首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 2015 Mw7.8 Gorkha earthquake triggered thousands of landslides of various types scattered over a large area. In the current study, we utilized pre- and post-earthquake high-resolution satellite imagery to compile two landslide inventories before and after earthquake and prepared three landslide susceptibility maps within 404 km2 area using frequency ratio (FR) model. From the study, we could map about 519 landslides including 178 pre-earthquake slides and 341 coseismic slides were identified. This study investigated the relationship between landslide occurrence and landslide causative factors, i.e., slope, aspect, altitude, plan curvature, lithology, land use, distance from streams, distance from road, distance from faults, and peak ground acceleration. The analysis showed that the majority of landslides both pre-earthquake and coseismic occurred at slope >30°, preferably in S, SE, and SW directions and within altitude ranging from 1000 to 1500 m and 1500 to 3500 m. Scatter plots between number of landslides per km?2 (LN) and percentage of landslide area (LA) and causative factors indicate that slope is the most influencing factor followed by lithology and PGA for the landslide formation. Higher landslide susceptibility before earthquake is observed along the road and rivers, whereas landslides after earthquake are triggered at steeper slopes and at higher altitudes. Combined susceptibility map indicates the effect of topography, geology, and land cover in the triggering of landslides in the entire basin. The resultant landslide susceptibility maps are verified through AUC showing success rates of 78, 81, and 77%, respectively. These susceptibility maps are helpful for engineers and planners for future development work in the landslide prone area.  相似文献   

2.
Geometric parameters are useful for characterizing earthquake-triggered landslides. This paper presents a detailed statistical analysis on this issue using the landslide inventory of the 2013, Minxian, China Mw 5.9 earthquake. Based on GIS software and a 5-m resolution DEM, geometric parameters of 635 coseismic landslides (with areas larger than 500 m2) were obtained, including height, length, width, reach angle (arc tangent of the height-length ratio), and aspect ratio (length-width ratio). The fitting relationship of height and length from these data is H = 0.6164L + 0.4589, with an average reach angle of 31.65°. The landslide aspect ratios concentrate in the range of 1.4~2.6, with an average of 2.11. According to the plane geometric shapes and aspect ratios, the landslides are classified into four categories: transverse landslide (LA1, L/W ≤ 0.8), isometric landslide (LA2, 0.8 < L/W ≤ 1.2), longitudinal landslide (LA3, 1.2 < L/W ≤ 3), and elongated landslide (LA4, L/W > 3). Statistics of these four types of landslides versus ten classified control factors (elevation, slope angle, slope aspect, curvature, slope position, distance to drainages, lithology, seismic intensity, peak ground acceleration, and distance to seismogenic fault) are used to examine their possible correlations and the landslide-prone areas, which would be helpful to the landslide disaster mitigation in the affected area.  相似文献   

3.
Detailed geomorphological mapping carried out in 5 sample areas in the North of Lisbon Region allowed us to collect a set of geological and geomorphological data and to correlate them with the spatial occurrence of landslide. A total of 597 slope movements were identified in a total area of 61.7 km2, which represents about 10 landslides per km2.The main landslide conditioning factors are: lithology and geological structure, slope angle and slope morphology, land use, presence of old landslides, and human activity.The highest landslide density occurs in Cretaceous marls and marly limestones, but the largest movements are in Jurassic clays, marls and limestones.The landslide density is higher on slopes with gradients above 20 °, but the largest unstable area is found on slopes of 10 ° to 15 °, thus reflecting the presence of the biggest slope movements. There is a correlation between landslides and topographical concavities, a fact that can be interpreted as reflecting the significance of the hydrological regime in slope instability.Concerning land use, the highest density of landslides is found on slopes covered with shrub and undergrowth vegetation.About 26% of the total number of landslides are reactivation events. The presence of old landslides is particularly important in the occurrence of translational slides and complex and composite slope movements.20% of the landslide events were conditioned by anthropomorphic activity. Human's intervention manifests itself in ill-consolidated fills, cuts in potentially unstable slopes and, in a few cases, in the changing of river channels.Most slope movements in the study area exhibit a clear climatic signal. The analysis of rainfall distribution in periods of recognised slope instability allows the distinction of three situations: 1) moderate intensity rainfall episodes, responsible for minor slope movements on the bank of rivers and shallow translational slides, particularly in artificial trenches; 2) high intensity rainfall episodes, originating flash floods and most landslides triggered by bank erosion; 3) long-lasting rainfall periods, responsible for the rise of the groundwater table and triggering of landslides with deeper slip surfaces.  相似文献   

