首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A Direct Gravity Formula, polynomial in latitude, has been obtained from the series expansion of the closed gravity formula of Somigliana by a telescoping procedure. The use of the 7 coefficient formula gives a result as accurate as the closed expression. With 6 coefficients it gives an order of magnitude better accuracy than that of the widely used Chebyshev approximation and with 5 coefficients a result that is accurate to better than that of the conventional form of computing theoretical gravity. The derived approximation is not only simpler than other forms, but also at least 11 and 17 times faster on the CDC CYBER 74 computer than the Chebyshev approximation and the closed gravity formula respectively. Contribution from the Earth Physics Branch No 720.  相似文献   

2.
Recurrence relations for integrals of Associated Legendre functions   总被引:3,自引:2,他引:3  
Recurrence relations for the evaluation of the integrals of associated Legendre functions over an arbitrary interval within (0°, 90°) have been derived which yield sufficiently accurate results throughout the entire range of their possible applications. These recurrence relations have been used to compute integrals up to degree 100 and similar computations can be carried out without any difficulty up to a degree as high as the memory in a computer permits. The computed values have been tested with independent check formulae, also derived in this work; the corresponding relative errors never exceed 10−23 in magnitude. Contribution from the Earth Physics Branch No. 719  相似文献   

3.
GIS作为一门重要的空间信息技术,在越来越多的气象信息系统建设中发挥了重要作用。本文针对气象不同专题产品的图饰样式,做出了对图例、标题、图框等点线面GIS文件的编辑。保存的样式文件(XML)可在W曲上发布,并可生成配色配置文件(.XML)。使用MapGIS平台基础SDK与组件库,利用数据中心易搭建思想,将数据中心功能仓库中的各个组件按需要按类型组合成一个大的功能模块,多个功能模块组成系统的主体框架,并说明了后台配置管理系统的总体技术架构。在其基础之上实现空间地理信息数据可视化管理、配色方案管理、工作空间编辑、图例编辑、标题图框编辑等一系列桌面GIS应用。  相似文献   

4.
A spherical harmonic expansion of the gravity field up to degree and order 200 was carried out. Free air anomaly data over Canada (10×10 block averages) with a range of 211.1 mgal were used for testing. A low degree expansion (N=30) produced a map with a range of 63.6 mgal with contour patterns that could hardly be correlated with the original hand contoured map. A high degree expansion (N=200) on the other hand resulted in a map with a range of 199.8 mgal which quite faithfully reproduced the original including its local variations. Test computations verify that by monitoring the RMS values and the range of the expansion it is possible to arrive at an optimum degree of expansion for a given data set. It was also verified by the computations, that, since the computed expansions essentially have a zero value outside the domain of the input, it is possible to combine the results of separate non-overlapping expansions. Contribution of the Earth Physics Branch No. 900. Presented at the 1977 Spring Meeting, AGU, May 30–June 3, Washington, D.C.  相似文献   

5.
Abstract

Digital Earth's framework can be traced to evolutionary threads with historic foundations that fostered the fertile conceptual and technological incubation. These threads incorporate writings, such as those of the visionary engineering-genius, Buckminster Fuller, in conjunction with an array of space age developments in computers, internet and communications, satellites, and education. In 1998, when Vice President Al Gore articulated the Digital Earth Vision, he portrayed the vision based upon myriad technology factors for the intellectual foundation and sparked a worldwide phenomenon that fortuitously included the Chinese leadership's recognition and acceptance. The Beijing Declaration is recognised for its role promulgating the International Digital Earth Symposium series to promote better understanding of the impacts of Digital Earth technology and applications on behalf of all humankind. Combinations of industrial, academic, and government organisations have advanced the technological components necessary for implementing the Digital Earth Vision at a prodigious rate. Commercial leaders, such as Google, have accelerated the influence of large segments of society towards components of the Digital Earth Vision. However, challenges still remain regarding requisite collaboration on international standards for metadata, interoperability, and data formats for space and time that will affect Digital Earth implementation scenarios. Functional requirements for the model Digital Earth geobrowser remain to be fully articulated. The current paper presents an overview of the historical components, the key players on the international scene, the catalytic technological advances, and the societal response to the growth of the Digital Earth community.  相似文献   

