首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lake Agassiz water oxygen isotopic compositions inferred from sediment core organics and pore waters provide some additional insight into the paleohydrology of the Great Lakes and their drainage into the North Atlantic during the late glacial and early Holocene. Isotopically enriched Lake Agassiz water supports the hypothesis that high Huron Basin lake (Mattawa) phases, during the early Holocene (9600–9300 and 9100–8100 years BP) resulted from an influx of Lake Agassiz water and suggests that low lake (Stanley) phases (9800–9600, 9300–9100, 8100–7400 years BP) were influenced more by regional influxes of isotopically depleted glacial melt water. Eastward drainage of enriched early Lake Agassiz water supports an active Port Huron outlet between 11000 and 10500 years BP and also helps to explain the absence of an 18O depleted interval in North Atlantic foram records. This may be the result of a balance between the opposing isotopic effects of depleted Lake Agassiz water and lower sea surface temperatures on carbonate precipitation between 11000 and 10000 years BP.  相似文献   

2.
Water levels in the Lake Erie basin are inferred from glacial lake times to present. An era of early to middle Holocene lowstands is defined below outlets by a submerged paleo-beach, and truncated reflectors in glaciolacustrine sediment beneath a mud-covered wave-cut terrace. Also, the glacial clay surface above the paleo-shore level has elevated shear strength because of porewater drainage during subaerial exposure. Below the paleo-shore where exposure did not occur, clay strength remained normal. Sedimentation rates were reduced during the lowstands. The distortion of once-level shore zone indicators by differential glacial rebound was removed by computing original elevations of the indicators using an empirical model of rebound based on observations of upwarped former lake shorelines. Erie water-level history was inferred from a plot of the original elevations of lake-level constraints and outlets versus age. The lake history was validated by reference to ~83 water-level indicators, not used as constraints. During the deglaciation, lake-crossing moraines were likely eroded by fluvial drainage into low-level Lake Ypsilanti and a subsequent unnamed low lake to produce the Lorain Valley and Pennsylvania Channel. Once inflow from the upper Great Lakes basins was directed to Ottawa Valley about 10,400 (12,270 cal BP), Erie water levels descended in a dry, evaporative climate to a closed lowstand during which ostracode δ18O increased ~2‰ above present values. Lake level began to rise 6,000 to 7,000 (6,830 to 7,860 cal) BP in response to increased atmospheric moisture and later, to northern inflow as the Nipissing Transgression returned upper Great Lakes drainage to Lake Erie by about 5,200 (6,000 cal) BP. At that time, the lake overflowed the uplifted Lyell–Johnson Sill north (downstream) of the present Niagara Falls at higher-than-present levels. After recession of the Falls breached this sill about ~3,500 (~3,770 cal) BP, Lake Erie fell 3–4 m to its present Fort Erie–Buffalo Sill. The extended low-water phase with its isolated sub-basins could have restricted migration of aquatic fauna. The early to middle Holocene closed-basin response highlights the sensitivity of Lake Erie to climatic reductions in its water budget.  相似文献   

3.
Simulations (216) were undertaken to evaluate the impact of typical Lake Agassiz outbursts on the upper Great Lakes under plausible variations in lake surface areas and sill widths. Flows over sills out of lakes are modelled using the equation for a broad-crested weir, with the model time increment set to one day. The model was evaluated for Lake Agassiz outlet sill widths of 1, 4, and 10 km and with outbursts ranging from 100 000 m3 s–1 to 600 000 m3 s–1. The surface area of Lake Agassiz was evaluated for 182 000 km2 ±20%. The surface area of the upper Great Lakes were modelled as either Lake Algonquin (Superior, Huron and Michigan basins =200 000 km2) or Lake Minong (Superior basin 87 000 km2) with sill widths of 0.5, 1.5, and 3 km.Downstream peak discharge modelled at the outlet sill of the upper Great Lakes, was normally between 20 and 60% of the initial outburst, with a lagtime to peak usually between 80 and 280 days. Upper Great Lakes water level rises of between 2 and 20 m are calculated with rises to 36 m for some configurations. Rise magnitude is inversely related to the width of the outlet sills at both lake systems and to the surface area of the receiving lake.The modeling implies that measuring outflow from the upper Great Lakes, or water level rises, does not in itself determine peak or total outflow from Lake Agassiz unless the dimensions of the Lake Agassiz and upper Great Lakes outflow sills are also known.Lake level rises probably coincided on the upper Great Lakes with meltout from the winter freeze-up. Lake levels re-attain equilibrium values with respect to through flow within three years of an outburst. Substantial episodic lake level rises in the upper Great Lakes may have had severe impacts on the lake biota, for example via the affect on spawning grounds.  相似文献   

