首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Currently, the GNSS computing modes are of two classes: network-based data processing and user receiver-based processing. A GNSS reference receiver station essentially contributes raw measurement data in either the RINEX file format or as real-time data streams in the RTCM format. Very little computation is carried out by the reference station. The existing network-based processing modes, regardless of whether they are executed in real-time or post-processed modes, are centralised or sequential. This paper describes a distributed GNSS computing framework that incorporates three GNSS modes: reference station-based, user receiver-based and network-based data processing. Raw data streams from each GNSS reference receiver station are processed in a distributed manner, i.e., either at the station itself or at a hosting data server/processor, to generate station-based solutions, or reference receiver-specific parameters. These may include precise receiver clock, zenith tropospheric delay, differential code biases, ambiguity parameters, ionospheric delays, as well as line-of-sight information such as azimuth and elevation angles. Covariance information for estimated parameters may also be optionally provided. In such a mode the nearby precise point positioning (PPP) or real-time kinematic (RTK) users can directly use the corrections from all or some of the stations for real-time precise positioning via a data server. At the user receiver, PPP and RTK techniques are unified under the same observation models, and the distinction is how the user receiver software deals with corrections from the reference station solutions and the ambiguity estimation in the observation equations. Numerical tests demonstrate good convergence behaviour for differential code bias and ambiguity estimates derived individually with single reference stations. With station-based solutions from three reference stations within distances of 22–103 km the user receiver positioning results, with various schemes, show an accuracy improvement of the proposed station-augmented PPP and ambiguity-fixed PPP solutions with respect to the standard float PPP solutions without station augmentation and ambiguity resolutions. Overall, the proposed reference station-based GNSS computing mode can support PPP and RTK positioning services as a simpler alternative to the existing network-based RTK or regionally augmented PPP systems.  相似文献   

2.
GPS/VRS 参考站网络的对流层误差建模技术研究   总被引:5,自引:1,他引:4  
在虚拟参考站(VRS)技术中,参考站与流动站间的高程差异会引起对流层误差改正数中存在系统偏差影响,使对流层改正精度降低。在常规网络内插改正模型的基础上,借助先验对流层模型,提出了一种能自主修正高程偏差的距离相关对流层网络内插模型(MHDIM)。基于四川GPS连续运行参考站网络(Sichuan GPS Reference Station Network-SGRSN)实际测试数据的分析表明,对于地形变化较大的中长距离稀疏GPS/VRS参考站网络(如流动站与参考站间高程差异大于500m),应用MHDIM模型可使对流层延迟误差改正精度提高到2到3cm并实现cm级网络RTK定位结果,适用于GPS/VRS参考站网络cm级实时动态定位要求。  相似文献   

3.
Kinematic precise point positioning at remote marine platforms   总被引:8,自引:2,他引:6  
Precise kinematic differential positioning using the global positioning system (GPS) at a marine platform usually requires a relatively short distance (e.g. <500 km) to a land-based reference station. As an alternative, precise point positioning (PPP) is normally considered free from this limiting requirement. However, due to the prerequisite of network-based satellite products, PPP at a remote marine platform may still be affected by its distance to the reference network. Hence, this paper investigates this scenario by configuring rings of reference stations with different radii centered on a to-be-positioned marine platform. Particularly, we applied ambiguity resolution at a single station to PPP by estimating uncalibrated phase delays (UPDs). We used three rings of reference stations centered on a vessel, with radii of roughly 900, 2,000 and 3,600 km, to determine satellite clocks and UPDs independently. For comparison, we also performed differential positioning based on a single reference station with baseline lengths of about 400, 1,700 and 2,800 km. We demonstrate that, despite the increasing ring-network radius to a few 1,000 km, the overall change in accuracy of the satellite clocks that are used at the vessel is smaller than 0.02 ns, and the RMS values of differences between the three sets of narrow-lane UPD estimates are around 0.05 cycles only. Moreover, the kinematic positioning accuracy of PPP is affected by the increasing ring-network radius, but can still achieve several centimeters after ambiguity resolution when the vessel is over a few 1,000 km away from the ring network, showing better performance than that of differential positioning. Therefore, we propose that ambiguity-fixed PPP can be used at remote marine platforms that support precise oceanographic and geophysical applications in open oceans.  相似文献   

