Louis), both ina 1-D mode in the new NCEP land-surface scheme against long-term FIFE and HAPEX observations, and in a coupled 3-D mode withthe NCEP mesoscale Eta model. The differences inthese three schemes and the resulting surface exchange coefficients do not, in general, lead to significant differences in model simulated surface fluxes, skin temperature, andprecipitation, provided the same treatment of roughness length for heat is employed.Rather, the model is more sensitive to the choice of the roughness length for heat. To assess the latter, we also tested two approaches to specifythe roughness length for heat: 1) assuming the roughness length for heat is a fixed ratio of the roughness length for momentum, and 2) relating this ratio to the roughness Reynolds number as proposed by Zilitinkevich.Our 1-D column model sensitivity tests suggested that the Zilitinkevich approach can improve the surface heat fluxand skin temperature simulations. A long-term test with the NCEP mesoscaleEta model indicated that this approach can also reduce forecast precipitation bias. Based on these simulations, in January 1996 we operationally implemented the Paulsonscheme with the new land-surface scheme of the NCEP Eta model, along with the Zilitinkevich formulation to specify the roughness length for heat.  相似文献   

8.
The traditional method for computing the mean displacement in latitude–longitude coordinates is a spherical meridional–zonal resultant displacement method (MRDM), which regards the displacement as the resultant vector of the meridional and zonal displacement components. However, there are inhomogeneity and singularity in the computation error of the MRDM, especially at high latitudes. Using the NCEP/NCAR long-term monthly mean wind and idealized wind fields, the inhomogeneity in the MRDM was accessed by using a great circle displacement computing method (GCDM) for non-iterative cases. The MRDM and GCDM were also compared for iteration cases by taking the trajectories from a three-time level reference method as the real trajectories. In the horizontal direction, the GCDM assumes that an air particle moves along its locating great circle and that the magnitude of the displacement equals the arc length of the great circle. The inhomogeneity of the MRDM is evaluated in terms of the horizontal distance error from the products of wind speed, lapse time, and angle difference from the GCDM displacement orient. The non-iterative results show that the mean horizontal displacement computed through the MRDM has both computational and analytical errors. The displacement error of the MRDM depends on the wind speed, wind direction, and the departure latitude of the air particle. It increases with the wind speed and the departure latitude. The displacement magnitude error has a four-wave pattern and the displacement direction error has a two-wave feature in the definition range of the wind direction. The iterative result shows that the displacement magnitude error and angle error of the MRDM and GCDM with respect to the reference method increase with the lapse time and have similar distribution patterns. The mean magnitude error and the angle error of the MRDM are nearly twice as large as those of the GCDM.  相似文献   

9.
The parameterization of friction velocity, roughness length, and the drag coefficient over coastal zones and open water surfaces enables us to better understand the physical processes of air-water interaction. In context of measurements from the Humidity Exchange over the Sea Main Experiment (HEXMAX), we recently proposed wave-parameter dependent approaches to sea surface friction velocity and the aerodynamic roughness by using the dimensional analysis method. To extend the application of these approaches to a range of natural surface conditions, the present study is to assess this approach by using both coastal shallow (RASEX) and open water surface measurements (Lake Ontario and Grand Banks ERS-1 SAR) where wind speeds were greater than 6.44 m s-1. Friction velocities, the surface aerodynamic roughness, and the neutral drag coefficient estimated by these approaches under moderate wind conditions were compared with the measurements mentioned above. Results showed that the coefficients in these approaches for coastal shallow water surface differ from those for open water surfaces, and that the aerodynamic roughness length in terms of wave age or significant wave height should be treated differently for coastal shallow and open water surfaces.  相似文献   

10.
The Gaussian model of plume dispersion is commonly used for pollutant concentration estimates. However, its major parameters, dispersion coefficients, barely account for terrain configuration and surface roughness. Large-scale roughness elements (e.g. buildings in urban areas) can substantially modify the ground features together with the pollutant transport in the atmospheric boundary layer over urban roughness (also known as the urban boundary layer, UBL). This study is thus conceived to investigate how urban roughness affects the flow structure and vertical dispersion coefficient in the UBL. Large-eddy simulation (LES) is carried out to examine the plume dispersion from a ground-level pollutant (area) source over idealized street canyons for cross flows in neutral stratification. A range of building-height-to-street-width (aspect) ratios, covering the regimes of skimming flow, wake interference, and isolated roughness, is employed to control the surface roughness. Apart from the widely used aerodynamic resistance or roughness function, the friction factor is another suitable parameter that measures the drag imposed by urban roughness quantitatively. Previous results from laboratory experiments and mathematical modelling also support the aforementioned approach for both two- and three-dimensional roughness elements. Comparing the UBL plume behaviour, the LES results show that the pollutant dispersion strongly depends on the friction factor. Empirical studies reveal that the vertical dispersion coefficient increases with increasing friction factor in the skimming flow regime (lower resistance) but is more uniform in the regimes of wake interference and isolated roughness (higher resistance). Hence, it is proposed that the friction factor and flow regimes could be adopted concurrently for pollutant concentration estimate in the UBL over urban street canyons of different roughness.  相似文献   