6.
Gravity observations from superconducting gravimeters are used to observe loading effects from shallow-water tides on the Japanese east and west coasts. Non-linear third-diurnal and higher-frequency shallow-water tides are identified in the tide-gauge observations from these coastal areas. The most energetic constituents in the tide gauge observations are also seen in the gravity observations due to their loading effects on the deformation of the Earth. Even though the shallow-water tides at the Japanese east coast have an amplitude of only a few millimetres, they are still able to generate a loading signal at gravity sites located several hundred kilometres inland. In particular, the S3, S4 and S5 solar tides occur in both gravity and tide gauge observations. It is indicated that in other shelf regions with large shallow water tides, the shallow water loading signals account for a significant signal, which should be taken into account.Acknowledgement The authors would like to thank the Hydrographic and Oceanographic Department (Japan Coast Guard), Japan Meteorological Agency and Hokkaido Development Agency for access to the tide-gauge data. Also, the Global Geodynamic Project Information System and Data Center (GGP-ISDC) is acknowledged for providing the gravity data.  相似文献   

7.
ABSTRACT

Light detection and ranging (LiDAR) data are essential for scientific discoveries such as Earth and ecological sciences, environmental applications, and responding to natural disasters. While collecting LiDAR data over large areas is quite possible the subsequent processing steps typically involve large computational demands. Efficiently storing, managing, and processing LiDAR data are the prerequisite steps for enabling these LiDAR-based applications. However, handling LiDAR data poses grand geoprocessing challenges due to data and computational intensity. To tackle such challenges, we developed a general-purpose scalable framework coupled with a sophisticated data decomposition and parallelization strategy to efficiently handle ‘big’ LiDAR data collections. The contributions of this research were (1) a tile-based spatial index to manage big LiDAR data in the scalable and fault-tolerable Hadoop distributed file system, (2) two spatial decomposition techniques to enable efficient parallelization of different types of LiDAR processing tasks, and (3) by coupling existing LiDAR processing tools with Hadoop, a variety of LiDAR data processing tasks can be conducted in parallel in a highly scalable distributed computing environment using an online geoprocessing application. A proof-of-concept prototype is presented here to demonstrate the feasibility, performance, and scalability of the proposed framework.  相似文献   

8.
Abstract

With the proposition of the Digital Earth (DE) concept, Virtual Geographic Information System (VGIS) has started to play the role of a Digital Earth prototype system. Many core problems involved in VGIS, such as out-of-core management and interactive rendering of very large scale terrain and image data, have been well studied in the past decades. However, the jitter problem, a common problem in VGIS that often causes annoying visual artefacts and deteriorates the output image quality, draws little attention. In this paper, after an intensive analysis of the jitter problem, a comprehensive framework is proposed to address such a problem while accounting for the characteristics of different data types in VGIS, such as terrain or ocean mesh data, vector data and 3-D model data. Specifically, this framework provides an improved dynamic local coordinate system (DLCS) method for terrain or ocean mesh data. For vector data, the framework provides a simple and effective multiple local coordinate systems (MLCS) method. The framework provides a MLCS method for 3-D model data making full use of the existing local coordinate system of the model. The advantages of the proposed methods over current approaches are analysed and highlighted through case studies involving large GIS datasets.  相似文献   