4.
A high water phase in the Lake Erie basin is identified from a variety of evidence for the period 11.0 ka to 10.5 ka. It is believed to correspond to the first Agassiz inflow to the upper Great Lakes (Main Lake Algonquin phase) when Agassiz waters discharged in both catastrophic and equilibrium modes to Lake Superior. After allowing for differential isostatic rebound, a computational model is used to estimate the lake levels in the Erie basin needed to generate Agassiz-equivalent discharges out of the basin into Lake Ontario. Computations suggest that Lake Tonawanda spillways would be re-activated by the high lake levels needed to sustain Agassiz-equivalent discharges. Existing published evidence from the Erie basin, Niagara River, and western New York (including 14C dates), is consistent with this interpretation. Additional evidence from the Niagara Peninsula (pollen spectra and geomorphology) supports the inference that extensive flooding of the southern Niagara Peninsula (Lake Wainfleet) occurred due to high water levels in the Erie basin. In the Niagara Peninsula, very shallow washover spillways would only operate when standard hydrologic variations of lake level in the Erie basin coincided with short term high levels driven by catastrophic inflows to the Great Lakes from Lake Agassiz. We support the view of Lewis & Anderson (1992) that a meltwater flux from Agassiz inflows reached Lake Erie.  相似文献   

5.
Analysis of a 3.5 m vibracore from the Olson buried forest bed in the southern Lake Michigan basin provides new paleolimnological data for the early Holocene. The core records a rise in lake level from the Chippewa low water phase toward the Nipissing high water phase. Deepening of the water level at the core site is suggested by a trend toward decreasing organic carbon content up core that is interpreted as a response to increasing distance between terrestrial debris sources and the core site.Published data from deep water cores from the southern Lake Michigan basin suggest there had been an inflow of isotopically light water from glacial Lake Agassiz into the southern basin between 10.5-11 ka (A1 event). The data also indicate a second flood of isotopically light water between 8-9 ka (A2 event).Three new 14C dates from the Olson site core suggest that most of the sediment was deposited between 8.45 ka and 8.2 ka, an interval roughly coeval with the second pulse of 18O-depleted water (A2) from Lake Agassiz into the southern basin. Oxygen isotope ratio analysis of shell aragonite from the gastropods Probythinella lacustris and Marstonia deceptashows increasingly negative values up core. This trend in18O values suggests that 18O - depleted water entered the southern basin about 8.4 ka. The Olson site core thus provides a chronology of events in the southern Lake Michigan basin associated with the draining of glacial Lake Agassiz.  相似文献   

6.
The evolution of the early Great Lakes was driven by changing ice sheet geometry, meltwater influx, variable climate, and isostatic rebound. Unfortunately none of these factors are fully understood. Sediment cores from Fenton Lake and other sites in the Lake Superior basin have been used to document constantly falling water levels in glacial Lake Minong between 9,000 and 10,600 cal (8.1–9.5 ka) BP. Over three meters of previously unrecovered sediment from Fenton Lake detail a more complex lake level history than formerly realized, and consists of an early regression, transgression, and final regression. The initial regression is documented by a transition from gray, clayey silt to black sapropelic silt. The transgression is recorded by an abrupt return to gray sand and silt, and dates between 9,000 and 9,500 cal (8.1–8.6 ka) BP. The transgression could be the result of increased discharge from Lake Agassiz overflow or the Laurentide Ice Sheet, and hydraulic damming at the Lake Minong outlet. Alternatively ice advance in northern Ontario may have blocked an unrecognized low level northern outlet to glacial Lake Ojibway, which switched Lake Minong overflow back to the Lake Huron basin and raised lake levels. Multiple sites in the Lake Huron and Michigan basins suggest increased meltwater discharges occurred around the time of the transgression in Lake Minong, suggesting a possible linkage. The final regression in Fenton Lake is documented by a return to black sapropelic silt, which coincides with varve cessation in the Superior basin when Lake Agassiz overflow and glacial meltwater was diverted to glacial Lake Ojibway in northern Ontario.  相似文献   