4.
Atmospheric delays are contributors to the GNSS error budget in precise GNSS positioning that can reduce positioning accuracy considerably if not compensated appropriately. Both ionospheric and tropospheric delay corrections can be determined with help of reference stations in active GNSS networks. One approach to interpolate these error terms to the user’s location that is employed in Germany’s SAPOS network is the determination of area correction parameters (ACP, German: “Fl?chenkorrekturparameter—FKP”). A 2D interpolation scheme using data from at least 3 reference stations surrounding the rover is employed. A modification of this method was developed which only makes use of as few as 2 reference stations and provides 1D linear correction parameters along a “corridor” in which the user’s rover is moving. We present the results of a feasibility study portraying results from use of corridor correction parameters for precise RTK-like positioning. The differences to the reference coordinates (3D) attained in average for 1 h of data employing selected network nodes in Germany are between 0.8 and 2.0 cm, which compares well with the traditional area correction method that yields an error of 0.7 up to 1.1 cm.  相似文献   

5.
The global navigation satellite system (GNSS) can provide centimeter positioning accuracy at low costs. However, in order to obtain the desired high accuracy, it is necessary to use high-quality atmospheric models. We focus on the troposphere, which is an important topic of research in Brazil where the tropospheric characteristics are unique, both spatially and temporally. There are dry regions, which lie mainly in the central part of the country. However, the most interesting area for the investigation of tropospheric models is the wet region which is located in the Amazon forest. This region substantially affects the variability of humidity over other regions of Brazil. It provides a large quantity of water vapor through the humidity convergence zone, especially for the southeast region. The interconnection and large fluxes of water vapor can generate serious deficiencies in tropospheric modeling. The CPTEC/INPE (Center for Weather Forecasting and Climate Studies/Brazilian Institute for Space Research) has been providing since July 2012 a numerical weather prediction (NWP) model for South America, known as Eta. It has yield excellent results in weather prediction but has not been used in GNSS positioning. This NWP model was evaluated in precise point positioning (PPP) and network-based positioning. Concerning PPP, the best positioning results were obtained for the station SAGA, located in Amazon region. Using the NWP model, the 3D RMS are less than 10 cm for all 24 h of data, whereas the values reach approximately 60 cm for the Hopfield model. For network-based positioning, the best results were obtained mainly when the tropospheric characteristics are critical, in which case an improvement of up to 7.2 % was obtained in 3D RMS using NWP models.  相似文献   

6.
As the Chinese BeiDou Navigation Satellite System (BDS) has become operational in the Asia-Pacific region, it is important to better understand and demonstrate the benefits of combining triple-frequency BDS with dual-frequency GPS observations for network-based real-time kinematic (NRTK) services. Undifferenced NRTK is a new NRTK service mode, it extends the concept of NRTK by not requiring reference station and specified reference satellite at the rover processing. In order to realize the undifferenced NRTK service, a strategy for real-time modeling the undifferenced (UD) augmentation information is given, in which the fixed double-differenced ambiguities are transformed into UD ones with the help of datum settings. Since this strategy is insensitive to existing ephemeris products, it is applicable to the services of current BDS regional reference networks. Furthermore, a processing scheme for ambiguity resolution (AR) with arbitrary-frequency observations is also presented in detail. An instantaneous and reliable BDS + GPS positioning service can be provided to the rovers in undifferenced NRTK processing mode. With the data collected at 31 stations from a continuously operating reference station network in Guangdong Province (GDCORS) of China, the efficiency of the proposed approaches using combined BDS and GPS observations is confirmed. For three rover stations during days 327–329, a total of 12,960 1-min tests were performed separately to demonstrate the performance of AR. Thanks to the dynamically refined priori information of residual tropospheric and ionospheric error, and the availability of more satellites and observations, the AR fixing rates of combined BDS and GPS systems improve by 13 to 65%, compared with those of the GPS-only system using the traditional WL-L1-IF scheme. The positioning accuracy has also significantly improved.  相似文献   