9.
The fixed gravimetric boundary-value problem (FGBVP) represents an exterior oblique derivative problem for the Laplace equation. Terrestrial gravimetric measurements located by precise satellite positioning yield oblique derivative boundary conditions in the form of surface gravity disturbances. In this paper, we discuss the boundary element method (BEM) applied to the linearized FGBVP. In spite of previous BEM approaches in geodesy, we use the so-called direct BEM formulation, where a weak formulation is derived through the method of weighted residuals. The collocation technique with linear basis functions is applied for deriving the linear system of equations from the arising boundary integral equations. The nonstationary iterative biconjugate gradient stabilized method is used to solve the large-scale linear system of equations. The standard MPI (message passing interface) subroutines are implemented in order to perform parallel computations. The proposed approach gives a numerical solution at collocation points directly on the Earth’s surface (on a fixed boundary). Numerical experiments deal with (i) global gravity field modelling using synthetic data (surface gravity disturbances generated from a global geopotential model (GGM)) (ii) local gravity field modelling in Slovakia using observed gravity data. In order to extend computations, the memory requirements are reduced using elimination of the far-zone effects by incorporating GGM or a coarse global numerical solution obtained by BEM. Statistical characteristics of residuals between numerical solutions and GGM confirm the reliability of the approach and indicate accuracy of numerical solutions for the global models. A local refinement in Slovakia results in a local (national) quasigeoid model, which when compared with GPS-levelling data, does not make a large improvement on existing remove-restore-based models.  相似文献   

10.
The European Space Agency’s Gravity field and steady-state ocean circulation explorer mission (GOCE) was launched on 17 March 2009. As the first of the Earth Explorer family of satellites within the Agency’s Living Planet Programme, it is aiming at a better understanding of the Earth system. The mission objective of GOCE is the determination of the Earth’s gravity field and geoid with high accuracy and maximum spatial resolution. The geoid, combined with the de facto mean ocean surface derived from twenty-odd years of satellite radar altimetry, yields the global dynamic ocean topography. It serves ocean circulation and ocean transport studies and sea level research. GOCE geoid heights allow the conversion of global positioning system (GPS) heights to high precision heights above sea level. Gravity anomalies and also gravity gradients from GOCE are used for gravity-to-density inversion and in particular for studies of the Earth’s lithosphere and upper mantle. GOCE is the first-ever satellite to carry a gravitational gradiometer, and in order to achieve its challenging mission objectives the satellite embarks a number of world-first technologies. In essence the spacecraft together with its sensors can be regarded as a spaceborne gravimeter. In this work, we describe the mission and the way it is operated and exploited in order to make available the best-possible measurements of the Earth gravity field. The main lessons learned from the first 19 months in orbit are also provided, in as far as they affect the quality of the science data products and therefore are of specific interest for GOCE data users.  相似文献   

11.
Since the publication of the Earth gravitational model (EGM)96 considerable improvements in the observation techniques resulted in the development of new improved models. The improvements are due to the availability of data from dedicated gravity mapping missions (CHAMP, GRACE) and to the use of 5′ × 5′ terrestrial and altimetry derived gravity anomalies. It is expected that the use of new EGMs will further contribute to the improvement of the resolution and accuracy of the gravity and geoid modeling in continental and regional scale. To prove this numerically, three representative Earth gravitational models are used for the reduction of several kinds of data related to the gravity field in different places of the Earth. The results of the reduction are discussed regarding the corresponding covariance functions which might be used for modeling using the least squares collocation method. The contribution of the EIGEN-GL04C model in most cases is comparable to that of EGM96. However, the big difference is shown in the case of EGM2008, due not only to its quality but obviously to its high degree of expansion. Almost in all cases the variance and the correlation length of the covariance functions of data reduced to this model up to its maximum degree are only a few percentages of corresponding quantities of the same data reduced up to degree 360. Furthermore, the mean value and the standard deviation of the reduced gravity anomalies in extended areas of the Earth such as Australia, Arctic region, Scandinavia or the Canadian plains, vary between −1 and +1 and between 5 and 10 × 10−5 ms−2, respectively, reflecting the homogenization of the gravity field on a regional scale. This is very important in using least squares collocation for regional applications. However, the distance to the first zero-value was in several cases much longer than warranted by the high degree of the expansion. This is attributed to errors of medium wavelengths stemming from the lack of, e.g., high-quality data in some area.  相似文献   