7.
J.L. Hough in 1962 recognized an erosional unconformity in the upper section of early postglacial lake sediments in northwestern Lake Huron. Low-level Lake Stanley was defined at 70 m below present water surface on the basis of this observation, and was inferred to follow the Main Algonquin highstand and Post-Algonquin lake phases about 10 14C ka, a seminal contribution to the understanding of Great Lakes history. Lake Stanley was thought to have overflowed from the Huron basin through the Georgian Bay basin and the glacio-isostatically depressed North Bay outlet to Ottawa and St. Lawrence rivers. For this overflow to have occurred, Hough assumed that post-Algonquin glacial rebound was delayed until after the Lake Stanley phase. A re-examination of sediment stratigraphy in northwestern Lake Huron using seismic reflection and new core data corroborates the sedimentological evidence of Hough’s Stanley unconformity, but not its inferred chronology or the level of the associated lowstand. Erosion of previously deposited sediment, causing the gap in the sediment sequence down to 70 m present depth, is attributed to wave erosion in the shoreface of the Lake Stanley lowstand. Allowing for non-deposition of muddy sediment in the upper 20 m approximately of water depth as occurs in the present Great Lakes, the inferred water level of the Stanley lowstand is repositioned at 50 m below present in northwestern Lake Huron. The age of this lowstand is about 7.9 ± 0.314C ka, determined from the inferred 14C age of the unconformity by radiocarbon-dated geomagnetic secular variation in six new cores. This relatively young age shows that the lowstand defined by Hough’s Stanley unconformity is the late Lake Stanley phase of the northern Huron basin, youngest of three lowstands following the Algonquin lake phases. Reconstruction of uplift histories for lake level and outlets shows that late Lake Stanley was about 25–30 m below the North Bay outlet, and about 10 m below the sill of the Huron basin. The late Stanley lowstand was hydrologically closed, consistent with independent evidence for dry regional climate at this time. A similar analysis of the Chippewa unconformity shows that the Lake Michigan basin also hosted a hydrologically closed lowstand, late Lake Chippewa. This phase of closed lowstands is new to the geological history of the Great Lakes. This is the ninth in a series of ten papers published in this special issue of Journal of Paleolimnology. These papers were presented at the 47th Annual Meeting of the International Association for Great Lakes Research (2004), held at the University of Waterloo, Waterloo, Ontario, Canada. P.F. Karrow and C.F.M Lewis were guest editors of this special issue.  相似文献   

8.
New stratigraphic evidence from the Rossendale area, Manitoba, Canada, provides insight into the early postglacial evolution of the southeastern Assiniboine Delta. In this region, much of the upper 13+ m of sediment accumulation is characterized by multiple cycles of sandy rhythmites interbedded with massive to laminated silt. These sediments were deposited rapidly by traction or turbidity currents and record the construction of the Assiniboine fan-delta during the deep-water Lockhart Phase of glacial Lake Agassiz (>10.8 14C ka BP). Shortly before ∼10 14C ka BP, fluvial incision into deltaic deposits occurred locally at the Rossendale Gully site in response to the regression of glacial Lake Agassiz during the Moorhead Phase. Plant macrofossils deposited in the gully by 10 14C ka BP provide the first information on early postglacial plant colonization of the distal Assiniboine delta. These data suggest initial establishment of Scorpidium scorpioides, Potamogeton spp., Scirpus spp., and other wetland plants, followed by colonization of uplands by a Picea-Populus assemblage. Importantly, because the gully is located in a protected depression behind the Campbell beach, evidence of water table rise from aquatic macrophytes suggests that glacial Lake Agassiz transgressed to the Campbell level during the early Emerson Phase (∼10 14C ka BP). Furthermore, no evidence exists for a post-Lockhart rise in Lake Agassiz above the Upper Campbell beach. If Agassiz stood at the Campbell level during the early Emerson Phase, then drainage through the southern outlet may have been possible at this time. This scenario, if true, may suggest that the northwestern outlet was temporarily closed by a glacial advance shortly before 10 14C ka BP. This is the first in a series of ten papers published in this special issue of Journal of Paleolimnology. These papers were presented at the 47th Annual Meeting of the International Association for Great Lakes Research (2004), held at the University of Waterloo, Waterloo, Ontario, Canada. P.F. Karrow and C.F.M. Lewis were guest editors of this special issue  相似文献   