7.
Ambiguity resolution in precise point positioning with hourly data   总被引:19,自引:7,他引:12  
Precise point positioning (PPP) has become a powerful tool for the scientific analysis of Global Positioning System (GPS) measurements. Until recently, ambiguity resolution at a single station in PPP has been considered difficult, due to the receiver- and satellite-dependent uncalibrated hardware delays (UHD). However, recent studies show that if these UHD can be determined accurately in advance within a network of stations, then ambiguity resolution at a single station becomes possible. In this study, the method proposed by Ge et al. J Geod 82(7):389–399, 2007 is adopted with a refinement in which only one single-difference narrow-lane UHD between a pair of satellites is determined within each full pass over a regional network. This study uses the EUREF (European Reference Frame) Permanent Network (EPN) to determine the UHD from Day 245 to 251 in 2007. Then 12 International GNSS Service stations inside the EPN and 15 outside the EPN are used to conduct ambiguity resolution in hourly PPP. It is found that the mean positioning accuracy in all hourly solutions for the stations inside the EPN is improved from (3.8, 1.5, 2.8) centimeters to (0.5, 0.5, 1.4) centimeters for the East, North and Up components, respectively. For the stations outside the EPN, some of which are over 2,000 km away from the nearest EPN stations, the mean positioning accuracy in the East, North and Up directions still achieves (0.6, 0.6, 2.0) centimeters, respectively, when the EPN-based UHD are applied to these stations. These results demonstrate that ambiguity resolution at a single station can significantly improve the positioning accuracy in hourly PPP. Particularly, UHD can be even applied to a station which is up to thousands of kilometers from the UHD-determination network, potentially showing a great advantage over current network-based GPS augmentation systems. Therefore, it is feasible and beneficial for the operators of GPS regional networks and providers of PPP-based online services to provide these UHD estimates as an additional product.  相似文献   

8.
Traditional positioning methods, such as conventional Real Time Kinematic (cRTK) rely upon local reference networks to enable users to achieve high-accuracy positioning. The need for such relatively dense networks has significant cost implications. Precise Point Positioning (PPP) on the other hand is a positioning method capable of centimeter-level positioning without the need for such local networks, hence providing significant cost benefits especially in remote areas. This paper presents the state-of-the-art PPP method using both GPS and GLONASS measurements to estimate the float position solution before attempting to resolve GPS integer ambiguities. Integrity monitoring is carried out using the Imperial College Carrier-phase Receiver Autonomous Integrity Monitoring method. A new method to detect and exclude GPS base-satellite failures is developed. A base-satellite is a satellite whose measurements are differenced from other satellite’s measurements when using between-satellite-differenced measurements to estimate position. The failure detection and exclusion methods are tested using static GNSS data recorded by International GNSS Service stations both in static and dynamic processing modes. The results show that failure detection can be achieved in all cases tested and failure exclusion can be achieved for static cases. In the kinematic processing cases, failure exclusion is more difficult because the higher noise in the measurement residuals increases the difficulty to distinguish between failures associated with the base-satellite and other satellites.  相似文献   

9.
Precise point positioning with integer ambiguity resolution requires precise knowledge of satellite position, clock and phase bias corrections. In this paper, a method for the estimation of these parameters with a global network of reference stations is presented. The method processes uncombined and undifferenced measurements of an arbitrary number of frequencies such that the obtained satellite position, clock and bias corrections can be used for any type of differenced and/or combined measurements. We perform a clustering of reference stations. The clustering enables a common satellite visibility within each cluster and an efficient fixing of the double difference ambiguities within each cluster. Additionally, the double difference ambiguities between the reference stations of different clusters are fixed. We use an integer decorrelation for ambiguity fixing in dense global networks. The performance of the proposed method is analysed with both simulated Galileo measurements on E1 and E5a and real GPS measurements of the IGS network. We defined 16 clusters and obtained satellite position, clock and phase bias corrections with a precision of better than 2 cm.  相似文献   

