首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Archean felsic volcanic rocks form a 2000 m thick succession stratigraphically below the Helen Iron Formation in the vicinity of the Helen Mine, Wawa, Ontario. Based on relict textures and structures, lateral and vertical facies changes, and fragment type, size and distribution, the felsic volcanic rocks have been subdivided into (a) lava flows and domes (b) hyalotuffs, (c) bedded pyroclastic flows, (d) massive pyroclastic flows, and (e) block and ash flows.Lava flows and domes are flow-banded, massive, and/or brecciated and occur throughout the stratigraphic succession. Dome/flow complexes are believed to mark the end of explosive eruptive cycles. Deposits interpreted as hyalotuffs are finely bedded and composed dominantly of ash-size material and accretionary lapilli. These deposits are interlayered with bedded pyroclastic flow deposits and probably formed from phreatomagmatic eruptions in a shallow subaqueous environment. Such eruptions led to the formation of tuff cones or rings. If these structures emerged they may have restricted the access of seawater to the eruptive vent(s), thus causing a change in eruptive style from short, explosive pulses to the establishment of an eruption column. Collapse of this column would lead to the accumulation of pyroclastic material within and on the flanks of the cone/ring structure, and to flows which move down the structure and into the sea. Bedded pyroclastic deposits in the Wawa area are thought to have formed in this manner, and are now composed of a thicker, more massive basal unit which is overlain by one or more finely bedded ash units. Based on bed thickness, fragment and crystal size, type and abundance, these deposits are further subdivided into central, proximal and distal facies.Central facies units consist of poorly graded, thick (30–80 m) basal beds composed of 23–60% lithic and 1–8% juvenile fragments. These are overlain by 1–4 thinner ash beds (2–25 cm). Proximal facies basal beds range from 2–35 m in thickness and are composed of 15–35% lithic and 4–16% juvenile fragments. Typically, lithic components are normally graded, whereas juvenile fragments are inversely graded. These basal beds are overlain by ash beds (2–14 in number) which range from 12 cm to 6 m in thickness. Distal basal beds, where present, are thin (1–2 m), and composed of 2–8% lithic and 6–21% juvenile fragments. Overlying ash beds range up to 40 in number.The climax of pyroclastic activity is represented by a thick (1000 m) sequence of massive, poorly sorted, pyroclastic flow deposits which are composed of 5–15% lithic fragments and abundant pumice. These deposits are similar to subaerial ash flows and appear to mark the rapid eruption of large volumes of material. They are overlain by felsic lavas and/or domes. Periodic collapse of the growing domes produced abundant coarse volcanic breccia. The overall volcanic environment is suggestive of caldera formation and late stage dome extrusion.  相似文献   

2.
Late Miocene–Pliocene to Quaternary calc-alkaline lava flows and domes are exposed in southeast of Isfahan in the Urumieh Dokhtar magmatic belt in the Central Iran structural zone. These volcanic rocks have compositions ranging from basaltic andesites, andesites to dacites. Geochemical studies show these rocks are a medium to high K calc-alkaline suite and meta-aluminous. Major element variations are typical for calc-alkaline rocks. The volcanic rocks have SiO2 contents ranging between 53.8% and 65.3%. Harker diagrams clearly show that the dacitic rocks did not form from the basaltic andesites by normal differentiation processes. They show large ion lithophile elements- and light rare earth elements (LREE)-enriched normalized multielement patterns and negative Nb, Ti, Ta, and P. Condrite-normalized REE patterns display a steep decrease from LREE to light rare earth elements without any Eu anomaly. These characteristics are consistent with ratios obtained from subduction-related volcanic rocks and in collision setting. The melting of a heterogeneous source is possible mechanism for their magma genesis, which was enriched in incompatible elements situated at the upper continental lithospheric mantle or lower crust. The geochemical characteristics of these volcanic rocks suggested that these volcanic rocks evolved by contamination of a parental magma derived from metasomatized upper lithospheric mantle and crustal melts.  相似文献   

3.
In western Anatolia, a thick volcanic succession of andesitic to rhyolitic lavas and volcaniclastic rocks crops out extensively. On Foça Peninsula, the westernmost part of the region, a dominantly rhyolitic sequence is exposed where massive rhyolites occur as dome or domelike stubby lava flows. These rhyolite domes vertically and laterally pass into blanketing volcaniclastic sequences. The gradational boundary relations and the facies characteristics of the surrounding volcaniclastic sequences indicate that the silicic domes directly intruded a subaqueous environment and were shattered upon sudden contact with water to form hyaloclastic blankets.