9.
Serpent River Bog lies north of North Channel, 10 m above Lake Huron and 15 m below the Nipissing Great Lake level. A 2.3 m Holocene sequence contains distinct alternating beds of inorganic clastic clay and organic peat that are interpreted as evidence of successive inundation and isolation by highstands and lowstands of the large Huron-Basin lake. Lowstand phases are confirmed by the presence of shallow-water pollen and plant macrofossil remains in peat units. Twelve 14C dates on peat, wood and plant macrofossils combined with previously published 14C ages of lake-level indicators confirm much of the known early Holocene lake-level history with one notable exception. A new Late Mattawa highstand (8,390 [9,400 cal]–8,220 [9,200 cal] BP) evidenced by a sticky blue-grey clay bed is tied to outburst floods of glacial Lake Minong during erosion of the Nadoway drift barrier in the eastern Lake Superior basin. A subsequent Late Mattawa highstand (8,110 [9,040 cal]–8,060 [8,970 cal] BP) is attributed to enhanced meltwater inflows that first had deposited thick varves throughout Superior Basin. Inundation by the Nadoway floods and possibly the last Mattawa flood were likely responsible for termination of the Olson Forest (southern Lake Michigan). A pollen diagram supports the recognized progression of Holocene vegetation, and defines a subzone implying a very dry, cool climate about 7.8–7.5 (8.6–8.3 cal) ka BP based on the Alnus crispa profile during the Late Stanley lowstand. A new date of 9,470 ± 25 (10,680–10,750 cal) BP on basal peat over lacustrine clay at Espanola West Bog supports the previous interpretation of the Early Mattawa highstand at ca. 9,500 (10,740 cal) BP. The organic and clastic sediment units at these two bogs are correlated with other records showing coherent evidence of Holocene repeated inundation and isolation around northern Lake Huron. Taken together the previous and new lake-level data suggest that the Huron and Georgian basin lakes were mainly closed lowstands throughout early Holocene time except for short-lived highstands. Three of the lowstands were exceptionally low, and likely caused three episodes of offshore sediment erosion which had been previously identified as seismo-stratigraphic sequence boundaries.  相似文献   

10.
Lake Algonquin, the largest glacial lake of the Great Lakes area, ended prior to 10,000 years BP by drainage to the Ottawa Valley as the North Bay outlet was deglaciated. At that time, the outlet area was isostatically downwarped more than 100 m; resulting low water, river-linked lakes Chippewa, Stanley, and Hough, lowstands in the basins of lakes Michigan, Huron, and Georgian Bay respectively, were much below present lake level. While water levels were low, about half of the present lake area was dry land. The land above the lowstands was dissected by streams and became forested. Uplift of the North Bay outlet between 10,000 and 5,000 years BP raised lake level to above the present (the Nipissing transgression), submerging the forest and valley system. Submerged stumps from those forests have often been encountered on the present lake floor; some stumps have been dated. Four sites in Ontario (Parkhill, Owen Sound, St. Joseph Island, Meaford) provide on-land evidence of pre-Nipissing drainage and valley formation. Radiocarbon ages of valley fill organic materials range from 7,310 to 5,410 years BP. At three sites, present drainage is known to be displaced from the pre-Nipissing drainage. Geophysical methods (EM, GPR, resistivity) have been used to refine valley location and morphology at Parkhill and Meaford. There is the potential of tracing the valleys down slope to the low-water shorelines with shipboard geophysics, with implications for archaeology, hydrology and hydrogeology, paleogeography, and Great Lakes history. This is the eighth in a series of ten papers published in this special issue of Journal of Paleolimnology. These papers were presented at the 47th Annual Meeting of the International Association for Great Lakes Research (2004), held at the University of Waterloo, Waterloo, Ontario, Canada. P.F. Karrow and C.F.M. Lewis were guest editors of this special issue.  相似文献   