10.
Analysis of long-range network RTK during a severe ionospheric storm   总被引:3,自引:0,他引:3  
The network-based GPS technique provides a broad spectrum of corrections to support RTK (real-time kinematic) surveying and geodetic applications. The most important among them are the ionospheric corrections generated in the reference network. The accuracy of these corrections depends upon the ionospheric conditions and may not always be sufficient to support ambiguity resolution (AR), and hence accurate GPS positioning. This paper presents the analyses of the network-derived ionospheric correction accuracy under extremely varying – quiet and stormy – geomagnetic and ionospheric conditions. In addition, the influence of the correction accuracy on the instantaneous (single-epoch) and on-the-fly (OTF) AR in long-range RTK GPS positioning is investigated, and the results, based on post-processed GPS data, are provided. The network used here to generate the ionospheric corrections consists of three permanent stations selected from the Ohio Continuously Operating Reference Stations (CORS) network. The average separation between the reference stations was ∼200 km and the test baseline was 121 km long. The results show that, during the severe ionospheric storm, the correction accuracy deteriorates to the point when the instantaneous AR is no longer possible, and the OTF AR requires much more time to fix the integers. The analyses presented here also outline the importance of the correct selection of the stochastic constraints in the rover solution applied to the network-derived ionospheric corrections.  相似文献   

11.
徐忠燕  张传定  刘建华 《测绘工程》2007,16(3):23-26,30
局域差分GPS中,用户到基准站的距离对定位精度有着决定性影响。利用基准站生成用户误差改正数,其算法很多。文中针对局域差分GPS的数学模型空间相关性,介绍几种常用的内插方法,如加权平均法、线性内插法、低次曲面模型法及三角形内插法,并分析各种方法的内插系数和内插质量因子。利用局域差分GPS进行定位时,只有当用户站位于基准站构成的多边形网内时,才可能得到较高的精度。  相似文献   

12.
在中长基线的GNSS动态相对定位中,随着基线长度的增加,参考站与流动站之间误差的相关性会下降,导致模糊度无法快速固定,定位性能下降。在多GNSS参考站条件下,可以通过自适应选择距离更近的参考站,形成更加合理的基线,以保障RTK定位的精度。为解决换站后重新初始化模糊度所带来的定位结果重新收敛问题,本文提出了一种GNSS RTK实时自适应参考站换站算法,引入原参考站与新参考站之间的双差模糊度作为辅助,从而得到准确的新参考站与流动站之间的双差模糊度先验信息,避免了换站后模糊度的重新初始化,得到了连续的高精度定位结果。该方法可适用于实时定位,能够满足大范围RTK高精度连续定位的需求。利用香港CORS站数据进行验证,结果表明,本文换站算法能够克服换站导致的定位重收敛问题,且能够保障换站前后获得连续的高精度定位结果。  相似文献   

13.
DGPS services are provided in support of land and marine applications by many government agencies worldwide. Horizontal positioning accuracies in the order of several metres are typically achieved for these systems. Under high levels of ionospheric activity, however, significant degradations in DGPS positioning accuracies can occur. In particular, gradients of up to 50 ppm are associated with a feature known as storm-enhanced density (SED). This feature is a localized enhancement of total electron content (TEC) extending north through the mid-latitudes into the polar region. DGPS positioning errors of 20 m or more can persist for hours during such events. In this paper, archived IGS data from GPS reference stations are used to derive high-resolution TEC maps for two SED events. The impact of SED effects on DGPS horizontal positioning accuracies is then quantified using data from select IGS reference stations in North America and Europe. Results indicate that positioning accuracies may be degraded by factors as large as 10–20 during such events.  相似文献   