In and around these rhyolite domes, we have defined six different volcanic and volcaniclastic facies, consisting of: (1) massive rhyolite; (2) massive perlite; (3) hyaloclastic breccias; (4) rhyolite pumice and lithic fragment-bearing volcaniclastic rocks; (5) subaqueous welded ignimbrites; and (6) brecciated perlite. The massive rhyolite facies have distinct structures from the centers to the peripheries of the domes and stubby lava flows. Massive lava facies gradually pass into hyaloclastic breccias and massive perlite facies, indicating water-magma interaction during the emplacement. Phreatomagmatic explosive activity and doming caused the subaqueous pyroclastic flows on the flanks of the volcanic center. Welding in the upper parts of these pyroclastic flow deposits indicates the high-temperature emplacement of the pyroclastic material and relatively slow cooling caused by the cushioning effect of the gas-vapor mixture and rapid deposition of younger pyroclastic units.  相似文献   

4.
Fluorine contents in 38 Quaternary volcanic rocks, representing calc-alkaline andesite eruptive groups from the Garibaldi Lake area, were determined by a selective ion-electrode method. A close relationship is evident between F abundance and the type of ferromagnesian phenocrysts present in the andesitic rocks. Hypersthene andesites have the lowest F contents (142–212 ppm), whereas hornblende-biotite andesites exhibit the highest F values (279–368 ppm); hornblende andesites have intermediate F contents (238–292 ppm). The hornblende-free Desolation Valley basaltic andesite has a lower F content than the hornblende-bearing Sphinx Moraine basaltic andesite (122 ppm versus 317–333 ppm).Different eruptive suites can be grouped on the basis of F differentiation patterns into (1) a hornblende-free lava series in which the F content of basaltic andesite is less than that of andesite, and (2) a hornblende-bearing lava series in which F contents remain constant or decrease slightly from basaltic andesite through dacite. Fluorine variation in the former series was controlled largely by fractionation of anhydrous minerals, whereas that in the latter was influenced by crystallization of amphibole, biotite and apatite.The distinctive F variation patterns of the two lava series appear to represent real differences in the volatile contents of Garibaldi Lake magmas. These different volatile concentrations may reflect varying degrees of magma-wallrock interaction, differences in the initial volatile contents of the primary magmas, or some combination of these factors.  相似文献   

5.
Bontâu is a major eroded composite volcano filling the Miocene Zârand extensional basin, near the junction between the Codru-Moma and Highi?-Drocea Mountains, at the tectonic boundary between the South and North Apuseni Mountains. It is a quasi-symmetric structure (16–18 km in diameter) centered on an eroded vent area (9×4 km), buttressed to the south against Mesozoic ophiolites and sedimentary deposits of the South Apuseni Mountains. The volcano was built up in two sub-aerial phases (14–12.5 Ma and 11–10 Ma) from successive eruptions of andesite lava and pyroclastic rocks with a time-increasing volatile budget. The initial phase was dominated by emplacement of pyroxene andesite and resulted in scattered individual volcanic lava domes associated marginally with lava flows and/or pyroclastic block-and-ash flows. The second phase is characterized by amphibole-pyroxene andesite as a succession of pyroclastic eruptions (varying from strombolian to subplinian type) and extrusion of volcanic domes that resulted in the formation of a central vent area. Numerous debris flow deposits accumulated at the periphery of primary pyroclastic deposits. Several intrusive andesitic-dioritic bodies and associated hydrothermal and mineralization processes are known in the volcano vent complex area. Distal epiclastic deposits initially as gravity mass flows and then as alluvial volcaniclastic and terrestrial detritic and coal filled the basin around the volcano in its western and eastern part. Chemical analyses show that lavas are calc-alkaline andesites with SiO2 ranging from 56–61%. The petrographical differences between the two stages are an increase in amphibole content at the expense of two pyroxenes (augite and hypersthene) in the second stage of eruption; CaO and MgO contents decrease with increasing SiO2. In spite of a ~4 Ma evolution, the compositions of calc-alkaline lavas suggest similar fractionation processes. The extensional setting favored two pulses of short-lived magma chamber processes.  相似文献   

