首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aerodynamic Parameters of a UK City Derived from Morphological Data   总被引:1,自引:1,他引:0  
Detailed three-dimensional building data and a morphometric model are used to estimate the aerodynamic roughness length z 0 and displacement height d over a major UK city (Leeds). Firstly, using an adaptive grid, the city is divided into neighbourhood regions that are each of a relatively consistent geometry throughout. Secondly, for each neighbourhood, a number of geometric parameters are calculated. Finally, these are used as input into a morphometric model that considers the influence of height variability to predict aerodynamic roughness length and displacement height. Predictions are compared with estimations made using standard tables of aerodynamic parameters. The comparison suggests that the accuracy of plan-area-density based tables is likely to be limited, and that height-based tables of aerodynamic parameters may be more accurate for UK cities. The displacement heights in the standard tables are shown to be lower than the current predictions. The importance of geometric details in determining z 0 and d is then explored. Height variability is observed to greatly increase the predicted values. However, building footprint shape only has a significant influence upon the predictions when height variability is not considered. Finally, we develop simple relations to quantify the influence of height variation upon predicted z 0 and d via the standard deviation of building heights. The difference in these predictions compared to the more complex approach highlights the importance of considering the specific shape of the building-height distributions. Collectively, these results suggest that to accurately predict aerodynamic parameters of real urban areas, height variability must be considered in detail, but it may be acceptable to make simple assumptions about building layout and footprint shape.  相似文献   

2.
3.
Summary In this paper the results of an urban measurement campaign are presented. The experiment took place from July 1995 to February 1996 in Basel, Switzerland. A total of more than 2000 undisturbed 30-minute runs of simultaneous measurements of the fluctuations of the wind vector u′, v′, w′ and the sonic temperature θ s ′ at three different heights (z=36, 50 and 76 m a.g.l.) are analysed with respect to the integral statistics and their spectral behaviour. Estimates of the zero plane displacement height d calculated by the temperature variance method yield a value of 22 m for the two lower levels, which corresponds to 0.92 h (the mean height of the roughness elements). At all three measurement heights the dimensionless standard deviation σ w /u * is systematically smaller than the Monin-Obukhov similarity function for the inertial sublayer, however, deviations are smaller compared to other urban turbulence studies. The σθ* values follow the inertial sublayer prediction very close for the two lowest levels, while at the uppermost level significant deviations are observed. Profiles of normalized velocity and temperature variances show a clear dependence on stability. The profile of friction velocity u * is similar to the profiles reported in other urban studies with a maximum around z/h=2.1. Spectral characteristics of the wind components in general show a clear dependence on stability and dimensionless measurement height z/h with a shift of the spectral peak to lower frequencies as thermal stability changes from stable to unstable conditions and as z/h decreases. Velocity spectra follow the −2/3 slope in the inertial subrange region and the ratios of spectral energy densities S w (f)/S u (f) approach the value of 4/3 required for local isotropy in the inertial subrange. Velocity spectra and spectral peaks fit best to the well established surface layer spectra from Kaimal et al. (1972) at the uppermost level at z/h=3.2. Received September 26, 1997 Revised February 15, 1998  相似文献   

4.
A common parametrization over snow-covered surfaces that are undergoing saltation is that the aerodynamic roughness length for wind speed (z 0) scales as au*2/g{\alpha u_\ast^2/g}, where u * is the friction velocity, g is the acceleration of gravity, and α is an empirical constant. Data analyses seem to support this scaling: many published plots of z 0 measured over snow demonstrate proportionality to u*2{u_\ast^2 }. In fact, I show similar plots here that are based on two large eddy-covariance datasets: one collected over snow-covered Arctic sea ice; another collected over snow-covered Antarctic sea ice. But in these and in most such plots from the literature, the independent variable, u *, was used to compute z 0 in the first place; the plots thus suffer from fictitious correlation that causes z 0 to unavoidably increase with u * without any intervening physics. For these two datasets, when I plot z 0 against u * derived from a bulk flux algorithm—and thus minimize the fictitious correlation—z 0 is independent of u * in the drifting snow region, u * ≥ 0.30 ms−1. I conclude that the relation z0 = au*2/g{z_0 = \alpha u_\ast^2/g} when snow is drifting is a fallacy fostered by analyses that suffer from fictitious correlation.  相似文献   