11.
Bulk Formulation of the Surface Heat Flux   总被引:1,自引:1,他引:1  
An interpretive literature survey examines different approachesfor applying the bulk aerodynamic formulato predict the surface heat flux. The surface heat flux is often predicted in terms of the surface radiation temperature, which is also used to predict the upward longwave radiation and the heat flux into the soil. In models, the thermal roughness length based on the surface radiation temperature (radiometric roughness length) is often specified to be smaller than the roughness length for momentum for a number of distinct reasons. The definition of the radiometric roughness length depends on the way that the surface temperature is measured, the choice of stability functions and displacement height and inclusion of any additional resistances.Using airborne eddy correlation data collected over eight different sites including bare soil, crops and grassland and several types of forests, the radiometric roughness length is found to vary by orders of magnitude in a manner that is difficult to formulate. Alternatively, we evaluate the approach where the thermal roughness length is equated with the better behaved roughness length for momentum and the corresponding aerodynamic surface temperature is modelled in terms of the surface radiation temperature, solar radiation, and vegetation index. The influence of wind speed and soil moisture on the difference between the aerodynamic and surface radiation temperatures is also examined.  相似文献   

12.
Based on the momentum flux–wind profile relationship of the Monin–Obukhov Similarity (MOS) theory, the observational data from the urban boundary layer field campaign in Nanjing are used to calculate the friction velocity ( $ {u_*} $ ) at the top of the urban canopy and the calculated results are evaluated. The urban surface roughness parameters (the roughness length z 0 and zero-plane displacement height z d) are estimated with the Ba method (Bottema’s morphological method). Two different regimes are employed for the calculations. In the homogeneous approach, z 0 and z d are averagely derived from the surface elements in the whole study area; while in the heterogeneous approach, z 0 and z d are locally derived from the surface elements in the corresponding upwind fetches (or source areas). The calculated friction velocities are compared to the measurement data. The results show that the calculated friction velocities from the heterogeneous approach are in better agreement with the observed values than those from the homogeneous approach are. This study implies that the local roughness parameters can properly represent the dynamical heterogeneity of urban surface, and its application can significantly improve the performance of parameterizations based on the MOS theory in the urban roughness sublayer.  相似文献   

13.
A method based on Giorgi (1997a, 1997b) and referred to as ‘combined approach’, which is a combination of mosaic approach and analytical-statistical-dynamical approach, is proposed. Compared with those of other approaches, the main advantage of the combined approach is that it not only can represent both interpatch and intrapatch variability, but also cost less computational time when the land surface heterogeneity is considered. Because the independent variable of probability density function (PDF) is extended to the single valued function of basic meteorological characteristic quantities, which is much more universal, the analytical expressions of the characteristic quantities, (e.g., drag coefficient, snow coverage, leaf surface aerodynamical resistance) affected by roughness length are derived, when the roughness length (and/ or the zero plane displacement) heterogeneity has been mainly taken into account with the approach. On the basis of the rule which the PDF parameters should follow, we choose a function y of the roughness length z0 as the PDF independent variable, and set different values of the two parameters width ratio αn and height ratio γ of PDF (here a linear, symmetric PDF is applied) for sensitivity experiments, from which some conclusions can be drawn, e.g., relevant characteristic terms show different sensitivities to the heterogeneous characteristic (i.e., roughness length), which suggests that we should consider the heterogeneities of the more sensitive terms in our model instead of the heterogeneities of the rest, and which also implies that when the land surface scheme is coupled into the global or regional atmospheric model, sensitivity tests against the distribution of the heterogeneous characteristic are very necessary; when the parameterαn is close to zero, little heterogeneity is represented, andαn differs with cases, which have an upper limit of about 0.6; in the reasonable range ofαn, a peak-like distribution of roughness length can be depicted by a small value ofγ, etc..  相似文献   