4.
Chong Xu  Xiwei Xu 《Natural Hazards》2014,72(2):871-893
The April 14, 2010 Yushu, China, earthquake (Mw 6.9) triggered a great number of landslides. At least 2,036 co-seismic landslides, with a total coverage area of 1.194 km2, were delineated by visual interpretation of aerial photographs and satellite images taken following the earthquake, and verified by field inspection. Based on the mapping results, a statistical analysis of the spatial distribution of these landslides is performed using the landslide area percentage (LAP), defined as the percentage of the area affected by the landslides, and landslide number density (LND), defined as the number of landslides per square kilometer. The purpose is to clarify how the landslides correlate the control factors, which are the elevation, slope angle, slope aspect, slope position, distance from drainages, lithology, distance from the surface rupture, and peak ground acceleration (PGA). The results show that both LAP and LND have strongly positive correlations with slope angle and negative correlations with distance from the surface rupture and distance from drainages. The highest LAP and LPD values are in places of elevations from 3,800 to 4,000 m. The slopes producing landslides are mostly facing toward NE, E, and SE. The geological units of Q4 al-pl, N, and T3 kn 1 have the highest concentrations of co-seismic landslides. No apparent correlations are present between LAP and LND values and PGA. On both sides of the surface rupture, the landslide distributions are almost similar except a few exceptions, likely associated with the nature of the strike-slip seismogenic fault for this event. The bivariate statistical analysis shows that, in descending order, the earthquake-triggered landslide impact factors are distance from surface rupture > slope angle > distance from drainages > lithology > PGA. Besides, as the detailed co-seismic landslides inventories related to strike-slip earthquakes are still few compared with that of thrusting-fault earthquakes, this case study would shed new light on the subject. For instance, the landslide spatial distribution on both sides of the strike-slip seismogenic fault is rather different from that of thrusting-fault earthquakes. It reminds us to take different strategies of measures for prevention and mitigation of landslides induced by earthquakes with different mechanisms.  相似文献   

5.
The 2008 Ms 8.0 Wenchuan earthquake triggered a large number of extensive landslides. It also affected geologic properties of the mountains such that large-scale landslides followed the earthquake, resulting in the formation of a disaster chain. On 10 July 2013, a catastrophic landslide–debris flow suddenly occurred in the Dujiangyan area of Sichuan Province in southeast China. This caused the deaths of 166 people and the burying or damage of 11 buildings along the runout path. The landslide involved the failure of ≈1.47 million m3, and the displaced material from the source area was ≈0.3 million m3. This landslide displayed shear failure at a high level under the effects of a rainstorm, which impacted and scraped an accumulated layer underneath and a heavily weathered rock layer during the release of potential and kinetic energies. The landslide body entrained a large volume of surface residual diluvial soil, and then moved downstream along a gully to produce a debris flow disaster. This was determined to be a typical landslide–debris flow disaster type. The runout of displaced material had a horizontal extent of 1200 m and a vertical extent of 400 m. This was equivalent to the angle of reach (fahrböschung angle) of 19° and covered an area of 0.2 km2. The background and motion of the landslide are described in this study. On the basis of the above analysis, dynamic simulation software (DAN3D) and rheological models were used to simulate the runout behavior of the displaced landslide materials in order to provide information for the hazard zonation of similar types of potential landslide–debris flows in southeast China following the Wenchuan earthquake. The simulation results of the Sanxicun landslide revealed that the frictional model had the best performance for the source area, while the Voellmy model was most suitable for the scraping and accumulation areas. The simulations estimated that the motion could last for ≈70 s, with a maximum speed of 47.7 m/s.  相似文献   