6.
乔乐  陈剑  凌宗成 《地质学报》2021,95(9):2678-2691
火山活动是月球最主要的内动力地质作用之一,是研究月球地质历史和热演化的重要窗口,也是月球科学及探测的重点目标.本文概要总结了月球火山作用的基本原理,并重点介绍了"岩墙扩展"模型.基于此模型,列举了由于岩墙在月壳内部上升程度的不同,导致的不同形式的喷发活动,并在月表产生了一系列火山地貌特征:① 当岩墙仅扩展到浅月表、未能穿透月壳并引起喷发活动时,可能会在月表产生坑链构造、地堑或底部断裂型撞击坑;② 当岩墙穿透了整个月壳并引起爆裂式喷发活动时,会在月表产生小型火山锥、区域性火山碎屑堆积物、全月分布的微小火山玻璃、暗晕凹陷构造及环形火山碎屑堆积物;③ 当岩墙穿透了整个月壳并引起溢流式喷发活动时,随着岩浆喷发通量的逐步增高,会在月表产生小型熔岩流、月海穹窿、复合熔岩流、蜿蜒型月溪、巨型熔岩流及火山高原复合体.本文也简要介绍了在月表观测到的若干非典型火山地貌特征,包括不规则月海斑块、环形凹陷穹丘及非月海富硅质穹窿.近年来新的探月数据加深了对这些特殊火山地貌特征的认识,但是更多的地质特征及成因模型细节仍有待未来月球研究及探测去解决.  相似文献   

7.
The San Ignacio Fm, a late Palaeozoic foreland basin succession that crops out in the Frontal Cordillera (Argentinean Andes), contains lacustrine microbial carbonates and volcanic rocks. Modification by extensive pedogenic processes contributed to the massive aspect of the calcareous beds. Most of the volcanic deposits in the San Ignacio Fm consist of pyroclastic rocks and resedimented volcaniclastic deposits. Less frequent lava flows produced during effusive eruptions led to the generation of tabular layers of fine-grained, greenish or grey andesites, trachytes and dacites. Pyroclastic flow deposits correspond mainly to welded ignimbrites made up of former glassy pyroclasts devitrified to microcrystalline groundmass, scarce crystals of euhedral plagioclase, quartz and K-feldspar, opaque minerals, aggregates of fine-grained phyllosilicates and fiammes defining a bedding-parallel foliation generated by welding or diagenetic compaction. Widespread silicified and silica-permineralized plant remains and carbonate mud clasts are found, usually embedded within the ignimbrites. The carbonate sequences are underlain and overlain by volcanic rocks. The carbonate sequence bottoms are mostly gradational, while their tops are usually sharp. The lower part of the carbonate sequences is made up of mud which appear progressively, filling interstices in the top of the underlying volcanic rocks. They gradually become more abundant until they form the whole of the rock fabric. Carbonate on volcanic sandstones and pyroclastic deposits occur, with the nucleation of micritic carbonate and associated production of pyrite. Cyanobacteria, which formed the locus of mineral precipitation, were related with this nucleation. The growth of some of the algal mounds was halted by the progressive accumulation of volcanic ash particles, but in most cases the upper boundary is sharp and suddenly truncated by pyroclastic flows or volcanic avalanches. These pyroclastic flows partially destroyed the carbonate beds and palaeosols. Microbial carbonate clasts, silicified and silica-permineralized tree trunks, log stumps and other plant remains such as small branches and small roots inside pieces of wood (interpreted as fragments of nurse logs) are commonly found embedded within the ignimbrites. The study of the carbonate and volcanic rocks of the San Ignacio Fm allows the authors to propose a facies model that increases our understanding of lacustrine environments that developed in volcanic settings.  相似文献   