12.
Least squares adjustment and collocation methods have in the last decade been the tool for extracting gravity field information from data obtained through space research techniques (satellite orbit tracking, altimeter observations, doppler determined positions), and when combining these data with data observed at the surface of the Earth. The mathematical framework for the two models is described and the models are compared. It is shown that the two methods only become equivalent in cases where the number of parameters are equal to the number of observations. It is pointed out that several arbitrary choices (of parameters, weights and norms) will have to be made before the methods can be applied, and that further investigations are needed in order to justify the specific choices. Presented at the European Workshop on Space Techniques for Solid Earth Physics, Oceanography, Navigation and Geodesy, (SONG 1978), Schloss Elmau, BRD, 1978.  相似文献   

13.
M. K. Paul 《Journal of Geodesy》1983,57(1-4):152-166
Recurrence relations for the truncation error coefficients of the extended Stokes function required in the computation of gravimetric geoidal heights at any elevation above the earth's surface have been derived. The computation of these coefficients generally involves a small fixed number of terms except at altitudes of2700 km or more when one of the terms involved has to be computed from an infinite series. To confirm the accuracy of the coefficients a verification formula has been devised which uses a series expansion of a piece-wise continuous function such that it is equal to the extended Stokes function over a given range but vanishes elsewhere. Contribution of the Earth Physics Branch #1053.  相似文献   

14.
《测量评论》2013,45(97):111-123
Abstract

The article describes work carried out by the authors on the Manchester Universal Digital Computer at Manchester University. The general characteristics of the computer are discussed. The requirements for traverse reduction for Ordnance Survey work are summarised, with the help of a specific example. The technique required to present the details of a traverse to a computer for reduction is then described, and some details of the operation of the programme are given. The article is concluded with some details of the time taken to carry out the reduction, and remarks about special features of computer design which would have proved advantageous for this work.  相似文献   

15.
国际重力卫星研究进展和我国将来卫星重力测量计划   总被引:12,自引:3,他引:9  
本文首先分别介绍了国际已经成功发射的专用地球重力测量卫星CHAMP、GRACE以及即将发射的GOCE、GRACE Follow-On和专用月球重力探测卫星GRAIL的研制机构、轨道参数、关键载荷、跟踪模式、测量原理、科学目标和技术特征;其次,阐述了当前相关学科对地球重力场测量精度的需求;最后,建议我国在将来实施的卫星重力测量计划中首选卫星跟踪卫星高低\低低模式,尽快开展轨道参数优化选取的定量系统研究论证和重力卫星系统的误差分析,依据匹配精度指标先期开展重力卫星各关键载荷的研制以及尽早启动卫星重力测量系统的虚拟仿真研究。  相似文献   

16.
ABSTRACT

The challenge of enabling syntactic and semantic interoperability for comprehensive and reproducible online processing of big Earth observation (EO) data is still unsolved. Supporting both types of interoperability is one of the requirements to efficiently extract valuable information from the large amount of available multi-temporal gridded data sets. The proposed system wraps world models, (semantic interoperability) into OGC Web Processing Services (syntactic interoperability) for semantic online analyses. World models describe spatio-temporal entities and their relationships in a formal way. The proposed system serves as enabler for (1) technical interoperability using a standardised interface to be used by all types of clients and (2) allowing experts from different domains to develop complex analyses together as collaborative effort. Users are connecting the world models online to the data, which are maintained in a centralised storage as 3D spatio-temporal data cubes. It allows also non-experts to extract valuable information from EO data because data management, low-level interactions or specific software issues can be ignored. We discuss the concept of the proposed system, provide a technical implementation example and describe three use cases for extracting changes from EO images and demonstrate the usability also for non-EO, gridded, multi-temporal data sets (CORINE land cover).  相似文献   