6.
Chong Xu  Xiwei Xu  Guihua Yu 《Landslides》2013,10(4):421-431
On 14 April 2010 at 07:49 (Beijing time), a catastrophic earthquake with Ms 7.1 struck Yushu County, Qinghai Province, China. A total of 2,036 landslides were interpreted from aerial photographs and satellite images, verified by selected field checking. These landslides cover about a total area of 1.194 km2. The characteristics and failure mechanisms of these landslides are presented in this paper. The spatial distribution of the landslides is evidently strongly controlled by the locations of the main co-seismic surface fault ruptures. The landslides commonly occurred close together. Most of the landslides are small; there were only 275 individual landslide (13.5 % of the total number) surface areas larger than 1,000 m2. The landslides are of various types. They are mainly shallow, disrupted landslides, but also include rock falls, deep-seated landslides, liquefaction-induced landslides, and compound landslides. Four types of factors are identified as contributing to failure along with the strong ground shaking: natural excavation of the toes of slopes, which mean erosion of the base of the slope, surface water infiltration into slopes, co-seismic fault slipping at landslide sites, and delayed occurrence of landslides due to snow melt or rainfall infiltration at sites where slopes were weakened by the co-seismic ground shaking. To analyze the spatial distribution of the landslides, the landslide area percentage (LAP) and landslide number density (LND) were compared with peak ground acceleration (PGA), distance from co-seismic main surface fault ruptures, elevation, slope gradient, slope aspect, and lithology. The results show landslide occurrence is strongly controlled by proximity to the main surface fault ruptures, with most landslides occurring within 2.5 km of such ruptures. There is no evident correlation between landslide occurrences and PGA. Both LAP and LND have strongly positive correlations with slope gradient, and additionally, sites at elevations between 3,800 and 4,000 m are relatively susceptible to landslide occurrence; as are slopes with northeast, east, and southeast slope aspects. Q4 al-pl, N, and T3 kn 1 have more concentrated landslide activity than others. This paper provides a detailed inventory map of landslides triggered by the 2010 Yushu earthquake for future seismic landslide hazard analysis and also provides a study case of characteristics, failure mechanisms, and spatial distribution of landslides triggered by slipping-fault generated earthquake on a plateau.  相似文献   

7.
Do Minh Duc 《Landslides》2013,10(2):219-230
Landslides are one of the most dangerous hazards in Vietnam. Most landslides occur at excavated slopes, and natural slope failures are rare in the country. However, the volume of natural slope failures can be very significant and can badly affect large areas. After a long period of heavy rainfall in the fourth quarter of 2005 in Van Canh district, a series of landslides with volumes of 20,000–195,000 m3 occurred on 15 December 2005. The travel distances for the landslides reached over 300–400 m, and the landslides caused some remarkable loud booming noises. The failures took place on natural slopes with unfavorable geological settings and slope angles of 28–31°. The rainfall in the fourth quarter of 2005 is estimated to have a return period of 100 years and was the main triggering factor. Because of the large affected area and low population density, resettling people from the dangerous landslide-prone residential areas to safer sites was the most appropriate solution. In order to do so, a map of landslide susceptibility was produced that took into account slope angle, distance to faults, and slope aspect. The map includes four levels from low to very high susceptibility to landslides.  相似文献   

8.
Landslide hazard zonation is essential for planning future developmental activities. At the present study, after the preparation of a landslide inventory of the study area, nine factors as well as sub-data layers of factor class weights were tested for an integrated analysis of landslide hazard in the region. The produced factor maps were weighted with the analytic hierarchy process method and then classified into four classes—negligible, low, moderate, and high. The final produced map for landslide hazard zonation in Golestan watershed revealed that: (1) about 53.85 % of the basin is prone to moderate and high threats of landslides. (2) Landslide events at the Golestan watershed were strongly correlated to the slope angle of the basin. It was observed that the active landslide zones, including moderate to high landslide hazard classes, have a high correlation to slope classes over 30° (R 2?=?0.769). (3) The regions most susceptible to landslide hazard are those located south and southwest of the watershed, which included rock topples, falls, and debris landslides.  相似文献   