5.
A wind-tunnel experiment has been used to investigate momentum absorption by rough surfaces with sparse random and clustered distributions of roughness elements. An unusual (though longstanding) method was used to measure the boundary-layer depth δ and friction velocity u * and thence to infer the functional relationship z 0/h = f(λ) between the normalised roughness length z 0/ h and the roughness density λ (where z 0 is the roughness length and h the mean height of the roughness elements). The method for finding u * is based on fitting the velocity defect in the outer layer to a functional form for the dimensionless velocity-defect profile in a canonical zero-pressure-gradient boundary layer. For the conditions investigated here, involving boundary layers over sparse roughness with strong local heterogeneity, this velocity-defect-law method is found to be more robust than several alternative methods for finding u * (uw covariance, momentum integral and slope of the logarithmic velocity profile).The experimental results show that, (1) there is general agreement in the relationship z 0/h = f(λ) between the present experiment with random arrays and other wind-tunnel experiments with regular arrays; (2) the main effect of clustering is to increase the scatter in the z 0/h = f(λ) relationship, through increased local horizontal heterogeneity; (3) this scatter obscures any trend in the z 0/h = f(λ) relationship in response to clustering; and (4) the agreement between the body of wind-tunnel data (taken as a whole) and field data is good, though with scatter for which it is likely that a major contribution stems from local horizontal heterogeneity in the field.  相似文献   

6.
With observational data collected and interpreted by Crane et al. (1977), the adequacy of the O'Brien polynomial to represent the exchange profile of heat and pollution in a convective boundary layer is examined and a refinement suggested. Also, it is shown that the height of the surface layer, h=0.04 z i , developed by Blackadar and Tennekes (1968) for a neutrally stratified boundary layer (with z z =0.25u */f) appears to be equally valid for the convective boundary layer where z i , defined as the top of the mixed layer, is used.  相似文献   

7.
Wind speed was measured at a height of 1 cm above the ground and at several other heights in and above a canopy of tall fescue grass (Festuca arundinacea) using single hot-wire and triple hot-film anemometers. The plant area density in the canopy was concentrated close to the ground, with 75% of the plant area standing belowz=15 cm, wherez is height above the ground. The frequency distributions of horizontal wind speeds,s, were sharply skewed towards positive values at all measurement heights, but were most highly skewed near the ground where the coefficient of skewness ranged from 1.6 to 2.9. Above mid-canopy height, the frequency distribution ofs was described reasonably well by a Gumbel extreme value distribution. Average wind speed,S, decreased exponentially with depth into the canopy with an exponential scale length of abouth/2.8, whereh is the height of the canopy. Atz=1 cm, the value ofS was about 11% of the surface-layeru *. The standard deviation of the fluctuations of the vertical and horizontal components of the wind speed also decreased exponentially with depth inside the canopy with a scale length of abouth/2.5.Inside the canopy, the Eulerian integral time scales for the vertical ( w ) and horizontal ( u ) components of wind speed were about 0.1 s and 1.0 s, respectively, and were approximately constant with height. Above the canopy, these time scales increased sharply and, atz=2.25h, w and u were approximately 1.0 and 3.0s, respectively. Turbulence length scales in the vertical and downwind directions, u and w ·U, respectively, were approximately 1 cm for heights between 1 to 10 cm above the ground inside the canopy, while atz=2.25h, they were about 55 cm and 277 cm. Relatively quiescent periods (lulls) in the air close to the ground were interrupted frequently by gusts. The frequency of occurrence of gusts appears to be correlated with the value of the local shear near the top of the canopy.  相似文献   

8.
A theory is offered for the drag and heat transfer relations in the statistically steady, horizontally homogeneous, diabatic, barotropic planetary boundary layer. The boundary layer is divided into three regionsR 1,R 2, andR 3, in which the heights are of the order of magnitude ofz 0,L, andh, respectively, wherez 0 is the roughness length for either momentum or temperature,L is the Obukhov length, andh is the height of the planetary boundary layer. A matching procedure is used in the overlap zones of regionsR 1 andR 2 and of regionsR 2 andR 3, assuming thatz 0 L h. The analysis yields the three similarity functionsA(),B(), andC() of the stability parameter, = u */fL, where is von Kármán's constant,u * is the friction velocity at the ground andf is the Coriolis parameter. The results are in agreement with those previously found by Zilitinkevich (1975) for the unstable case, and differ from his results only by the addition of a universal constant for the stable case. Some recent data from atmospheric measurements lend support to the theory and permit the approximate evaluation of universal constants.  相似文献   