17.
Gravity recovery and climate experiment (GRACE)-derived temporal gravity variations can be resolved within the μgal (10?8 m/s 2) range, if we restrict the spatial resolution to a half-wavelength of about 1,500 km and the temporal resolution to 1 month. For independent validations, a comparison with ground gravity measurements is of fundamental interest. For this purpose, data from selected superconducting gravimeter (SG) stations forming the Global Geodynamics Project (GGP) network are used. For comparison, GRACE and SG data sets are reduced for the same known gravity effects due to Earth and ocean tides, pole tide and atmosphere. In contrast to GRACE, the SG also measures gravity changes due to load-induced height variations, whereas the satellite-derived models do not contain this effect. For a solid spherical harmonic decomposition of the gravity field, this load effect can be modelled using degree-dependent load Love numbers, and this effect is added to the satellite-derived models. After reduction of the known gravity effects from both data sets, the remaining part can mainly be assumed to represent mass changes in terrestrial water storage. Therefore, gravity variations derived from global hydrological models are applied to verify the SG and GRACE results. Conversely, the hydrology models can be checked by gravity variations determined from GRACE and SG observations. Such a comparison shows quite a good agreement between gravity variation derived from SG, GRACE and hydrology models, which lie within their estimated error limits for most of the studied SG locations. It is shown that the SG gravity variations (point measurements) are representative for a large area within the accuracy, if local gravity effects are removed. The individual discrepancies between SG, GRACE and hydrology models may give hints for further investigations of each data series.  相似文献   

18.
Jakob Flury 《Journal of Geodesy》2006,79(10-11):624-640
The GRACE (gravity recovery and climate experiment) and GOCE (gravity field and steady-state ocean circulation explorer) dedicated gravity satellite missions are expected to deliver the long-wavelength scales of the Earth’s gravity field with extreme precision. For many applications in Earth sciences, future research activities will have to focus on a similar precision on shorter scales not recovered by satellite missions. Here, we investigate the signal power of gravity anomalies at such short scales. We derive an average degree variance and power spectral density model for topography-reduced gravity anomalies (residual terrain model anomalies and de-trended refined Bouguer anomalies), which is valid for wavelengths between 0.7 and 100  km. The model is based on the analysis of gravity anomalies from 13 test regions in various geographical areas and geophysical settings, using various power spectrum computation approaches. The power of the derived average topography-reduced model is considerably lower than the Tscherning–Rapp free air anomaly model. The signal power of the individual test regions deviates from the obtained average model by less than a factor of 4 in terms of square-root power spectral amplitudes. Despite the topographic reduction, the highest signal power is found in mountainous areas and the lowest signal power in flat terrain. For the derived average power spectral model, a validation procedure is developed based on least-squares prediction tests. The validation shows that the model leads to a good prediction quality and realistic error measures. Therefore, for least-squares prediction, the model could replace the use of autocovariance functions derived from local or regional data.  相似文献   

19.
A new generation of Earth gravity field models called GGM02 are derived using approximately 14 months of data spanning from April 2002 to December 2003 from the Gravity Recovery And Climate Experiment (GRACE). Relative to the preceding generation, GGM01, there have been improvements to the data products, the gravity estimation methods and the background models. Based on the calibrated covariances, GGM02 (both the GRACE-only model GGM02S and the combination model GGM02C) represents an improvement greater than a factor of two over the previous GGM01 models. Error estimates indicate a cumulative error less than 1 cm geoid height to spherical harmonic degree 70, which can be said to have met the GRACE minimum mission goals. Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

20.
Advances in the development of Earth observation data acquisition systems have led to the continuously growing production of remote sensing datasets, for which timely analysis has become a major challenge. In this context, distributed computing technology can provide support for efficiently handling large amounts of data. Moreover, the use of distributed computing techniques, once restricted by the availability of physical computer clusters, is currently widespread due to the increasing offer of cloud computing infrastructure services. In this work, we introduce a cloud computing approach for object-based image analysis and classification of arbitrarily large remote sensing datasets. The approach is an original combination of different distributed methods which enables exploiting machine learning methods in the creation of classification models, through the use of a web-based notebook system. A prototype of the proposed approach was implemented with the methods available in the InterCloud system integrated with the Apache Zeppelin notebook system, for collaborative data analysis and visualization. In this implementation, the Apache Zeppelin system provided the means for using the scikit-learn Python machine learning library in the design of a classification model. In this work we also evaluated the approach with an object-based image land-cover classification of a GeoEye-1 scene, using resources from a commercial cloud computing infrastructure service provided. The obtained results showed the effectiveness of the approach in efficiently handling a large data volume in a scalable way, in terms of the number of allocated computing resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号