8.
The Irruputuncu is an active volcano located in northern Chile within the Central Andean Volcanic Zone (CAVZ) and that has produced andesitic to trachy-andesitic magmas over the last ∼258 ± 49 ka. We report petrographical and geochemical data, new geochronological ages and for the first time a detailed geological map representing the eruptive products generated by the Irruputuncu volcano. The detailed study on the volcanic products allows us to establish a temporal evolution of the edifice. We propose that the Irruputuncu volcanic history can be divided in two stages, both dominated by effusive activity: Irruputuncu I and II. The oldest identified products that mark the beginning of Irruputuncu I are small-volume pyroclastic flow deposits generated during an explosive phase that may have been triggered by magma injection as suggested by mingling features in the clasts. This event was followed by generation of large lava flows and the edifice grew until destabilization of its SW flank through the generation of a debris avalanche, which ended Irruputuncu I. New effusive activity generated lavas flows to the NW at the beginning of Irruputuncu II. In the meantime, lava domes that grew in the summit were destabilized, as shown by two well-preserved block-and-ash flow deposits. The first phase of dome collapse, in particular, generated highly mobile pyroclastic flows that propagated up to ∼8 km from their source on gentle slopes as low as 11° in distal areas. The actual activity is characterized by deposition of sulfur and permanent gas emissions, producing a gas plume that reaches 200 m above the crater. The maximum volume of this volcanic system is of ∼4 km3, being one of the smallest active volcano of Central Andes.  相似文献   

9.
We present a new model for the evolution of volcanic table mountains, based on volcanological and petrological studies of Herdubreid/Herdubreidartögl, an upper Pleistocene volcanic complex within the active Icelandic rift zone. The evolution of these table mountains is highly complex and influenced substantially by different eruptive environments as well as changing magma sources and volcanic and magmatic processes. Whereas current models imply entirely subglacial conditions and continuous compositional (“monogenetic”) evolution for these volcanoes, we subdivide their evolution into four eruptive periods characterized by different environments: (a) Subaerial lava flows erupted during an interglacial period. (b) Lavas and voluminous hydroclastic deposits formed in a lake during a waning period of the last glaciation. (c) Subglacial eruptions during thickening of the ice sheet as a result of a climatic deterioration built pillow lava piles overlain by steep-sided complexes of hydroclastic deposits. These deposits differ from those of the second eruptive period in structure, texture, and degree of alteration. Subaerial lava flows and agglutinates covered these deposits after buildup above the ice sheet. (d) Subaerial lava flows and fallout deposits during a postglacial period. The detailed analysis of volcanic table mountains appears to be a very sensitive indicator of climatic fluctuations. Although most deposits of the studied volcanoes were formed during the waning period of the last glaciation, the subglacial deposits in the upper part of the volcanic complex reflect a temporary, but major, thickening of the ice sheet.  相似文献   

10.

与石炭系相比,准噶尔盆地西北缘下二叠统火山岩岩性、岩相类型丰富,研究程度低。本文利用岩心、薄片及元素
地球化学资料,开展了火山岩岩石学及其与储层关系研究。佳木河组以熔岩和火山碎屑岩共同发育为特征,岩性以玄武安
山岩、安山岩、英安岩为主,相对稳定;风城组火山岩在不同地区变化明显,克百地区以火山熔岩为主,属于玄武粗安岩
和碱玄岩,而乌夏地区以熔结火山碎屑岩或火山碎屑熔岩发育为特征,属于流纹岩、碱玄质响岩和粗安岩。在佳木河组及
克百地区风城组,(沉)火山角砾岩储层质量最好,安山岩等熔岩其次;乌夏地区风城组熔结火山角砾岩和石泡构造火山角
砾熔岩储层质量最好。此外,相同岩性可能因产出环境不同而储层特征有别。尽管各地成岩作用存在差异,但火山岩优质
储层仍集中于溢流(爆溢)相上部亚相、爆发相空落亚相的弹射坠落堆积和火山碎屑流亚相的水下堆积和爆发相。全区佳
木河组溢流相和爆发相共同发育,而克百地区风城组以溢流相为主、乌夏地区风城组以爆发相火山碎屑流亚相为主,不同
地区不同层位的有利勘探目标差异明显。除断裂带的裂缝和大型不整合面之下的风化淋滤外,岩相是控制火山岩储层质量
的关键因素。  相似文献   