11.
Sediments retrieved from a long core on the floor of glacial Lake Assiniboine, Saskatchewan, expose 106 couplets, consisting of thick, light coloured, silt-rich beds and thin, dark, clay-rich beds. The couplets contain sharp lower and upper contacts of the silt bed, silty and clayey laminations within both the silt and clay beds, and ice-rafted debris in the silt beds, which are features characteristic of glacial varves.Seasonal variations in runoff are reflected in grain size profiles of individual silt beds in the varves. Mean grain size maxima in the lower portion of the silt bed suggest that snow accumulation during the previous winter had been substantial and that a warm spring combined with a rapid melting rate generated significant volumes of nival meltwater runoff. Coarse laminae higher in the silty part of the couplet imply that substantial meltwater inflow was produced by summer melting of glacier ice.Vertical trends in clay bed thicknesses, silt bed thicknesses, and total couplet thicknesses were strongly influenced by the proximity of meltwater inflow channels and lake depth. These interpretations, and correlation of the core to varve exposures at the surface, formed the framework for a paleohydrological reconstruction. Close to 11,000 BP, ice dammed the outlet of glacial Lake Assiniboine and the water depth rose about 2 m yr–1. Eventually the lake became deep enough for couplets to form. Varve years 1–40 contain thick clay beds, silt beds, and couplets as a result of the proximal inflow of meltwater. A decline in silt bed and couplet thicknesses from varve years 41–85 occurred in response to ice retreat and more distal inflow. Varve deposition ceased in the shallow part of the basin probably because underflow currents from the distal source were redirected. Varve years 86–106 are distinguished by an increase in silt bed and couplet thicknesses and a decrease in clay bed thickness caused by a reduction in water depth and a return to proximal inflow. Varved sedimentation terminated when Lake Assiniboine drained through the Assiniboine valley to Lake Agassiz.  相似文献   

12.
Over the last 12600 years, lake levels in the eastern Lake Erie basin have fluctuated dramatically, causing major changes in drainage patterns, flooding and draining ephemeral Lake Wainfleet several times and widening and narrowing the Niagara Gorge as the erosive effects of Niagara Falls waxed and waned. The control sill for Lake Erie levels was at first the Fort Erie/Buffalo sill, before the Lyell/Johnson sill in Niagara Falls took over due to isostatic rebound. This sill, in time, was eventually eroded by the recession of Niagara Falls and the Fort Erie/Buffalo sill regained control. The environmental picture is complicated by catastrophic outbursts from glacial Lake Agassiz and Lake Barlow-Ojibway, changes in outlet routes, isostatic rebound and climatic changes over the Great Lakes basins. Today, the flow of water into Lake Erie from the streams and rivers surrounding it only accounts for about 13% of the flow out of it, therefore, the importance of flow from the Upper Great Lakes, specifically the flow from Lake Huron, has a great effect on Lake Erie levels. While the changing control sills, Lyell/Johnson and Buffalo/Fort Erie would affect Lake Erie levels, overall they are mostly input driven by the amount of waters received from the Upper Great Lakes. Since Lake Erie's water level changes are so closely tied to Lake Huron's water level changes we have decided to use names assigned to Lake Huron such as the two Mattawa highstands and three Stanley lowstands rather than inflict a whole new set of names on the public. While the duration of each high and lowstand in Erie and Huron may not always be the same, they always happen within the same time frame. The datum elevations used for Lake Huron (175.8 m) and Lake Erie (173.3 m) are historically recorded averages. The Lake Erie levels proposed in this paper reflect Lake Hurons effects on Lake Erie and the levels occuring at the eastern end of the Erie Basin throughout the last 12600 years. All dates in this paper are uncorrected 14 C dates unless the date was obtained from shells, then the date has been corrected for hard-water effects. Also, all heights are given as modern day elevations and are not adjusted for isostatic rebound.  相似文献   