9.
Landslides caused by a low magnitude earthquake swarm (2.8?≤?M?≤?3.6) in 2012 were documented at the Santa Rosa Canyon in northeastern Mexico. Disrupted landslides from falls and slides, in both rocks and soils, were identified based on fieldwork and high-resolution satellite imagery along stream banks from natural cliffs and along the road cut in the epicentral area. Most of the landslides occurred on slopes greater than 40°, where geological features played a key role in triggering slope instabilities. The maximum distance limit for disrupted slides from the epicentral area was 7 km. The area affected by landslides during the early stage of the seismic sequence (July through August 2012) was 90 km2. Landslide identification was limited in some areas by the resolution of the satellite imagery and dense cloud coverage. Both the epicentral distance and the area affected by landslides are above the global bounds reported in literature. The final landslide inventory is the first documented case of earthquake-induced landslides in northeastern Mexico.  相似文献   

10.
The Todagin Creek landslide is located at 57.61° N 129.98° W in Northwest British Columbia. A seismic station 90 km north of the landslide recorded the event at 1643 hours coordinated universal time (UTC; 0943 hours Pacific daylight time (PDT)) on October 3, 2006. The signal verifies the discovery and relative time bounds provided by a hunting party in the valley. The landslide initiated as a translational rock slide on sedimentary rock dipping down slope at 34° and striking parallel to the valley. The landslide transformed into a debris avalanche and had a total volume estimated at 4 Mm3. An elevation drop of 771 m along a planar length of 1,885 m resulted in a travel angle (fahrb?schung) of 21.3°. The narrowest part of the landslide through the transport zone is 345 m. The widest part of the divergent toe of the landslide reaches a width of 1,010 m. Landslide debris impounded a lake of approximately 32 ha and destroyed an additional 67 ha of forest. The impoundment took 7 to 10 days to fill, with muddied waters observed downstream on October 13. No clear linkage exists with precipitation and temperature records preceding the landslide, but strong diurnal temperature cycles occurred in the days prior to the event. The Todagin Creek area appears to have an affinity for large landslides with the deposits of three other landslides >5 Mm3 observed in the valley.  相似文献   

11.
On 19 February 2007, a landslide occurred on the Alaard?ç Slope, located 1.6 km south of the town of Yaka (Gelendost, Turkey.) Subsequently, the displaced materials transformed into a mud flow in E?lence Creek and continued 750 m downstream towards the town of Yaka. The mass poised for motion in the Yaka Landslide source area and its vicinity, which would be triggered to a kinetic state by trigger factors such as heavy or sustained rainfall and/or snowmelt, poise a danger in the form of loss of life and property to Yaka with its population of 3,000. This study was undertaken to construct a susceptibility mapping of the vicinity of the Yaka Landslide’s source area and to relate it to movement of the landslide mass with the goal of prevention or mitigation of loss of life and property. The landslide susceptibility map was formulated by designating the relationship of the effecting factors that cause landslides such as lithology, gradient, slope aspect, elevation, topographical moisture index, and stream power index to the landslide map, as determined by analysis of the terrain, through the implementation of the conditional probability method. It was determined that the surface area of the Goksogut formation, which has attained lithological characteristics of clayey limestone with a broken and separated base and where area landslides occur, possesses an elevation of 1,100–1,300 m, a slope gradient of 15 °–35 ° and a slope aspect between 0 °–67.5 ° and 157 °–247 °. Loss of life and property may be avoided by the construction of structures to check the debris mass in E?lence Creek, the cleaning of the canal which passes through Yaka, the broadening of the canal’s base area, elevating the protective edges along the canal and the establishment of a protective zone at least 10-m wide on each side of the canal to deter against damage from probable landslide occurrence and mud flow.  相似文献   

12.
滑坡空间分布与形态特征能够反映滑坡发育程度, 为区域内滑坡灾害防治提供依据. 本研究以志丹县黄土滑坡为研究对象, 基于GIS空间分析选取最邻近指数与核密度估计分析志丹县滑坡空间分布规律, 通过统计分析的方法研究滑坡形态特征. 结果表明, 志丹县滑坡最邻近指数约为0.177, 在空间上呈聚集型分布; 核密度估计最大值出现在周河两岸的斜坡地带且呈带状分布, 具有多个高密度聚集区域; 滑坡面密度与点密度的计算结果分别为0.26%和0.19个/km2; 滑坡坡度多集中于70°以上, 坡向多集中于南和南东方向, 坡高则集中于40 m以下的斜坡. 通过聚类分析将研究区滑坡划分为不同类别的角度特征、高度特征、地质环境特征.  相似文献   