9.
A large-eddy simulation (LES) model, using the one-equation subgrid-scale (SGS) parametrization, was developed to study the flow and pollutant transport in and above urban street canyons. Three identical two-dimensional (2D) street canyons of unity aspect ratio, each consisting of a ground-level area source of constant pollutant concentration, are evenly aligned in a cross-flow in the streamwise direction x. The flow falls into the skimming flow regime. A larger computational domain is adopted to accurately resolve the turbulence above roof level and its influence on the flow characteristics in the street canyons. The LES calculated statistics of wind and pollutant transports agree well with other field, laboratory and modelling results available in the literature. The maximum wind velocity standard deviations σ i in the streamwise (σ u ), spanwise (σ v ) and vertical (σ w ) directions are located near the roof-level windward corners. Moreover, a second σ w peak is found at z ≈ 1.5h (h is the building height) over the street canyons. Normalizing σ i by the local friction velocity u *, it is found that σ u /u * ≈ 1.8, σ v /u * ≈ 1.3 and σ w /u * ≈ 1.25 exhibiting rather uniform values in the urban roughness sublayer. Quadrant analysis of the vertical momentum flux u′′w′′ shows that, while the inward and outward interactions are small, the sweeps and ejections dominate the momentum transport over the street canyons. In the x direction, the two-point correlations of velocity R v,x and R w,x drop to zero at a separation larger than h but R u,x (= 0.2) persists even at a separation of half the domain size. Partitioning the convective transfer coefficient Ω T of pollutant into its removal and re-entry components, an increasing pollutant re-entrainment from 26.3 to 43.3% in the x direction is revealed, suggesting the impact of background pollutant on the air quality in street canyons.  相似文献   

10.
The standard deviation of vertical two-point longitudinal velocity fluctuation differences is analyzed experimentally with eleven sets of turbulence measurements obtained at the NASA 150-m ground-winds tower site at Cape Kennedy, Florida. It is concluded that /u *0 is proportional to (fz/u *0)0.22, where the coefficient of proportionality is a function of fz/u *0 and u *0/fL 0. The quantities f and L0 denote the Coriolis parameter and the surface Monin-Obukhov stability length, respectively; u *0 is the surface friction velocity; z is the vertical distance between the two points over which the velocity difference is calculated; and zz is the mean height of the mid-point of the interval z above natural grade. The results of the analysis are valid for 20<-u *0/fL 0<2000.  相似文献   

11.
A Lagrangian statistical-trajectory model based on a Markov chain relation is used to investigate vertical dispersion from elevated sources into the neutral planetary boundary layer. The model is fully two-dimensional, in that both vertical and longitudinal velocity fluctuations, and their correlation, are simulated explicitly. The best observational information currently available is used to characterize the mean and turbulent structure of the neutral boundary layer. In particular, a realistic vertical profile of the Lagrangian integral time scale is proposed, based partly on a review of direct measurements and partly on a comparison of the model predictions with published diffusion data. The model predictions are shown to agree well with a variety of dispersion observations. The model is used to study vertical diffusion as a function of release height H, friction velocity u* and surface roughness z 0 for downwind distances up to 10 km from the source. The equivalent Gaussian dispersion parameter Σ z is shown to decrease slightly with an increase in H, and to increase with increases in z 0 or u*. It is demonstrated that relationships valid in a field of homogeneous turbulence can be applied to vertical dispersion in the atmosphere if the release occurs above the region of strongest gradients in the mean and turbulent parameters. Scaling in terms of the standard deviation in elevation angle of the wind at the release point leads to a universal curve which provides accurate estimates of Σ z over a wide range of values of H, z 0 and the meteorological parameters.  相似文献   

12.
The spray content in the surface boundary layer above an air—water interface was determined by a series of measurements at various feteches and wind speeds in a laboratory facility. The droplet flux density N(z) can be described in terms of the scaling flux density N* and von Karman constant K throguh the equation, N(z)/N* = −(1/K) ln(z/z0d) where z is height above the mean water level and z0d is the droplet boundary layer thickness. N* is given by a unique relationship in terms of the roughness Reynolds number u*σ/ν where σ is the root-mean-square surface displacement. Spray inception occurred for u* 0.3. The dominant mode of spray generation in the present and most other laboratory tests, as well as in available field data, appears to be bubble bursting.  相似文献   