13.
Cockburn Island, Ontario (45°55′ N, 83°20′ W), holds at least six sets of elevated lake bluffs, scarps and bar deposits that mark distinctive water planes above the Nipissing Great Lakes water plane (∼198 m). These relict shoreline features occur at elevations that correspond closely with the elevations of others at nearby St. Joseph Island and in eastern upper Michigan. Together, the elevations and relative locations of steep relict bluffs suggest a proto-Cockburn Island once interrupted the surface of proglacial Lake Algonquin. The islet appears to have emerged and grown through a period of uplift and a sequence of lowering water levels. The highest relict shoreline (280.2 m) is correlated with the Main phase of Lake Algonquin. Lower shorelines at Cockburn Island cannot be correlated consistently, so additional work is required. This is the seventh in a series of ten papers published in this special issue of Journal of Paleolimnology. These papers were presented at the 47th Annual Meeting of the International Association for Great Lakes Research (2004), held at the University of Waterloo, Waterloo, Ontario, Canada. P.F. Karrow and C.F.M. Lewis were guest editors of this special issue.  相似文献   

14.
Sedimentological parameters and stable O- and C-isotopic composition of marl and ostracode calcite selected from a 17.7-m-long core from the 8-m-deep center of Pickerel Lake, northeastern South Dakota, provide one of the longest (ca. 12ky) paleoenvironmental records from the northern Great Plains. The late Glacial to early Holocene climate in the northern Great Plains was characterized by changes from cold and wet to cold and dry, and back to cold and wet conditions. These climatic changes were controlled by fluctuations in the positions of the Laurentide ice sheet and the extent of glacial Lake Agassiz. We speculate that the cold and dry phase may correspond to the Younger Dryas event. A salinity maximum was reached between 10.3 and 9.5 ka, after which Pickerel Lake shifted from a system controlled by atmospheric changes to a system controlled by groundwater seepage that might have been initiated by the final withdrawal of Glacial Lake Agassiz. A prairie lake was established at approximately 8.7 ka, and lasted until about 2.2 ka. During this mid-Holocene prairie period, drier conditions than today prevailed, interrupted by periods of increased moisture at about 8, 4, and 2.2 ka. Prairie conditions were more likely dry and cool rather than dry and warm. The last 2.2 ka are characterized by higher climatic variability with 400-yr aridity cycles including the Medieval Warm Period and the Little Ice Age.Although the signal of changing atmospheric circulation is overprinted by fluctuations in the positions of the ice sheet and glacial Lake Agassiz during the late Glacial-Holocene transition, a combination of strong zonal circulation and strong monsoons induced by the presence of the ice sheet and high insolation may have provided mechanisms for increased precipitation. Zonal flow introducing dry Pacific air became more important during the prairie period but seems to have been interrupted by short periods of stronger meridional circulation with intrusions of moist air from the Gulf of Mexico. More frequent switching between periods of zonal and meridional circulation seem to be responsible for increased climatic variability during the last 2.2 ka.  相似文献   