13.
On May 12, 2008, at 1428 hours (Beijing time), a catastrophic earthquake, with a magnitude of Ms 8.0, struck the Sichuan Province, China. About 200,000 landslides, as a secondary geological hazard associated with the earthquake, were triggered over a broad area. These landslides were of almost all types such as shallow, disrupted landslides, rock falls, deep-seated landslides, and rock avalanches. Some of these landslides damaged and destroyed large part of some towns, blocked roads, dammed rivers, and caused other serious damages. The purpose of this study is to detect correlations between landslide occurrence and the surface rupture plane, ground shaking conditions (measured by peak ground acceleration, PGA), lithology, slope gradient, slope aspect, topographic position, and distance from drainages by using two indices, landslide area percentage (LAP) and the landslide number density (LND), based on geographic information system (GIS) technology and statistical analysis method in a square region (study area) of Beichuan County, Sichuan Province, China. There were 5,096 landslides related with the earthquake which were delineated by visual interpretation and selected field checking throughout the study area. The total area (horizontal projection) of the 5,096 landslides is about 41.103 km2. The LAP, which is defined as the percentage of the plane area affected by landslides, was 10.276 %, and the LND, means the number of landslides per square kilometers, was 12.74 landslides/km2. Statistical analysis results show that both LAP and LND have a positive correlation with slope gradient and a negative correlation with distance from the surface rupture. However, the correlation between the occurrence of landslides with PGA, topographic position, and distance from drainages are uncertain, or has just a little positive correlation. The correlation between landslide and slope aspect also shows the effect of the directivity of the seismic wave. The Zbq formation had the most concentrated landslide activity with the LND value of 21.78 landslides/km , 2 and the ∈1 q Gr. geological units had the highest LAP value. Furthermore, weight index (W i) model is performed with a GIS platform to derive landslide hazard index map. The success rate of the model was 71.615 % and, thus, it was valid. In addition, comparison of five landslide controlling parameters’ influence on landslide occurrences was also carried out.  相似文献   

14.
《Engineering Geology》2002,63(1-2):169-185
Heavy rainfall from 26 to 31 August 1998 triggered many landslides in Nishigo Village of southern Fukushima Prefecture, Japan. The Hiegaesi landslide, a long-runout landslide with travel angle of 11°, which occurred in loamy volcanic-ash/pumice layer and was deposited in a nearby rice paddy, was investigated. In an observation pit dug in the middle part of the landslide deposit, the sliding zone just above the deflected rice plants was observed, and it was confirmed that grain crushing occurred in the sliding zone. The triggering and sliding mechanisms of this landslide then were investigated by ring-shear tests in laboratory. For the triggering mechanism, one saturated naturally drained test (test A: torque-controlled test) and one saturated undrained test (test B: speed-controlled test) were conducted on the samples taken from the source area of the landslide. Even in the naturally drained test opening the upper drain valve of the shear box, a temporary liquefaction occurred. In the undrained test, excess pore-pressure was generated along with shearing, and “sliding-surface liquefaction” phenomenon was observed. The effective stress and shear resistance finally decreased to near zero. These results can explain the observed phenomenon of small friction resistance like a flow of liquid when the sliding mass slid out of the source area. For the sliding mechanism of the landslide in the rice paddy, saturated undrained test (test C: speed-controlled test) was performed on soil sample above the deflected rice plants. The apparent friction angle obtained in this test was 8°. In addition, the residual friction angle measured after test B and test C was the same value of 41°. Combining with the observation on the shear zone in the ring-shear box after test C, it is concluded that, during the sliding in rice paddy, the undrained shear strength of the soil layer itself mainly influenced the high mobility of the landslide, probably because the friction between rice plants and soils is greater than the undrained shear strength inside the soil mass.  相似文献   