11.
黑龙江省小兴安岭北段逊克地区出露大面积的第四纪火山岩,分布面积约3000km~2。岩性主要为玄武安山岩和玄武质粗面安山岩,还有少量的粗面安山岩和安山岩。逊克火山岩的Si O2含量为54.3%~57.4%,MgO含量变化为3.82%~5.80%,镁指数(Mg#=100×Mg/(Mg+Fe~(2+))变化于49.6~57.8之间,属于高镁安山岩。逊克高镁安山岩火山口的位置分布在火山岩区的南面,根据火山岩区南高北低的地势,推测北边的火山岩是由南侧的岩浆向北流动形成的。岩浆流动形成了具有特征性的火山地貌,如沿河谷形成数公里长的石垄以及大面积的翻花熔岩形成的石海景观。火山岩的K-Ar测年结果表明,逊克高镁安山岩可以划分为早更新世(1.12~1.00Ma)和中更新世(0.68~0.25Ma)两期。在第四纪熔岩和河湖相沉积之间还夹有薄层火山灰,推测在岩浆溢流形成大面积熔岩之前有小规模岩浆爆发活动。  相似文献   

12.
The summit region of Ben Nevis, Britain's highest mountain, consists of late Silurian to Early Devonian age volcanic rocks originally interpreted as a thick sequence (> 600 m) of andesite lavas and agglomerates that were down‐faulted during caldera subsidence. New digital field mapping of the Ben Nevis area, including both the steep north and south faces of the mountain, has revealed that the volcanic rocks consist largely of volcaniclastic debris flows, and extensive block and ash flow deposits with minor air‐fall tuff units. There is no evidence of any andesite lava flows or a volcanic vent. The volcanic detritus was derived from a volcanic centre situated to the NW of Ben Nevis, perhaps several tens of kilometres away. The rocks forming the summit region of the mountain have been re‐interpreted as a large roof pendant or keel of the former late Silurian to Early Devonian volcanic land surface that once covered much of the SW Highlands of Scotland.  相似文献   

13.
塔里木溢流玄武岩的喷发特征   总被引:5,自引:3,他引:2  
上官时迈  田伟  徐义刚  关平  潘路 《岩石学报》2012,28(4):1261-1272
通过对柯坪地区二叠系野外火山岩露头剖面和英买力、哈拉哈塘井区二叠系火山岩钻井剖面的对比,将塔里木早二叠世溢流玄武岩划分为三个旋回,从老到新依次是:库普库兹满溢流玄武岩旋回(KP),长英质火山碎屑岩旋回(FP)和开派兹雷克溢流玄武岩旋回(KZ)。KP旋回以巨厚溢流玄武岩夹凝灰岩为特征,在柯坪露头区和英买力井区均可划分出三层巨厚玄武质熔岩流,至哈拉哈塘井区减少为一层玄武岩流,但长英质火山碎屑岩和熔岩厚度增加。FP旋回在柯坪露头区自下而上包括空落相凝灰岩,熔结凝灰岩,再沉积火山碎屑岩和正常碎屑岩夹火山灰层,该层可与英买力及哈拉哈塘井区的凝灰岩层对比,表明在塔北存在一期面积广泛的长英质火山喷发。KZ旋回以溢流玄武岩为主,在开派兹雷克剖面识别出四期喷发共8层溢流玄武岩和一期安山质玄武岩,每期喷发之间夹少量碎屑岩,但未见长英质火山碎屑岩夹层,该特征与英买力和哈拉哈塘井区的火山层序组合不同,而与塔中溢流玄武岩类似。三个火山旋回的划分表明塔里木大火成岩省经历了"基性溢流玄武岩-酸性火山碎屑岩-基性溢流玄武岩"的演变过程,与Afro-Arabian溢流玄武岩省相似,可进行对比研究。  相似文献   

14.
李智佩  彭礼贵 《岩石学报》2000,16(2):183-190
应用古火山地质学和岩石地球化学对白银厂中酸性火山穹隆内的凝灰岩、昌屑凝灰岩、中酸性枕状、绳状熔岩和具有特殊构造的补丁岩等火山碎屑碉进行了较快速度沉降并堆积成岩,产于火山喷口附近。海底成矿热液蚀变作用使其SiO2、FeO、MgO、CO2等化学成分发生变化。凝灰质千枚岩则是细火山灰在海吕中经缓慢的沉降后形成于远离火山口的火山斜坡上的火山-沉积变质岩。根据“0补丁”的成分可将补丁岩分为两种类型:绿泥石质  相似文献   