14.
GNSS navigation and positioning for the GEOHALO experiment in Italy   总被引:1,自引:1,他引:0  
GEOHALO is a joint experiment of several German institutes for atmospheric research and earth observation where exploring airborne gravimetry over Italy using the High Altitude and LOng Range (HALO) aircraft data is one of the major goals. The kinematic positioning of the aircraft, on which all remote sensing instruments are located, by Global Navigation Satellite System (GNSS) is affected by the characteristics of long-distance, long-time duration, and high-platform dynamics which are a key factor for the success of the GEOHALO project. We outline the strategy and method of GNSS data processing which takes into account multiple GNSS systems (GPS and GLONASS), multiple static reference stations including stations from the International GNSS Service (IGS) and the EUropean REFerence network (EUREF), multiple GNSS-receiving equipments mounted on the kinematic platform, geometric relations between multiple antennas, and assumptions of similar characteristic of atmospheric effects within a small area above the aircraft. From this precondition, various data processing methods for kinematic positioning have been developed, applied and compared. It is shown that the proposed method based on multiple reference stations and multiple kinematic stations with a common atmospheric delay parameter can effectively improve the reliability and accuracy of GNSS kinematic positioning.  相似文献   

15.
Continuously operating reference stations (CORS) are increasingly used to deliver real-time and near-real-time precise positioning services on a regional basis. A CORS network-based data processing system uses either or both of the two types of measurements: (1) ambiguity-resolved double-differenced (DD) phase measurements, and (2) phase bias calibrated zero-differenced (ZD) phase measurements. This paper describes generalized, network-based geometry-free models for three carrier ambiguity resolution (TCAR) and phase bias estimation with DD and ZD code and phase measurements. First, the geometry-free TCAR models are constructed with two Extra-Widelane (EWL)/Widelane (WL) virtual observables to allow for rapid ambiguity resolution (AR) for DD phase measurements without distance constraints. With an ambiguity-resolved WL phase measurement and the ionospheric estimate derived from the two EWL observables, an additional geometry-free equation is formed for the third virtual observable linearly independent of the previous two. AR with the third geometry-free model requires a longer period of observations for averaging than the first two, but is also distance-independent. A more general formulation of the geometry-free model for a baseline or network is also introduced, where all the DD ambiguities can be more rigorously resolved using the LAMBDA method. Second, the geometry-free models for calibration of three carrier phase biases of ZD phase measurements are similarly defined for selected virtual observables. A network adjustment procedure is then used to improve the ZD phase biases with known DD integer constraints. Numerical results from experiments with 24-h dual-frequency GPS data from three US CORS stations baseline lengths of 21, 56 and 74 km confirm the theoretical predictions concerning AR reliability of the network-based geometry-free algorithms.
Chris RizosEmail:
  相似文献   

16.
Multipath is one of the most important error sources in Global Navigation Satellite System (GNSS) carrier-phase-based precise relative positioning. Its theoretical maximum is a quarter of the carrier wavelength (about 4.8 cm for the Global Positioning System (GPS) L1 carrier) and, although it rarely reaches this size, it must clearly be mitigated if millimetre-accuracy positioning is to be achieved. In most static applications, this may be accomplished by averaging over a sufficiently long period of observation, but in kinematic applications, a modelling approach must be used. This paper is concerned with one such approach: the use of ray-tracing to reconstruct the error and therefore remove it. In order to apply such an approach, it is necessary to have a detailed understanding of the signal transmitted from the satellite, the reflection process, the antenna characteristics and the way that the reflected and direct signal are processed within the receiver. This paper reviews all of these and introduces a formal ray-tracing method for multipath estimation based on precise knowledge of the satellite–reflector–antenna geometry and of the reflector material and antenna characteristics. It is validated experimentally using GPS signals reflected from metal, water and a brick building, and is shown to be able to model most of the main multipath characteristics. The method will have important practical applications for correcting for multipath in well-constrained environments (such as at base stations for local area GPS networks, at International GNSS Service (IGS) reference stations, and on spacecraft), and it can be used to simulate realistic multipath errors for various performance analyses in high-precision positioning.  相似文献   