15.
The 2005 northern Pakistan earthquake (magnitude 7.6) of 8 October 2005 occurred in the northwestern part of the Himalayas. We interpreted landslides triggered by the earthquake using black-and-white 2.5-m-resolution System Pour l’Observation de la Terre 5 (SPOT 5) stereo images. As a result, the counts of 2,424 landslides were identified in the study area of 55 by 51 km. About 79% or 1,925 of the landslides were small (less than 0.5 ha in area), whereas 207 of the landslides (about 9%) were large (1 ha and more in area). Judging from our field survey, most of the small landslides are shallow rock falls and slides. However, the resolution and whitish image in the photos prevented interpreting the movement type and geomorphologic features of the landslide sites in detail. It is known that this earthquake took place along preexisting active reverse faults. The landslide distribution was mapped and superimposed on the crustal deformation detected by the environmental satellite/synthetic aperture radar (SAR) data, active faults map, geological map, and shuttle radar topography mission data. The landslide distribution showed the following characteristics: (1) Most of the landslides occurred on the hanging-wall side of the Balakot–Garhi fault; (2) greater than one third of the landslides occurred within 1 km from the active fault; (3) the greatest number of landslides (1,147 counts), landslide density (3.2 counts/km2), and landslide area ratio (2.3 ha/km2) was found within Miocene sandstone and siltstone, Precambrian schist and quartzite, and Eocene and Paleocene limestone and shale, respectively; (4) there was a slight trend that large landslides occurred on vertically convex slopes rather than on concave slopes; furthermore, large landslides occurred on steeper (30° and more) slopes than on gentler slopes; (5) many large landslides occurred on slopes facing S and SW directions, which is consistent with SAR-detected horizontal dominant direction of crustal deformation on the hanging wall.  相似文献   

16.
Dunkerley, D.L., 1976. A study of long-term slope stability in the Sydney Basin, Australia. Eng. Geol.; 10: 1–12.A study of slope characteristics in part of the Sydney Basin indicates that landslide occurrence and long-term slope stability are both governed by the residual shear strength of the clay soils which weather from the Triassic shales of this area. Both the present distribution of landslides and the form of the slopes themselves lend support to this conclusion.It is found that on the Wianamatta shales forming the Razorback Range southwest of Sydney, landslides may only occur on slopes whose inclination exceeds 11°. The average value ofφ′r measured in direct shear was found to be 22°. Values ofC′r were found to be very small but positive.  相似文献   

17.
The Niumiangou landslide (~7.5 × 106 m3) was the largest that occurred in the town of Yingxiu (the epicentral area) during the 2008 Wenchuan earthquake. This landslide originated on a steep slope (~30°) that was located directly above the rupture surface of the responsible fault and then traveled ~2 km after flowing down the axes of two gently sloping (<12°) valleys. Evidence at the site indicates that the landslide materials were highly fluidized and underwent rapid movement. To examine the initiation and movement mechanisms of this landslide, we performed a detailed field survey, conducted laboratory tests on samples taken from the field, and analyzed the seismic motion. We conclude that the landside materials were displaced due to seismic loading during the earthquake and that liquefaction may have been triggered in saturated layers above the sliding surface with progressive downslope sliding, which resulted in the high mobility of the displaced materials. The liquefaction of colluvial deposits along the travel path due to loading by the sliding mass enhanced the mobility of the displaced mass originating in the source area. Using an energy-based approach, we estimated the dissipated energy in our cyclic loading test and the possible energy dissipated to the soil layer on the slope by the earthquake. We infer that the seismic energy available for the initiation of the slope failure in the source area may have greatly exceeded the amount required for the initiation of the liquefaction failure. The slope instability might have been triggered several seconds after the arrival of seismic motion.  相似文献   