15.
A thick sequence of dark-red lava flows and clastic rocks with abundant volcanic debris crops out along the Río Wampú of eastern Honduras. Lithologic characteristics of these rocks, field interpretations of the Río Wampú stratigraphy, and limited K---Ar age determinations on volcanic samples indicate that these redbeds and associated volcanic units are correlative with the Upper Cretaceous Valle de Angeles Group of central Honduras. These strata uncomformably overlie dark clastic units which are tentatively correlated with the Jurassic Agua Fría Formation of the Honduras Group. The lava samples are predominantly microporphyritic andesites and basaltic andesites with abundant fine-grained phenocrysts of plagioclase, clinopyroxene and Fe---Ti oxides. Immobile-element whole-rock and mineral concentrations indicate a high-K tholeiitic composition. Elevated TiO2 whole-rock and clinopyroxene concentrations found in the basaltic andesites apparently reflect a primary magmatic characteristic. Based on geochemical and modal data, it appears that these rocks were erupted from partial mantle melts which were modified by substantial fractionation of modal phases. The presence of widespread Mesozoic redbeds and associated volcanics in Honduras was previously cited as evidence of regional extensional tectonics. However, structural, geochemical and stratigraphic data collected during this study indicate that the Río Wampú volcanic suite was formed during a compressional (subduction-related) event. Similar high-TiO2 basaltic andesites and andesites are reported along several active continental margins.  相似文献   

16.
In the Cerro Carro Quebrado and Cerro Catri Cura area, located at the border between the Neuquén Basin and the North Patagonian Massif, the Garamilla Formation is composed of four volcanic stages: 1) andesitic lava-flows related to the beginning of the volcanic system; 2) basal massive lithic breccias that represent the caldera collapse; 3) voluminous, coarse-crystal rich massive lava-like ignimbrites related to multiple, steady eruptions that represent the principal infill of the system; and, finally 4) domes, dykes, lava flows, and lava domes of rhyolitic composition indicative of a post-collapse stage.The analysis of the regional and local structures, as well as, the architectures of the volcanic facies, indicates the existence of a highly oblique rift, with its principal extensional strain in an NNE–SSW direction (∼N10°).The analyzed rocks are mainly high-potassium dacites and rhyolites with trace and RE elements contents of an intraplate signature. The age of these rocks (189 ± 0.76 Ma) agree well with other volcanic sequences of the western North Patagonian Massif, as well as, the Neuquén Basin, indicating that Pliensbachian magmatism was widespread in both regions. The age is also coincident with phase 1 of volcanism of the eastern North Patagonia Massif (188–178 Ma) represented by ignimbrites, domes, and pyroclastic rocks of the Marifil Complex, related to intraplate magmatism.  相似文献   

17.
We studied a large debris-avalanche deposit of Pleistocene age in the Tenteniguada Basin, Gran Canaria Island, Spain. This deposit, which is well preserved because it is mostly covered by basanite lava flows, has distinctive matrix and block facies, hummocky topography and internal structures typical of debris avalanches. However, neither syneruptive lavas nor some characteristic features of volcanic debris-avalanche deposits, such as a stratovolcano edifice or a horseshoe-shaped crater, are present. The occurrence of internal features characteristic of volcanic avalanche deposits could be attributed to the volcanic materials involved in the movement rather than to the triggering of the avalanche during a volcanic eruption. The conditioning factors are shown to be associated with specific structural and hydrological conditions, such as the presence of old volcanic domes, strength reduction of the rocks, effective stress decrease, active gully erosion and water table rise during Pleistocene humid episodes. We finally suggest that the possible triggering factor of the avalanche was a neighbouring volcanic or tectonic earthquake.  相似文献   