13.
14.
The presence of a low-level, capping inversion layer will affect the height and structure of the planetary boundary layer (PBL). Results from models of varying levels of sophistication, including analytical, turbulent kinetic energy (TKE), second-order closure (SOC), large-eddy simulation (LES) and direct numerical simulation (DNS) models, are used to investigate this influence for the neutral, barotropic PBL. Predicted and observed profiles of stress and geostrophic departure components, and integral measures, such as the parameters of Rossby-number similarity theory, are compared for the KONTUR, Marine Stratocumulus, JASIN, Leipzig, Pre-Wangara and Upavon field experiments.Analytical models of the equilibrium value of inversion height zi, which depend on the surface friction velocity u*, and both the Coriolis parameter f and the free-flow Brunt-Väisälä frequency N, are found to give reasonable estimates of the PBL height. They also indicate that only the KONTUR and Marine Stratocumulus experiments were strongly influenced by N. More quantitative comparisons would require larger, more comprehensive datasets. The effects of the presence of a capping inversion on the profile structure were found to be insignificant for h* = |f|zi/u* > 0.15.The simple analytical model performed quite well over all values of h*; it predicted the profiles of the longitudinal stress component (in the direction of the surface stress) better than the lateral component. The more advanced models performed well for small values of h* (for flow over the sea), but systematically underestimated the cross-isobaric angle for flow over land. These models predicted the profiles of the lateral stress component better than the longitudinal component. The profiles of the analytical model agreed with those of the advanced models when the constant eddy viscosity of the outer layer was increased.Agreement with DNS was achieved by increasing the eddyviscosity of the analytical model by a factor of 5.Zilitinkevich and Esau(2002, Boundary-Layer Meteorology, 104, 371–379)suggest that the neutral, barotropic values of A and B of Rossby-numbersimilarity theory are not universal constants, but depend on the ratio N/|f|. The dependence for A and B is calculated using the analytical model and TKE models. Over the sea (h* 0.1; N/|f| 100, where we have used the Zilitinkevich-Esau relation to convert between h* and N/|f|) there is agreement between the model predictions and observations; however over land where the equilibrium boundary-layer height is greater (h* 0.35; N/|f| 10) the inconsistency between the advanced model predictions (TKE, SOC, LES, and DNS) and observations, as noted previously by Hess and Garratt, still exists. We attribute this disagreement to violations of the strict assumptions of steady, horizontally homogeneous, neutral, barotropic conditions implicit in the observations. At small values of zi and a strongly stable background stratification (h* 0.04; N/|f| 1000) both the TKE and analytical models predict that A and B depend significantly on h*, however observations are unavailable to confirm these predictions. Zilitinkevich and Esau call this case the `long-lived near-neutral PBL', and state that it is found in cold weather at high latitudes.  相似文献   

15.
Mean wind velocity profiles were measured by means of radio-windsondes over the Landes region in southwestern France, which consists primarily of pine forests with scattered villages and clearings with various crops. Analysis of neutral profiles indicated the existence of a logarithmic layer between approximately zd 0 = 67(±18)z 0 and 128(+-32)z 0 (z is the height above the ground, z 0 the surface roughness and d 0 the displacement height). The upper limit can also be given as zd 0 = 0.33 (±0.18)h, where h is the height of the bottom of the inversion. The profiles showed that the surface roughness of this terrain is around 1.2 m and the displacement height 6.0 m. Shear stresses derived from the profiles were in good agreement with those obtained just above the forest canopy at a nearby location with the eddy correlation method by a team from the Institute of Hydrology (Wallingford, England).  相似文献   

16.
Sodar observations from three nights of the HAPEX-MOBILHY experiment have been used to compute covariances between single measurements of the three velocity components. From these, estimates of a low frequency friction velocityu * are derived which show better correlation with observed values of the stable boundary layer (SBL) height,h, than directu *-measurements by an ultrasonic anemometer. On the contrary, interdiurnal variability ofh is better correlated with directu *-measurements. These findings should be mainly due to the problem of different spectral and spatial representativity of the twou *-values.  相似文献   