15.
Sub-bottom profiling was conducted at eight sub-basins within the lower French River area, Ontario, to investigate deposits preserved within the ancient North Bay outlet. Ten cores were collected that targeted the four depositional acoustic facies identified in the sub-bottom profiling records. The rhythmically laminated/bedded glaciolacustrine deposits of facies I are interpreted to have aggraded within glacial Lake Algonquin and its associated recessional lakes that persisted between 13,000 and 11,300 cal BP (~11,100 and 9,900 BP). The majority of the facies II, III and IV lacustrine deposits accumulated between about 9,500 cal BP (~8,500 BP) and the mid-Holocene, based on radiocarbon-dated organic materials. These deposits represent sedimentation within a ‘large’ lake during the late portion of the Mattawa-Stanley phase, and the Nipissing transgression, Nipissing Great Lakes and post-Nipissing recession phases of lake levels. Two sets of organic-rich sand beds are preserved within facies II deposits and reveal that the large lake lacustrine depositional environment was interrupted during the late Mattawa-Stanley phase between 9,500–9,300 and 9,000–8,400 cal BP (~8,500–8,300 and ~8,000–7,600 BP), when the water surface of Lake Hough fell below the outlet threshold and the lake basin became hydrologically closed. Pre-9,500 cal BP (~8,500 BP), the early and middle portions of the Mattawa-Stanley phase were dominated by erosion, as reflected by an unconformity at the base of facies II that occurs widely in the sub-basins and the general lack of preserved deposits for these intervals in the cores. This erosion is attributed to wave action and fluvial scouring within the outlet mouth during the early and mid-Stanley-Hough low stages and relates specifically to the period when the flowing portion of the North Bay outlet was situated over the lower French River area. This study reveals that the majority of the post-glacial deposits accumulated after the outlet threshold had shifted permanently eastwards and the lower French River area was inundated under the multiple phases of the large lake occupying the Nipissing Lowlands and Georgian-Huron basins, extending well into the mid-Holocene. The occurrence of deposits marking two closed-basin intervals during the late Stanley-Hough stage are well preserved locally within the lacustrine depositional sequence, but identifying earlier closed-basin intervals from the French River stratigraphy is hindered by the lack of preserved pre-9,500 cal BP (~8,500 BP) post-glacial deposits.  相似文献   

16.
We present a study on the impact of litho-structural setting and neotectonic activity on meso- and macro-scale relief production in Alpine areas. The topography of the high alpine Triglav Lakes Valley, NW Slovenia, was studied by means of detailed mapping and stratigraphic study of the valley. The Triglav Lakes Valley is characterised by a generally asymmetric transverse (E–W) profile: a very steep eastern slope, a relatively flat valley and a relatively gentle western slope. On the transverse profile the valley floor is essentially flat, gently dipping towards the east. In the longitudinal cross-section, however, the valley floor is marked by sharply-defined fault blocks extending in a W–E to NW–SE direction. Additionally, the highest block (elevations  2100 m) is in the northern part of the valley, the lowest (elevations  1600 m) in the southern part of the valley. Our research shows that the Triglav Lakes Valley directly represents the topographic expression of Paleogene–Neogene thrusting and faulting, having recorded the following geomorphologic evolutionary stages: 1. an Oligocene to early Miocene W-vergent thrusting phase, with steep W-facing slopes of the eastern part of the valley directly representing the thrusting front; and 2. a Neogene-to-present strike–slip faulting in NNE–SSW direction with two bifurcating right-lateral strike–slip systems. We show that the Triglav Lakes Valley almost perfectly mimics the wedge-shaped damage zone located between these faults.  相似文献   

17.
Cosmogenic surface exposure ages of glacial boulders deposited in ice-marginal Lake Musselshell suggest that the lake existed between 20 and 11.5 ka during the Late Wisconsin glacial stage (MIS 2), rather than during the Late Illinoian stage (MIS 6) as traditionally thought. The altitude of the highest ice-rafted boulders and the lowest passes on the modern divide indicate that glacial lake water in the Musselshell River basin reached at least 920–930 m above sea level and generally remained below 940 m. Exposures of rhythmically bedded silt and fine sand indicate that Lake Musselshell is best described as a slackwater system, in which the ice-dammed Missouri and Musselshell Rivers rose and fell progressively throughout the existence of the lake rather than establishing a lake surface with a stable elevation. The absence of varves, deltas and shorelines also implies an unstable lake. The changing volume of the lake implies that the Laurentide ice sheet was not stable at its southernmost position in central Montana. A continuous sequence of alternating slackwater lake sediment and lacustrine sheetflood deposits indicates that at least three advances of the Laurentide ice sheet occurred in central Montana between 20 and 11.5 ka. Between each advance, it appears that Lake Musselshell drained to the north and formed two outlet channels that are now occupied by extremely underfit streams. A third outlet formed when the water in Lake Musselshell fully breached the Larb Hills, resulting in the final drainage of the lake. The channel through the Larb Hills is now occupied by the Missouri River, implying that the present Missouri River channel east of the Musselshell River confluence was not created until the Late Wisconsin, possibly as late as 11.5 ka.  相似文献   