18.
Detailed geological and petrological-geochemical study of rocks of the lava complex of Young Shiveluch volcano made it possible to evaluate the lava volumes, the relative sequence in which the volcanic edifice was formed, and the minimum age of the onset of eruptive activity. The lavas of Young Shiveluch are predominantly magnesian andesites and basaltic andesites of a mildly potassic calc-alkaline series (SiO2 = 55.0–63.5 wt %, Mg# = 55.5–68.9). Geologic relations and data on the mineralogy and geochemistry of rocks composing the lava complex led us to conclude that the magnesian andesites of Young Shiveluch volcano are of hybrid genesis and are a mixture of silicic derivatives and a highly magnesian magma that was periodically replenished in the shallow-depth magmatic chamber. The fractional crystallization of plagioclase and hornblende at the incomplete segregation of plagioclase crystals from the fractionating magmas resulted in adakitic geochemical parameters (Sr/Y = 50–71, Y < 18 ppm) of the most evolved rock varieties. Our results explain the genesis of the rock series of Young Shiveluch volcano without invoking a model of the melting of the subducting Pacific slab at its edge.  相似文献   

19.
Two main volcanic events are distinguished between Saraykent and Akçakışla in the Yozgat province of central Anatolia: (1) early Late Cretaceous–Palaeocene effusive activity, that produced a sequence of intermediate to felsic ‘basal lavas’; and (2) marginally later Palaeocene explosive activity that formed a series of covering ignimbrite flows. Due to their close temporal and spatial relation, geochemical comparisons were made between the silicic members of the lavas and ignimbrites, to identify chemical groups and their relative petrogenesis. The basal lavas range from calc‐alkaline basaltic andesites to dominant rhyolites. Based on trace element correlations three main geochemical groups were identified: the Akçakışla rhyolites (present as domes); Akçakışla rhyodacites‐dacites (lava flows); and Ozan‐Saraykent rhyolites (lava flows). Large‐ion lithophile elements have been mobile in all the groups, but mainly in the Akçakışla rhyolites. Rare earth element (REE) patterns show marked similarity between the Ozan and Saraykent basal lavas. The Akçakışla dome rhyolites are more fractionated with lower LaN/YbN ratios (c.10), whereas the Akçakışla basal lavas have much higher LaN/YbN ratios (c.30). The chemical coherence and petrographic similarities between the Saraykent and Ozan lavas suggest a single suite related via fractionation. Three geochemical groups were also established for the ignimbrites: Saraykent ignimbrite; Bağlıca ignimbrite‐Toklu‐Kızıldağ crystal tuffs; and Keklikpınar ignimbrite. The ignimbrites, like the basal lavas, display a pronounced depletion in Ba on ORG‐normalized plots. Relative to the basal lavas, chondrite‐normalized patterns for the ignimbrites are different in displaying negative Eu anomalies that indicate feldspar fractionation. The lack of geochemical overlap or coherence between any of the lava and ignimbrite groups suggests that they represent distinct eruptive events and are not related in any simple volcanic development and cogenetic sense. Two geochemical features are common to all the volcanic rock groups: (1) the presence of a Nb‐Ta anomaly, which is generally accepted as a crustal signature; and (2) the relatively low Y abundances which appear characteristic for the region as a whole. These fundamental features of the local silicic volcanism largely reflect source composition and effects. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
The Rio Itapicuru greenstone terrain of north-central Bahia State consists of belts of supracrustal rocks surrounding granitic plutons and domes. The basal supracrustal rocks are predominantly massive metabasalts with minor amounts of intercalated chemical sedimentary rocks and mafic tuffs. They are overlain by a middle unit of intermediate to acid pyroclastic rocks, lavas, and volcaniclastic sediments, and an upper unit of greywackes, sandstones and conglomerates.A geochemical study of major and trace elements of the volcanic rocks indicates the existence of a chemical discontinuity between the basaltic and the acid to intermediate members. The basalts are typical tholeiites with Ti, Zr, Sr, Y and Nb contents analogous to those of modern ocean-floor tholeiites or, alternatively, low-K tholeiites of primitive island arcs. In contrast, compositional variations of the hornblende-bearing andesites and dacites fall along indisputably calc-alkaline trends of low FeO and TiO2 contents which decrease with increasing differentiation. The lithostratigraphic and chemical variations within lavas of the Rio Itapicuru greenstone are comparable to those described from the Western Australian greenstone belts. Only in greenstone belts of the Canadian type do thick calc-alkaline sequences containing abudant basaltic andesites overlie conformably and transitionally the underlying tholeiitic basalts. Elsewhere the calc-alkaline sequences, if present, do not contain basaltic andesites and are chemically unrelated to the underlying basalts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号