17.
We test a surface renewal model that is widely used over snow and ice surfaces to calculate the scalar roughness length (z s ), one of the key parameters in the bulk aerodynamic method. For the first time, the model is tested against observations that cover a wide range of aerodynamic roughness lengths (z 0). During the experiments, performed in the ablation areas of the Greenland ice sheet and the Vatnajökull ice cap in Iceland, the surface varied from smooth snow to very rough hummocky ice. Over relatively smooth snow and ice with z 0 below a threshold value of approximately 10?3 m, the model performs well and in accord with earlier studies. However, with growing hummock size, z 0 increases well above the threshold and the bulk aerodynamic flux becomes significantly smaller than the eddy-correlation flux (e.g. for z 0 = 0.01 m, the bulk aerodynamic flux is about 50% smaller). Apparently, the model severely underpredicts z s over hummocky ice. We argue that the surface renewal model does not account for the deep inhomogeneous roughness sublayer (RSL) that is generated by the hummocks. As a consequence, the homogeneous substrate ice grain cover becomes more efficiently ‘ventilated’. Calculations with an alternative model that includes the RSL and was adapted for use over hummocky ice, qualitatively confirms our observations. We suggest that, whenever exceedance of the threshold occurs (z 0  >  10?3 m, i.e., an ice surface covered with at least 0.3-m high hummocks), the following relation should be used to calculate scalar roughness lengths, ln (z s /z 0)  =  1.5  ? 0.2 ln (Re *)  ? 0.11(ln (Re *))2.  相似文献   

18.
Field data for the unstable, baroclinic, atmospheric boundary layer over land and over the sea are considered in the context of a general similarity theory of vertical heat transfer. The dependence of δθ/θ* upon logarithmic functions of h c z T and stability (through the similarity function C) is clearly demonstrated in the data. The combined data support the conventional formulation for the heat transfer coefficient δθ/θ* when,
  1. the surface scaling length is z T (« z 0), the height at which the surface temperature over land is obtained by extrapolation of the temperature profile
  2. the height scale is taken as the depth of convective mixing h c
  3. the temperature profile equivalent of the von Karman constant is taken as 0.41
  4. areal average, rather than single point, values of δθ are employed in strongly baroclinic conditions. No significant effect of baroclinity or the height scale ratio as proposed in the general theory is found. Variations in C about a linear regression relation against stability are most probably due to uncertainties in the areal surface temperature and to experimental errors in general temperature measurements.
  相似文献   

19.
Momentum and Heat Transfer over Urban-like Surfaces   总被引:2,自引:2,他引:0  
Momentum and heat transfer was examined for the urban-like surfaces used within the Comprehensive Outdoor Scale MOdel (COSMO) experiments. Simultaneous and comparative meteorological measurements were made over a pair of scale models with different block geometries. These data were analyzed to investigate the influence of height variations, obstacle elongation, and packing density, λ p , of blocks on the aerodynamic properties. In addition, the robustness of theoretical expressions of bulk transfer coefficients for momentum and heat with respect to geometric parameters was examined. Our analyses showed: (1) the theoretical framework for the bulk transfer coefficient for momentum, C m , and that for heat, C h , was applicable for homogeneous building arrays, (2) the sensitivity of C h to the surface geometry was smaller than that of C m , (3) the transfer coefficients were increased by variations of block heights, but not by elongation of blocks, (4) first-order approximations of C m and C h for an array of blocks with two different heights can be made by applying simple theoretical assumptions to include the effects of height variation, and (5) variations of block heights increased the momentum flux significantly, but caused little change in the sensible heat flux. This can be explained by the feedback mechanism of aerodynamic– thermal interaction; aerodynamic mixing decreased both the advective velocity and the vertical temperature gradient.  相似文献   

20.
Using the relationship between the bulk Richardson numberR z and the Obukhov stability parameterz/L (L is the Obukhov length), formally obtained from the flux-profile relationships, methods to estimatez/L are discussed. Generally,z/L can not be uniquely solved analytically from flux-profile relationships, and it may be defined using routine observations only by iteration. In this paper, relationships ofz/L in terms ofR z obtained semianalytically were corrected for variable aerodynamic roughnessz 0 and for aerodynamic-to-temperature roughness ratiosz 0/z T, using the flux-profile iteration procedure. Assuming the so-called log-linear profiles to be valid for the nearneutral and moderately stable region (z/L<1), a simple relationship is obtained. For the extension to strong stability, a simple series expansion, based on utilisation of specified universal functions, is derived.For the unstable region, a simple form based on utilisation of the Businger-Dyer type universal functions, is derived. The formulae yield good estimates for surfaces having an aerodynamic roughness of 10–5 to 10–1 m, and an aerodynamic-to-temperature roughness ratio ofz 0/z T=0.5 to 7.3. When applied to the universal functions, the formulae yield transfer coefficients and fluxes which are almost identical with those from the iteration procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号