18.
《自然地理学》2013,34(3):233-244
Relatively low (<25 m) parabolic dunes and dune ridges occur inland of massive parabolic dunes in many dune complexes along the southeastern shore of Lake Michigan. The major study of these backdunes (Tagues, 1946) concluded, based on field criteria, that they were older than the massive parabolic dunes and originate at the Calumet and Algonquin stages of ancestral Lake Michigan (~14-10 ka). Younger ages are indicated by this study in which Optically Stimulated Luminescense (OSL) ages were obtained from the crest of three backdunes southwest of Holland, Michigan. All ages are within statistical error of each other and indicate dune stabilization at ~4 ka. Similarities in surface soil development throughout the backdunes support the conclusion that they all stabilized at about the same time. Radiocarbon ages from paleosols indicate that the massive parabolic dunes were active at 4 ka and that this activity persisted after the back dunes had stabilized. In the Holland area, dune growth and migration occurred in a broad zone, including both back and massive parabolic dunes, immediately after the rise to and drop from Nipissing II high lake levels but became confined to a narrower zone closer to shore after ~4 ka.  相似文献   

19.
Piston cores from deep-water bottom deposits in Lake Ontario contain shallow-water sediments such as, shell-rich sand and silt, marl, gyttja, and formerly exposed shore deposits including woody detritus, peat, sand and gravel, that are indicative of past periods of significantly lower water levels. These and other water-level indicators such as changes in rates of sedimentation, mollusc shells, pollen, and plant macrofossils were integrated to derive a new water-level history for Lake Ontario basin using an empirical model of isostatic adjustment for the Great Lakes basin to restore dated remnants of former lake levels to their original elevations. The earliest dated low-level feature is the Grimsby-Oakville bar which was constructed in the western end of the lake during a near stillstand at 11–10.4 (12.9–12.3 cal) ka BP when Early Lake Ontario was confluent with the Champlain Sea. Rising Lake Ontario basin outlet sills, a consequence of differential isostatic rebound, severed the connection with Champlain Sea and, in combination with the switch of inflowing Lake Algonquin drainage northward to Ottawa River valley via outlets near North Bay and an early Holocene dry climate with enhanced evaporation, forced Lake Ontario into a basin-wide lowstand between 10.4 and 7.5 (12.3 and 8.3 cal) ka BP. During this time, Lake Ontario operated as a closed basin with no outlets, and sites such as Hamilton Harbour, Bay of Quinte, Henderson Harbor, and a site near Amherst Island existed as small isolated basins above the main lake characterized by shallow-water, lagoonal or marsh deposits and fossils indicative of littoral habitats and newly exposed mudflats. Rising lake levels resulting from increased atmospheric water supply brought Lake Ontario above the outlet sills into an open, overflowing state ending the closed phase of the lake by ~7.5 (8.3 cal) ka BP. Lake levels continued to rise steadily above the Thousand Islands sill through mid-to-late Holocene time culminating at the level of modern Lake Ontario. The early and middle Holocene lake-level changes are supported by temperature and precipitation trends derived from pollen-climate transfer functions applied to Roblin Lake on the north side of Lake Ontario.  相似文献   

20.
During the last retreat of the Laurentide Ice Sheet in North America, many proglacial lakes formed as continental drainage was impounded against the southern and western ice margin. Lake Agassiz was the largest of these lakes. The bathymetry of Lake Agassiz at the Herman and Upper Campbell beach levels – formed at about 11.5–11.0 ka and 9.9–9.5 ka, respectively – was computer modelled in this study by first collecting data for the isostatically-deformed paleowater planes of the two lake levels (derived from isobase lines constructed from beach elevations), and then subtracting these from the modern topography of the former lake floor. Pixels with dimensions of 1/30 × 1/30 of a degree were used in the model. Using these data, the area and volume of the lake were also calculated: at the Herman level these were 152 500 km2 and 13 100 km3 respectively; at the Upper Campbell level these were 350 400 km2 and 38 700 km3. Contour maps showing the paleobathymetry of both periods in the lake's history were also constructed. Determining the paleobathymetry and volume of Lake Agassiz is an important step in understanding the impact that the lake had on its surrounding environment and on the rivers, lakes, and oceans into which it flowed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号