17.
基于区域参考站网的网络实时动态定位(real-time kinematic,RTK)方法是实现全球定位系统(global positioning system,GPS)、北斗卫星导航系统(BeiDou satellite navigation system,BDS)高精度定位的主要手段。研究了一种长距离GPS/BDS双系统网络RTK方法,首先采用长距离参考站网GPS/BDS多频观测数据确定宽巷整周模糊度,利用引入大气误差参数的参数估计模型解算GPS/BDS双差载波相位整周模糊度;然后按照长距离参考站网观测误差特性的不同,分类处理参考站观测误差,利用误差内插法计算流动站观测误差,以改正流动站GPS/BDS双系统载波相位观测值的观测误差;最后使用流动站多频载波相位整周模糊度解算方法确定GPS/BDS载波相位整周模糊度并解算位置参数。使用长距离连续运行参考站(continuously operating reference stations,CORS)网的实测数据进行实验,结果表明,该方法能够利用长距离GPS/BDS参考站网实现流动站的厘米级定位。  相似文献   

18.
An increasing number of GNSS reference stations are installed around the world to provide real-time precise positioning services. In most of the current services, a full network solution is required for the precise determination of biases. Such a network solution is time consuming and difficult to achieve for very large regions such as Europe or China. Therefore, we developed a multi-layer processing scheme for precise point positioning (PPP) regional augmentation to avoid processing large networks. Furthermore, we use L1 and L2 raw observations and estimate atmospheric delays, which were properly constrained to the atmospheric corrections derived from the reference stations. Therefore, inaccurate representation of atmospheric delays due to temporal and/or spatial atmospheric fluctuations in the processing can be compensated. The proposed scheme of PPP regional augmentation was implemented into the operational real-time PPP service system at GFZ for validation. The real-time orbit and clock corrections, the uncalibrated phase delays, and regional augmentation corrections are generated by this system. The augmentation corrections from the regional network are investigated and the positioning performance in terms of positioning accuracy and time for fixed solution is demonstrated in real-time. Our results indicate that a reliable fixing is possible after 5 s on average. The positioning accuracy is about 12, 10, and 25 mm in east, north, and vertical direction, respectively.  相似文献   

19.
This research shows the viability of using Global Navigation Satellite System (GNSS) stations from Brazilian active networks in monitoring the ionosphere. Various indexes of ionospheric irregularities and scintillation of GNSS signals, estimated in real-time and post-processed from GNSS data, are explored for this purpose. This way, an increase in the spatial resolution of ionospheric information is provided, allowing the generation of maps of scintillation and irregularities in observing the spatial and temporal behavior of the layer’s activity cycle, since the number of ionosondes, imagers, and radars is insufficient for monitoring the irregularities in Brazil. Experiments to evaluate the estimates of the indexes are performed for periods of high and low variability of electrons. Three Brazilian networks are used: the Brazilian Network for Continuous Monitoring (RBMC), the GNSS Active Network of Sao Paulo State (GNSS-SP), and CIGALA/CALIBRA. The results are compared with data from ionosondes and PolaRxS-PRO Septentrio receivers, proving compatible with moderate to high correlations. An analysis of the seasonal variation during the peak of solar cycle 24 is carried out. The maps allow identifying the displacement of ionospheric irregularities along the magnetic equator over Brazil, from northeast to southwest, starting at 7:00 pm and ending at 2:00 am local time. Real-time monitoring is carried out for the summer solstice in the southern hemisphere, and results are consistent with those from the post-processed mode. The indexes and maps can be applied to the analysis of GNSS positioning. Real-time ionospheric information can be used in important practical applications because the displacement monitoring of irregularities allows prior knowledge of whether there will be a deterioration of positioning accuracy in a certain region.  相似文献   

20.
张锋  郝金明  肖凡 《四川测绘》2010,33(2):51-54
基于载波相位差分的网络RTK技术能够提供厘米级实时定位,但首先必须正确确定参考站间模糊度,并建立流动站误差改正模型。基于数天的历史观测数据获得的先验大气信息,本文提出了一种改进的VRS参考站间模糊度解算方法。本方法主要是利用大气误差的时间相关性,提取先验大气信息,对当前GPS观测值的大气误差进行改正,然后再确定模糊度。初步的试验结果表明该方法能提高参考站网络间模糊度解算效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号