14.
We present a numerical simulation of drag partition over rough surfaces. A computational fluid dynamics model is applied with high resolution to simulatingturbulent flows over arrays of roughness elements positioned on asmooth surface. The skin drag on the surface and the pressure drag on the roughnesselements are computed. The simulated drag partition compares well with wind-tunnelmeasurements and theoretical estimates for similar rough surfaces. This confirms that the computational approach offers an alternative to wind-tunnel and field experiments in studying drag and drag partition. The model is then applied to studying drag partition over rough surfaces with various roughness configurations. It is shown that drag partition depends not only on the magnitude of the roughness frontal area but also on the sizes and arrangement of roughness elements, because (1) the pressure drag coefficient is sensitive to roughness-element dimensions and (2) the arragement of roughness elements lead to different interferences of turbulent wakes. The impact ofthe latter factor is not insignificant.  相似文献   

15.
16.
青藏高原东部土壤冻融过程中地表粗糙度的确定   总被引:4,自引:1,他引:3       下载免费PDF全文
利用黄河源区气候与环境综合观测研究站2006年10月—2007年4月的湍流观测资料和一种新的方法,计算了青藏高原东部玛曲地区土壤冻融过程中的地表粗糙度。结果表明:所用的计算粗糙度的方法是可行的,玛曲土壤未冻结阶段、冻结阶段和融化后阶段的地表粗糙度分别为3.23×10-3m,2.27×10-3m和1.92×10-3m,地表粗糙度呈逐渐减小的趋势。三阶段地表粗糙度有明显区别,以前将冬季前后的粗糙度取为定值的计算会导致一定的误差。  相似文献   

17.
地表粗糙度和零平面位移是2个重要的空气动力学参数,对于城市下垫面,粗糙元的形态非常复杂,空间分布上存在较大的非均匀性,如何确定城市下垫面地表粗糙度和零平面位移目前尚无最佳方案。概述了这2个参数适用于城市非均匀下垫面的参数化方法,包括风温观测方法和粗糙元形态学方法。探讨了各自在应用过程中存在的问题及进一步的研究工作,并且提出,通过数学模型的改进和卫星遥感技术的引入,粗糙元形态学方法会有更好的发展前景。  相似文献   

18.
Surface Flux Parameterization in the Tibetan Plateau   总被引:9,自引:1,他引:9  
This study investigates some basic aspects related to surface-flux parameterization in the Tibetan Plateau, based on the measurement at three sites. These sites are essentially flat and covered by very sparse and short grasses in the monsoon season. The main contributions include: (1) an optimization technique is proposed to estimate aerodynamic roughness length based on wind and temperature profiles. The approach is not sensitive to random measurement errors if the number of data samples is large enough. The optimized values reasonably vary with surface characteristics. (2) At the three sites, kB-1 (the logarithm of the ratio of aerodynamic roughness length to thermal roughness length) experiences seasonal and diurnal variations in addition to a dependence on surface types. The mean values for the individual sites vary over a range of 2.7 to 6.4 with large standard deviations. (3) A formula for estimatingthe value of kB-1 isproposed to account for the effect of seasonal variation of aerodynamic roughness length and diurnal variation of surface temperature. With the formula, the flux parameterization with surface temperature estimates sensible heat flux better than profile parameterization for all the sites.  相似文献   

19.
Aerodynamic roughness over an inhomogeneous ground surface   总被引:4,自引:0,他引:4  
The aerodynamic roughness parameter z 0 over inhomogeneous ground surfaces, such as cities, rural towns and so on, is determined by analyzing the wind data at AMeDAS observatories in the Tohoku and Kanto districts of Japan, by making use of Rossby number similarity theory. It is found that the aerodynamic roughness parameter is proportional to the average size of the roughness elements.A practical method of estimating the aerodynamic roughness parameter over an extensive area with various inhomogeneities is developed. In this method, the Digital National Land Information data bank is employed. As an example, the roughness parameter distribution around Tsukuba Academic City is presented.  相似文献   

20.
The roughness lengths for momentum and temperature are calculated using the profile method on amelting glacier surface. Data from a 5-level 9-m meteorological mastpositioned near the edge of Breidamerkurjökull, an outlet glacier of the Vatnajökull ice cap Iceland, are used for the calculations. The data are selected to avoid the presence of the katabatic wind speedmaximum which would otherwise alter the scaling laws of the surface layer. The surface roughness length for momentum is determined to be 1.0 mm, similar to other estimates made on flat melting ice surfaces. The surface roughness length for temperature is found to be in good agreement with previously proposed surface renewal theories for the observed roughness Reynolds number range of 30 * 70.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号