18.
Global climate change has increased the frequency of abnormally high rainfall; such high rainfall events in recent years have occurred in the mountainous areas of Taiwan. This study identifies historical earthquake- and typhoon-induced landslide dam formations in Taiwan along with the geomorphic characteristics of the landslides. Two separate groups of landslides are examined which are classified as those that were dammed by river water and those that were not. Our methodology applies spatial analysis using geographic information system (GIS) and models the geomorphic features with 20?×?20 m digital terrain mapping. The Spot 6 satellite images after Typhoon Morakot were used for an interpretation of the landslide areas. The multivariate statistical analysis is also used to find which major factors contribute to the formation of a landslide dam. The objective is to identify the possible locations of landslide dams by the geomorphic features of landslide-prone slopes. The selected nine geomorphic features include landslide area, slope, aspect, length, width, elevation change, runout distance, average landslide elevation, and river width. Our four geomorphic indexes include stream power, form factor, topographic wetness, and elevation–relief ratio. The features of the 28 river-damming landslides and of the 59 non-damming landslides are used for multivariate statistical analysis by Fisher discriminant analysis and logistic regression analysis. The principal component analysis screened out eleven major geomorphic features for landslide area, slope, aspect, elevation change, length, width, runout distance, average elevation, form factor, river width, stream power, and topography wetness. Results show that the correctness by Fisher discriminant analysis was 68.0 % and was 70.8 % by logistic regression analysis. This study suggests that using logistic regression analysis as the assessment model for identifying the potential location of a landslide dam is beneficial. Landslide threshold equations applying the geomorphic features of slope angle, angle of landslide elevation change, and river width (H L/W R) to identify the potential formation of natural dams are proposed for analysis. Disaster prevention and mitigation measures are enhanced when the locations of potential landslide dams are identified; further, in order to benefit such measures, dam volume estimates responsible for breaches are key.  相似文献   

19.
On October 23, 2004, a series of powerful earthquakes with a maximum M w = 6.6 located near the western coast of northern Honshu struck parts of northern Japan, particularly Niigata Prefecture; these earthquakes were known as the Chuetsu event. Thousands of landslides, as a secondary geotechnical hazard associated with these earthquakes, were triggered over a broad area; these landslides were of almost all types. The purpose of this study was to detect correlations between landslide occurrence with geologic and geomorphologic conditions, slope geometry, and earthquake parameters using two indexes based on Geographic Information Systems (GIS). In the study area, the landslide–area ratio (LAR), which is defined as the percentage of the area affected by landslides, was 2.9%, and the landslide concentration (LC), the number of landslides per square kilometer, was 4.4 landslides/km2, which is much more than other reported cases of seismic activity with the same magnitude. This was possibly due to heavy rainfall just before the Chuetsu earthquakes. Statistical analyses show that LAR has a positive correlation with slope steepness and distance from the epicenter, while LC is inversely correlated with distance from the epicenter. The Wanazu Formation had the most concentrated landslide activity, followed by the Kawaguchi, Ushigakubi, Shiroiwa and Oyama Formations, although the Wanazu Formation occupied only 4.5% of the total area of geological units. With 8.2% of the area affected by seismic landslides, the Kawaguchi Formation had the highest LAR. It was followed by the Shiroiwa, Ushigakubi and Wanazu Formations with LAR ranging from 4.6% to 6.0%. For lots of geological subunits, landslides are more frequent in a range of slope angles between 15° and 40°. The susceptibility to landsliding of each geologic unit was thus evaluated to correlate with slope steepness. It was also noted that the effects of the earthquakes were made far worse by antecedent rainfall conditions induced by a␣typhoon, and further research emphasizing the role of antecedent rainfall was discussed.  相似文献   

20.
滑坡运动场地上的沟谷地形,对滑坡运动产生约束、偏转、导流、阻止等作用,导致了滑坡运动距离的差异。根据滑坡滑源区、运移区的运动方向与沟谷堆积区延伸方向的夹角,将沟谷型滑坡划分为沟谷顺直型和沟谷偏转型两种类型。通过建立滑坡体积、沟谷地形参数与运动参数的非线性回归模型,分析体积及地形参数变化率对沟谷型滑坡运动距离变化的影响特征。研究表明:随体积增加,沟谷顺直型和沟谷偏转型滑坡的运动距离差异逐渐增大。体积作为滑坡运动距离的显著性因素,其原因在于滑坡体积在数量级上的差异,而在同一数量级内,体积变化仅对沟谷型滑坡最大水平运动距离变化的影响最大;滑源区和沟谷堆积区坡度的变化对垂直运动距离和堆积区水平运动距离影响大于滑坡体积。偏转角度对沟谷偏转型滑坡运动距离的影响较小,其原因在于沟谷区地形坡度显著影响了偏转角度对滑坡运动距离的作用。研究结果为沟谷型滑坡的致灾程度评估提供了参考依据。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号